diff --git a/source/build/include/libdivide.h b/source/build/include/libdivide.h index ab30fa1ea..ba18bbf6f 100644 --- a/source/build/include/libdivide.h +++ b/source/build/include/libdivide.h @@ -1,11 +1,9 @@ -/* libdivide.h - Copyright 2010 ridiculous_fish - - Modified for EDuke32. zlib license. -*/ - -#ifndef libdivide_h_ -#define libdivide_h_ +// libdivide.h +// Copyright 2010 - 2016 ridiculous_fish +// +// libdivide is dual-licensed under the Boost or zlib +// licenses. You may use libdivide under the terms of +// either of these. See LICENSE.txt for more details. #if defined(_WIN32) || defined(WIN32) #define LIBDIVIDE_WINDOWS 1 @@ -13,22 +11,34 @@ #if defined(_MSC_VER) #define LIBDIVIDE_VC 1 +// disable warning C4146: unary minus operator applied to +// unsigned type, result still unsigned +#pragma warning(disable: 4146) #endif -#if defined(__x86_64__) || defined(_WIN64) || defined(_M_64) -#define LIBDIVIDE_IS_X86_64 1 -#endif - -#if defined(__i386__) -#define LIBDIVIDE_IS_i386 1 -#endif - +#ifdef __cplusplus +#include +#include +#include +#else #include #include #include +#endif -#if LIBDIVIDE_IS_X86_64 || defined __SSE2__ || (defined _M_IX86_FP && _M_IX86_FP == 2) -#define LIBDIVIDE_USE_SSE2 1 +#if ! LIBDIVIDE_HAS_STDINT_TYPES && (! LIBDIVIDE_VC || _MSC_VER >= 1600) +// Only Visual C++ 2010 and later include stdint.h +#include +#define LIBDIVIDE_HAS_STDINT_TYPES 1 +#endif + +#if ! LIBDIVIDE_HAS_STDINT_TYPES +typedef __int32 int32_t; +typedef unsigned __int32 uint32_t; +typedef __int64 int64_t; +typedef unsigned __int64 uint64_t; +typedef __int8 int8_t; +typedef unsigned __int8 uint8_t; #endif #if LIBDIVIDE_USE_SSE2 @@ -40,39 +50,82 @@ #endif #ifndef __has_builtin -#define __has_builtin(x) 0 // Compatibility with non-clang compilers. +#define __has_builtin(x) 0 // Compatibility with non-clang compilers. #endif #if defined(__SIZEOF_INT128__) #define HAS_INT128_T 1 #endif +#if defined(__x86_64__) || defined(_WIN64) || defined(_M_X64) +#define LIBDIVIDE_IS_X86_64 1 +#endif + +#if defined(__i386__) +#define LIBDIVIDE_IS_i386 1 +#endif + #if __GNUC__ || __clang__ #define LIBDIVIDE_GCC_STYLE_ASM 1 #endif -/* Explanation of "more" field: bit 6 is whether to use shift path. If we are using the shift path, bit 7 is whether the divisor is negative in the signed case; in the unsigned case it is 0. Bits 0-4 is shift value (for shift path or mult path). In 32 bit case, bit 5 is always 0. We use bit 7 as the "negative divisor indicator" so that we can use sign extension to efficiently go to a full-width -1. +#if LIBDIVIDE_ASSERTIONS_ON +#define LIBDIVIDE_ASSERT(x) \ + do { \ + if (! (x)) { \ + fprintf(stderr, "Assertion failure on line %ld: %s\n", (long)__LINE__, #x); \ + exit(-1); \ + } \ + } while (0) +#else +#define LIBDIVIDE_ASSERT(x) +#endif +// libdivide may use the pmuldq (vector signed 32x32->64 mult instruction) +// which is in SSE 4.1. However, signed multiplication can be emulated +// efficiently with unsigned multiplication, and SSE 4.1 is currently rare, so +// it is OK to not turn this on. +#ifdef LIBDIVIDE_USE_SSE4_1 +#include +#endif -u32: [0-4] shift value - [5] ignored - [6] add indicator - [7] shift path - -s32: [0-4] shift value - [5] shift path - [6] add indicator - [7] indicates negative divisor +#ifdef __cplusplus +// We place libdivide within the libdivide namespace, and that goes in an +// anonymous namespace so that the functions are only visible to files that +// #include this header and don't get external linkage. At least that's the +// theory. +namespace { +namespace libdivide { +#endif -u64: [0-5] shift value - [6] add indicator - [7] shift path - -s64: [0-5] shift value - [6] add indicator - [7] indicates negative divisor - magic number of 0 indicates shift path (we ran out of bits!) -*/ +// Explanation of "more" field: bit 6 is whether to use shift path. If we are +// using the shift path, bit 7 is whether the divisor is negative in the signed +// case; in the unsigned case it is 0. Bits 0-4 is shift value (for shift +// path or mult path). In 32 bit case, bit 5 is always 0. We use bit 7 as the +// "negative divisor indicator" so that we can use sign extension to +// efficiently go to a full-width -1. +// +// u32: [0-4] shift value +// [5] ignored +// [6] add indicator +// [7] shift path +// +// s32: [0-4] shift value +// [5] shift path +// [6] add indicator +// [7] indicates negative divisor +// +// u64: [0-5] shift value +// [6] add indicator +// [7] shift path +// +// s64: [0-5] shift value +// [6] add indicator +// [7] indicates negative divisor +// magic number of 0 indicates shift path (we ran out of bits!) +// +// In s32 and s64 branchfree modes, the magic number is negated according to +// whether the divisor is negated. In branchfree strategy, it is not negated. enum { LIBDIVIDE_32_SHIFT_MASK = 0x1F, @@ -81,122 +134,165 @@ enum { LIBDIVIDE_U32_SHIFT_PATH = 0x80, LIBDIVIDE_U64_SHIFT_PATH = 0x80, LIBDIVIDE_S32_SHIFT_PATH = 0x20, - LIBDIVIDE_NEGATIVE_DIVISOR = 0x80 + LIBDIVIDE_NEGATIVE_DIVISOR = 0x80 }; -// these are padded to optimize access via LUT -typedef struct { +struct libdivide_u32_t { uint32_t magic; uint8_t more; -} libdivide_u32_t; +}; -typedef struct { +struct libdivide_s32_t { int32_t magic; uint8_t more; -} libdivide_s32_t; +}; -typedef struct { - int32_t magic; - uint8_t more; - uint8_t filler[3]; -} libdivide_s32pad_t; - -typedef struct { +struct libdivide_u64_t { uint64_t magic; uint8_t more; -} libdivide_u64_t; +}; -typedef struct { +struct libdivide_s64_t { int64_t magic; uint8_t more; -} libdivide_s64_t; +}; -typedef struct { +struct libdivide_u32_branchfree_t { + uint32_t magic; + uint8_t more; +}; + +struct libdivide_s32_branchfree_t { + int32_t magic; + uint8_t more; +}; + +struct libdivide_u64_branchfree_t { + uint64_t magic; + uint8_t more; +}; + +struct libdivide_s64_branchfree_t { int64_t magic; uint8_t more; - uint8_t filler[7]; // should think of something useful to do with this... -} libdivide_s64pad_t; +}; -libdivide_s32_t libdivide_s32_gen(int32_t y); -libdivide_u32_t libdivide_u32_gen(uint32_t y); -libdivide_s64_t libdivide_s64_gen(int64_t y); -libdivide_u64_t libdivide_u64_gen(uint64_t y); - -int32_t libdivide_s32_do(int32_t numer, const libdivide_s32_t *denom); -uint32_t libdivide_u32_do(uint32_t numer, const libdivide_u32_t *denom); -int64_t libdivide_s64_do(int64_t numer, const libdivide_s64_t *denom); -uint64_t libdivide_u64_do(uint64_t y, const libdivide_u64_t *denom); +#ifndef LIBDIVIDE_API + #ifdef __cplusplus + // In C++, we don't want our public functions to be static, because + // they are arguments to templates and static functions can't do that. + // They get internal linkage through virtue of the anonymous namespace. + // In C, they should be static. + #define LIBDIVIDE_API + #else + #define LIBDIVIDE_API static inline + #endif +#endif -int libdivide_u32_get_algorithm(const libdivide_u32_t *denom); -uint32_t libdivide_u32_do_alg0(uint32_t numer, const libdivide_u32_t *denom); -uint32_t libdivide_u32_do_alg1(uint32_t numer, const libdivide_u32_t *denom); -uint32_t libdivide_u32_do_alg2(uint32_t numer, const libdivide_u32_t *denom); - -int libdivide_u64_get_algorithm(const libdivide_u64_t *denom); -uint64_t libdivide_u64_do_alg0(uint64_t numer, const libdivide_u64_t *denom); -uint64_t libdivide_u64_do_alg1(uint64_t numer, const libdivide_u64_t *denom); -uint64_t libdivide_u64_do_alg2(uint64_t numer, const libdivide_u64_t *denom); - -int libdivide_s32_get_algorithm(const libdivide_s32_t *denom); -int32_t libdivide_s32_do_alg0(int32_t numer, const libdivide_s32_t *denom); -int32_t libdivide_s32_do_alg1(int32_t numer, const libdivide_s32_t *denom); -int32_t libdivide_s32_do_alg2(int32_t numer, const libdivide_s32_t *denom); -int32_t libdivide_s32_do_alg3(int32_t numer, const libdivide_s32_t *denom); -int32_t libdivide_s32_do_alg4(int32_t numer, const libdivide_s32_t *denom); - -int libdivide_s64_get_algorithm(const libdivide_s64_t *denom); -int64_t libdivide_s64_do_alg0(int64_t numer, const libdivide_s64_t *denom); -int64_t libdivide_s64_do_alg1(int64_t numer, const libdivide_s64_t *denom); -int64_t libdivide_s64_do_alg2(int64_t numer, const libdivide_s64_t *denom); -int64_t libdivide_s64_do_alg3(int64_t numer, const libdivide_s64_t *denom); -int64_t libdivide_s64_do_alg4(int64_t numer, const libdivide_s64_t *denom); +LIBDIVIDE_API struct libdivide_s32_t libdivide_s32_gen(int32_t y); +LIBDIVIDE_API struct libdivide_u32_t libdivide_u32_gen(uint32_t y); +LIBDIVIDE_API struct libdivide_s64_t libdivide_s64_gen(int64_t y); +LIBDIVIDE_API struct libdivide_u64_t libdivide_u64_gen(uint64_t y); + +LIBDIVIDE_API struct libdivide_s32_branchfree_t libdivide_s32_branchfree_gen(int32_t y); +LIBDIVIDE_API struct libdivide_u32_branchfree_t libdivide_u32_branchfree_gen(uint32_t y); +LIBDIVIDE_API struct libdivide_s64_branchfree_t libdivide_s64_branchfree_gen(int64_t y); +LIBDIVIDE_API struct libdivide_u64_branchfree_t libdivide_u64_branchfree_gen(uint64_t y); + +LIBDIVIDE_API int32_t libdivide_s32_do(int32_t numer, const struct libdivide_s32_t *denom); +LIBDIVIDE_API uint32_t libdivide_u32_do(uint32_t numer, const struct libdivide_u32_t *denom); +LIBDIVIDE_API int64_t libdivide_s64_do(int64_t numer, const struct libdivide_s64_t *denom); +LIBDIVIDE_API uint64_t libdivide_u64_do(uint64_t y, const struct libdivide_u64_t *denom); + +LIBDIVIDE_API int32_t libdivide_s32_branchfree_do(int32_t numer, const struct libdivide_s32_branchfree_t *denom); +LIBDIVIDE_API uint32_t libdivide_u32_branchfree_do(uint32_t numer, const struct libdivide_u32_branchfree_t *denom); +LIBDIVIDE_API int64_t libdivide_s64_branchfree_do(int64_t numer, const struct libdivide_s64_branchfree_t *denom); +LIBDIVIDE_API uint64_t libdivide_u64_branchfree_do(uint64_t y, const struct libdivide_u64_branchfree_t *denom); + +LIBDIVIDE_API int32_t libdivide_s32_recover(const struct libdivide_s32_t *denom); +LIBDIVIDE_API uint32_t libdivide_u32_recover(const struct libdivide_u32_t *denom); +LIBDIVIDE_API int64_t libdivide_s64_recover(const struct libdivide_s64_t *denom); +LIBDIVIDE_API uint64_t libdivide_u64_recover(const struct libdivide_u64_t *denom); + +LIBDIVIDE_API int32_t libdivide_s32_branchfree_recover(const struct libdivide_s32_branchfree_t *denom); +LIBDIVIDE_API uint32_t libdivide_u32_branchfree_recover(const struct libdivide_u32_branchfree_t *denom); +LIBDIVIDE_API int64_t libdivide_s64_branchfree_recover(const struct libdivide_s64_branchfree_t *denom); +LIBDIVIDE_API uint64_t libdivide_u64_branchfree_recover(const struct libdivide_u64_branchfree_t *denom); + +LIBDIVIDE_API int libdivide_u32_get_algorithm(const struct libdivide_u32_t *denom); +LIBDIVIDE_API uint32_t libdivide_u32_do_alg0(uint32_t numer, const struct libdivide_u32_t *denom); +LIBDIVIDE_API uint32_t libdivide_u32_do_alg1(uint32_t numer, const struct libdivide_u32_t *denom); +LIBDIVIDE_API uint32_t libdivide_u32_do_alg2(uint32_t numer, const struct libdivide_u32_t *denom); + +LIBDIVIDE_API int libdivide_u64_get_algorithm(const struct libdivide_u64_t *denom); +LIBDIVIDE_API uint64_t libdivide_u64_do_alg0(uint64_t numer, const struct libdivide_u64_t *denom); +LIBDIVIDE_API uint64_t libdivide_u64_do_alg1(uint64_t numer, const struct libdivide_u64_t *denom); +LIBDIVIDE_API uint64_t libdivide_u64_do_alg2(uint64_t numer, const struct libdivide_u64_t *denom); + +LIBDIVIDE_API int libdivide_s32_get_algorithm(const struct libdivide_s32_t *denom); +LIBDIVIDE_API int32_t libdivide_s32_do_alg0(int32_t numer, const struct libdivide_s32_t *denom); +LIBDIVIDE_API int32_t libdivide_s32_do_alg1(int32_t numer, const struct libdivide_s32_t *denom); +LIBDIVIDE_API int32_t libdivide_s32_do_alg2(int32_t numer, const struct libdivide_s32_t *denom); +LIBDIVIDE_API int32_t libdivide_s32_do_alg3(int32_t numer, const struct libdivide_s32_t *denom); +LIBDIVIDE_API int32_t libdivide_s32_do_alg4(int32_t numer, const struct libdivide_s32_t *denom); + +LIBDIVIDE_API int libdivide_s64_get_algorithm(const struct libdivide_s64_t *denom); +LIBDIVIDE_API int64_t libdivide_s64_do_alg0(int64_t numer, const struct libdivide_s64_t *denom); +LIBDIVIDE_API int64_t libdivide_s64_do_alg1(int64_t numer, const struct libdivide_s64_t *denom); +LIBDIVIDE_API int64_t libdivide_s64_do_alg2(int64_t numer, const struct libdivide_s64_t *denom); +LIBDIVIDE_API int64_t libdivide_s64_do_alg3(int64_t numer, const struct libdivide_s64_t *denom); +LIBDIVIDE_API int64_t libdivide_s64_do_alg4(int64_t numer, const struct libdivide_s64_t *denom); #if LIBDIVIDE_USE_SSE2 -__m128i libdivide_u32_do_vector(__m128i numers, const libdivide_u32_t * denom); -__m128i libdivide_s32_do_vector(__m128i numers, const libdivide_s32_t * denom); -__m128i libdivide_u64_do_vector(__m128i numers, const libdivide_u64_t * denom); -__m128i libdivide_s64_do_vector(__m128i numers, const libdivide_s64_t * denom); +LIBDIVIDE_API __m128i libdivide_u32_do_vector(__m128i numers, const struct libdivide_u32_t * denom); +LIBDIVIDE_API __m128i libdivide_s32_do_vector(__m128i numers, const struct libdivide_s32_t * denom); +LIBDIVIDE_API __m128i libdivide_u64_do_vector(__m128i numers, const struct libdivide_u64_t * denom); +LIBDIVIDE_API __m128i libdivide_s64_do_vector(__m128i numers, const struct libdivide_s64_t * denom); -__m128i libdivide_u32_do_vector_alg0(__m128i numers, const libdivide_u32_t * denom); -__m128i libdivide_u32_do_vector_alg1(__m128i numers, const libdivide_u32_t * denom); -__m128i libdivide_u32_do_vector_alg2(__m128i numers, const libdivide_u32_t * denom); +LIBDIVIDE_API __m128i libdivide_u32_do_vector_alg0(__m128i numers, const struct libdivide_u32_t * denom); +LIBDIVIDE_API __m128i libdivide_u32_do_vector_alg1(__m128i numers, const struct libdivide_u32_t * denom); +LIBDIVIDE_API __m128i libdivide_u32_do_vector_alg2(__m128i numers, const struct libdivide_u32_t * denom); -__m128i libdivide_s32_do_vector_alg0(__m128i numers, const libdivide_s32_t * denom); -__m128i libdivide_s32_do_vector_alg1(__m128i numers, const libdivide_s32_t * denom); -__m128i libdivide_s32_do_vector_alg2(__m128i numers, const libdivide_s32_t * denom); -__m128i libdivide_s32_do_vector_alg3(__m128i numers, const libdivide_s32_t * denom); -__m128i libdivide_s32_do_vector_alg4(__m128i numers, const libdivide_s32_t * denom); +LIBDIVIDE_API __m128i libdivide_s32_do_vector_alg0(__m128i numers, const struct libdivide_s32_t * denom); +LIBDIVIDE_API __m128i libdivide_s32_do_vector_alg1(__m128i numers, const struct libdivide_s32_t * denom); +LIBDIVIDE_API __m128i libdivide_s32_do_vector_alg2(__m128i numers, const struct libdivide_s32_t * denom); +LIBDIVIDE_API __m128i libdivide_s32_do_vector_alg3(__m128i numers, const struct libdivide_s32_t * denom); +LIBDIVIDE_API __m128i libdivide_s32_do_vector_alg4(__m128i numers, const struct libdivide_s32_t * denom); -__m128i libdivide_u64_do_vector_alg0(__m128i numers, const libdivide_u64_t * denom); -__m128i libdivide_u64_do_vector_alg1(__m128i numers, const libdivide_u64_t * denom); -__m128i libdivide_u64_do_vector_alg2(__m128i numers, const libdivide_u64_t * denom); +LIBDIVIDE_API __m128i libdivide_u64_do_vector_alg0(__m128i numers, const struct libdivide_u64_t * denom); +LIBDIVIDE_API __m128i libdivide_u64_do_vector_alg1(__m128i numers, const struct libdivide_u64_t * denom); +LIBDIVIDE_API __m128i libdivide_u64_do_vector_alg2(__m128i numers, const struct libdivide_u64_t * denom); + +LIBDIVIDE_API __m128i libdivide_s64_do_vector_alg0(__m128i numers, const struct libdivide_s64_t * denom); +LIBDIVIDE_API __m128i libdivide_s64_do_vector_alg1(__m128i numers, const struct libdivide_s64_t * denom); +LIBDIVIDE_API __m128i libdivide_s64_do_vector_alg2(__m128i numers, const struct libdivide_s64_t * denom); +LIBDIVIDE_API __m128i libdivide_s64_do_vector_alg3(__m128i numers, const struct libdivide_s64_t * denom); +LIBDIVIDE_API __m128i libdivide_s64_do_vector_alg4(__m128i numers, const struct libdivide_s64_t * denom); + +LIBDIVIDE_API __m128i libdivide_u32_branchfree_do_vector(__m128i numers, const struct libdivide_u32_branchfree_t * denom); +LIBDIVIDE_API __m128i libdivide_s32_branchfree_do_vector(__m128i numers, const struct libdivide_s32_branchfree_t * denom); +LIBDIVIDE_API __m128i libdivide_u64_branchfree_do_vector(__m128i numers, const struct libdivide_u64_branchfree_t * denom); +LIBDIVIDE_API __m128i libdivide_s64_branchfree_do_vector(__m128i numers, const struct libdivide_s64_branchfree_t * denom); -__m128i libdivide_s64_do_vector_alg0(__m128i numers, const libdivide_s64_t * denom); -__m128i libdivide_s64_do_vector_alg1(__m128i numers, const libdivide_s64_t * denom); -__m128i libdivide_s64_do_vector_alg2(__m128i numers, const libdivide_s64_t * denom); -__m128i libdivide_s64_do_vector_alg3(__m128i numers, const libdivide_s64_t * denom); -__m128i libdivide_s64_do_vector_alg4(__m128i numers, const libdivide_s64_t * denom); -#endif - #endif - #ifdef LIBDIVIDE_BODY - //////// Internal Utility Functions - + static inline uint32_t libdivide__mullhi_u32(uint32_t x, uint32_t y) { uint64_t xl = x, yl = y; uint64_t rl = xl * yl; return (uint32_t)(rl >> 32); } - + static uint64_t libdivide__mullhi_u64(uint64_t x, uint64_t y) { -#if HAS_INT128_T +#if LIBDIVIDE_VC && LIBDIVIDE_IS_X86_64 + return __umulh(x, y); +#elif HAS_INT128_T __uint128_t xl = x, yl = y; __uint128_t rl = xl * yl; return (uint64_t)(rl >> 64); #else - //full 128 bits are x0 * y0 + (x0 * y1 << 32) + (x1 * y0 << 32) + (x1 * y1 << 64) + // full 128 bits are x0 * y0 + (x0 * y1 << 32) + (x1 * y0 << 32) + (x1 * y1 << 64) const uint32_t mask = 0xFFFFFFFF; const uint32_t x0 = (uint32_t)(x & mask), x1 = (uint32_t)(x >> 32); const uint32_t y0 = (uint32_t)(y & mask), y1 = (uint32_t)(y >> 32); @@ -204,20 +300,22 @@ static uint64_t libdivide__mullhi_u64(uint64_t x, uint64_t y) { const uint64_t x0y1 = x0 * (uint64_t)y1; const uint64_t x1y0 = x1 * (uint64_t)y0; const uint64_t x1y1 = x1 * (uint64_t)y1; - + uint64_t temp = x1y0 + x0y0_hi; uint64_t temp_lo = temp & mask, temp_hi = temp >> 32; return x1y1 + temp_hi + ((temp_lo + x0y1) >> 32); #endif } - + static inline int64_t libdivide__mullhi_s64(int64_t x, int64_t y) { -#if HAS_INT128_T +#if LIBDIVIDE_VC && LIBDIVIDE_IS_X86_64 + return __mulh(x, y); +#elif HAS_INT128_T __int128_t xl = x, yl = y; __int128_t rl = xl * yl; - return (int64_t)(rl >> 64); + return (int64_t)(rl >> 64); #else - //full 128 bits are x0 * y0 + (x0 * y1 << 32) + (x1 * y0 << 32) + (x1 * y1 << 64) + // full 128 bits are x0 * y0 + (x0 * y1 << 32) + (x1 * y0 << 32) + (x1 * y1 << 64) const uint32_t mask = 0xFFFFFFFF; const uint32_t x0 = (uint32_t)(x & mask), y0 = (uint32_t)(y & mask); const int32_t x1 = (int32_t)(x >> 32), y1 = (int32_t)(y >> 32); @@ -227,18 +325,19 @@ static inline int64_t libdivide__mullhi_s64(int64_t x, int64_t y) { return x1*(int64_t)y1 + (t >> 32) + (w1 >> 32); #endif } - + #if LIBDIVIDE_USE_SSE2 static inline __m128i libdivide__u64_to_m128(uint64_t x) { #if LIBDIVIDE_VC && ! _WIN64 - //64 bit windows doesn't seem to have an implementation of any of these load intrinsics, and 32 bit Visual C++ crashes + // 64 bit windows doesn't seem to have an implementation of any of these + // load intrinsics, and 32 bit Visual C++ crashes _declspec(align(16)) uint64_t temp[2] = {x, x}; return _mm_load_si128((const __m128i*)temp); #elif defined(__ICC) uint64_t __attribute__((aligned(16))) temp[2] = {x,x}; return _mm_load_si128((const __m128i*)temp); -#elif __clang__ && (2 > __clang_major__ || (2 == __clang_major__ && 7 > __clang_minor__)) +#elif __clang__ // clang does not provide this intrinsic either return (__m128i){x, x}; #else @@ -248,50 +347,50 @@ static inline __m128i libdivide__u64_to_m128(uint64_t x) { } static inline __m128i libdivide_get_FFFFFFFF00000000(void) { - //returns the same as _mm_set1_epi64(0xFFFFFFFF00000000ULL) without touching memory - __m128i result = _mm_set1_epi8(-1); //optimizes to pcmpeqd on OS X + // returns the same as _mm_set1_epi64(0xFFFFFFFF00000000ULL) + // without touching memory. + __m128i result = _mm_set1_epi8(-1); // optimizes to pcmpeqd on OS X return _mm_slli_epi64(result, 32); } - + static inline __m128i libdivide_get_00000000FFFFFFFF(void) { - //returns the same as _mm_set1_epi64(0x00000000FFFFFFFFULL) without touching memory - __m128i result = _mm_set1_epi8(-1); //optimizes to pcmpeqd on OS X + // returns the same as _mm_set1_epi64(0x00000000FFFFFFFFULL) + // without touching memory. + __m128i result = _mm_set1_epi8(-1); // optimizes to pcmpeqd on OS X result = _mm_srli_epi64(result, 32); return result; } -#if 0 -static inline __m128i libdivide_get_0000FFFF(void) { - //returns the same as _mm_set1_epi32(0x0000FFFFULL) without touching memory - __m128i result; //we don't care what its contents are - result = _mm_cmpeq_epi8(result, result); //all 1s - result = _mm_srli_epi32(result, 16); - return result; -} -#endif - static inline __m128i libdivide_s64_signbits(__m128i v) { - //we want to compute v >> 63, that is, _mm_srai_epi64(v, 63). But there is no 64 bit shift right arithmetic instruction in SSE2. So we have to fake it by first duplicating the high 32 bit values, and then using a 32 bit shift. Another option would be to use _mm_srli_epi64(v, 63) and then subtract that from 0, but that approach appears to be substantially slower for unknown reasons + // we want to compute v >> 63, that is, _mm_srai_epi64(v, 63). But there + // is no 64 bit shift right arithmetic instruction in SSE2. So we have to + // fake it by first duplicating the high 32 bit values, and then using a 32 + // bit shift. Another option would be to use _mm_srli_epi64(v, 63) and + // then subtract that from 0, but that approach appears to be substantially + // slower for unknown reasons __m128i hiBitsDuped = _mm_shuffle_epi32(v, _MM_SHUFFLE(3, 3, 1, 1)); __m128i signBits = _mm_srai_epi32(hiBitsDuped, 31); return signBits; } -/* Returns an __m128i whose low 32 bits are equal to amt and has zero elsewhere. */ +// Returns an __m128i whose low 32 bits are equal to amt and has zero elsewhere. static inline __m128i libdivide_u32_to_m128i(uint32_t amt) { return _mm_set_epi32(0, 0, 0, amt); } - + static inline __m128i libdivide_s64_shift_right_vector(__m128i v, int amt) { - //implementation of _mm_sra_epi64. Here we have two 64 bit values which are shifted right to logically become (64 - amt) values, and are then sign extended from a (64 - amt) bit number. + // implementation of _mm_sra_epi64. Here we have two 64 bit values which + // are shifted right to logically become (64 - amt) values, and are then + // sign extended from a (64 - amt) bit number. const int b = 64 - amt; __m128i m = libdivide__u64_to_m128(1ULL << (b - 1)); __m128i x = _mm_srl_epi64(v, libdivide_u32_to_m128i(amt)); - __m128i result = _mm_sub_epi64(_mm_xor_si128(x, m), m); //result = x^m - m + __m128i result = _mm_sub_epi64(_mm_xor_si128(x, m), m); // result = x^m - m return result; } -/* Here, b is assumed to contain one 32 bit value repeated four times. If it did not, the function would not work. */ +// Here, b is assumed to contain one 32 bit value repeated four times. If it +// did not, the function would not work. static inline __m128i libdivide__mullhi_u32_flat_vector(__m128i a, __m128i b) { __m128i hi_product_0Z2Z = _mm_srli_epi64(_mm_mul_epu32(a, b), 32); __m128i a1X3X = _mm_srli_epi64(a, 32); @@ -299,27 +398,30 @@ static inline __m128i libdivide__mullhi_u32_flat_vector(__m128i a, __m128i b) { return _mm_or_si128(hi_product_0Z2Z, hi_product_Z1Z3); // = hi_product_0123 } - -/* Here, y is assumed to contain one 64 bit value repeated twice. */ +// Here, y is assumed to contain one 64 bit value repeated twice. static inline __m128i libdivide_mullhi_u64_flat_vector(__m128i x, __m128i y) { - //full 128 bits are x0 * y0 + (x0 * y1 << 32) + (x1 * y0 << 32) + (x1 * y1 << 64) + // full 128 bits are x0 * y0 + (x0 * y1 << 32) + (x1 * y0 << 32) + (x1 * y1 << 64) const __m128i mask = libdivide_get_00000000FFFFFFFF(); - const __m128i x0 = _mm_and_si128(x, mask), x1 = _mm_srli_epi64(x, 32); //x0 is low half of 2 64 bit values, x1 is high half in low slots + // x0 is low half of 2 64 bit values, x1 is high half in low slots + const __m128i x0 = _mm_and_si128(x, mask), x1 = _mm_srli_epi64(x, 32); const __m128i y0 = _mm_and_si128(y, mask), y1 = _mm_srli_epi64(y, 32); - const __m128i x0y0_hi = _mm_srli_epi64(_mm_mul_epu32(x0, y0), 32); //x0 happens to have the low half of the two 64 bit values in 32 bit slots 0 and 2, so _mm_mul_epu32 computes their full product, and then we shift right by 32 to get just the high values + // x0 happens to have the low half of the two 64 bit values in 32 bit slots + // 0 and 2, so _mm_mul_epu32 computes their full product, and then we shift + // right by 32 to get just the high values + const __m128i x0y0_hi = _mm_srli_epi64(_mm_mul_epu32(x0, y0), 32); const __m128i x0y1 = _mm_mul_epu32(x0, y1); const __m128i x1y0 = _mm_mul_epu32(x1, y0); const __m128i x1y1 = _mm_mul_epu32(x1, y1); - + const __m128i temp = _mm_add_epi64(x1y0, x0y0_hi); __m128i temp_lo = _mm_and_si128(temp, mask), temp_hi = _mm_srli_epi64(temp, 32); temp_lo = _mm_srli_epi64(_mm_add_epi64(temp_lo, x0y1), 32); temp_hi = _mm_add_epi64(x1y1, temp_hi); - + return _mm_add_epi64(temp_lo, temp_hi); } -/* y is one 64 bit value repeated twice */ +// y is one 64 bit value repeated twice static inline __m128i libdivide_mullhi_s64_flat_vector(__m128i x, __m128i y) { __m128i p = libdivide_mullhi_u64_flat_vector(x, y); __m128i t1 = _mm_and_si128(libdivide_s64_signbits(x), y); @@ -328,62 +430,37 @@ static inline __m128i libdivide_mullhi_s64_flat_vector(__m128i x, __m128i y) { p = _mm_sub_epi64(p, t2); return p; } - -/* SSE2 does not have a signed multiplication instruction, but we can convert unsigned to signed pretty efficiently. Again, b is just a 32 bit value repeated four times. */ + +#ifdef LIBDIVIDE_USE_SSE4_1 + +// b is one 32 bit value repeated four times. +static inline __m128i libdivide_mullhi_s32_flat_vector(__m128i a, __m128i b) { + __m128i hi_product_0Z2Z = _mm_srli_epi64(_mm_mul_epi32(a, b), 32); + __m128i a1X3X = _mm_srli_epi64(a, 32); + __m128i hi_product_Z1Z3 = _mm_and_si128(_mm_mul_epi32(a1X3X, b), libdivide_get_FFFFFFFF00000000()); + return _mm_or_si128(hi_product_0Z2Z, hi_product_Z1Z3); // = hi_product_0123 +} + +#else + +// SSE2 does not have a signed multiplication instruction, but we can convert +// unsigned to signed pretty efficiently. Again, b is just a 32 bit value +// repeated four times. static inline __m128i libdivide_mullhi_s32_flat_vector(__m128i a, __m128i b) { __m128i p = libdivide__mullhi_u32_flat_vector(a, b); - __m128i t1 = _mm_and_si128(_mm_srai_epi32(a, 31), b); //t1 = (a >> 31) & y, arithmetic shift + __m128i t1 = _mm_and_si128(_mm_srai_epi32(a, 31), b); // t1 = (a >> 31) & y, arithmetic shift __m128i t2 = _mm_and_si128(_mm_srai_epi32(b, 31), a); p = _mm_sub_epi32(p, t1); p = _mm_sub_epi32(p, t2); return p; } #endif - -static inline int32_t libdivide__count_trailing_zeros32(uint32_t val) { -#if __GNUC__ || __has_builtin(__builtin_ctz) - /* Fast way to count trailing zeros */ - return __builtin_ctz(val); -#elif LIBDIVIDE_VC - unsigned long result; - if (_BitScanForward(&result, val)) { - return result; - } - return 0; -#else - /* Dorky way to count trailing zeros. Note that this hangs for val = 0! */ - int32_t result = 0; - val = (val ^ (val - 1)) >> 1; // Set v's trailing 0s to 1s and zero rest - while (val) { - val >>= 1; - result++; - } - return result; #endif -} - -static inline int32_t libdivide__count_trailing_zeros64(uint64_t val) { -#if __LP64__ && (__GNUC__ || __has_builtin(__builtin_ctzll)) - /* Fast way to count trailing zeros. Note that we disable this in 32 bit because gcc does something horrible - it calls through to a dynamically bound function. */ - return __builtin_ctzll(val); -#elif LIBDIVIDE_VC && _WIN64 - unsigned long result; - if (_BitScanForward64(&result, val)) { - return result; - } - return 0; -#else - /* Pretty good way to count trailing zeros. Note that this hangs for val = 0! */ - uint32_t lo = val & 0xFFFFFFFF; - if (lo != 0) return libdivide__count_trailing_zeros32(lo); - return 32 + libdivide__count_trailing_zeros32(val >> 32); -#endif -} - + static inline int32_t libdivide__count_leading_zeros32(uint32_t val) { -#if __GNUC__ || __has_builtin(__builtin_clzll) - /* Fast way to count leading zeros */ - return __builtin_clz(val); +#if __GNUC__ || __has_builtin(__builtin_clz) + // Fast way to count leading zeros + return __builtin_clz(val); #elif LIBDIVIDE_VC unsigned long result; if (_BitScanReverse(&result, val)) { @@ -391,19 +468,20 @@ static inline int32_t libdivide__count_leading_zeros32(uint32_t val) { } return 0; #else - /* Dorky way to count leading zeros. Note that this hangs for val = 0! */ - int32_t result = 0; - while (! (val & (1U << 31))) { - val <<= 1; - result++; - } - return result; + int32_t result = 0; + uint32_t hi = 1U << 31; + + while (~val & hi) { + hi >>= 1; + result++; + } + return result; #endif } - + static inline int32_t libdivide__count_leading_zeros64(uint64_t val) { #if __GNUC__ || __has_builtin(__builtin_clzll) - /* Fast way to count leading zeros */ + // Fast way to count leading zeros return __builtin_clzll(val); #elif LIBDIVIDE_VC && _WIN64 unsigned long result; @@ -412,17 +490,16 @@ static inline int32_t libdivide__count_leading_zeros64(uint64_t val) { } return 0; #else - /* Dorky way to count leading zeros. Note that this hangs for val = 0! */ - int32_t result = 0; - while (! (val & (1ULL << 63))) { - val <<= 1; - result++; - } - return result; + uint32_t hi = val >> 32; + uint32_t lo = val & 0xFFFFFFFF; + if (hi != 0) return libdivide__count_leading_zeros32(hi); + return 32 + libdivide__count_leading_zeros32(lo); #endif } -//libdivide_64_div_32_to_32: divides a 64 bit uint {u1, u0} by a 32 bit uint {v}. The result must fit in 32 bits. Returns the quotient directly and the remainder in *r +// libdivide_64_div_32_to_32: divides a 64 bit uint {u1, u0} by a 32 bit +// uint {v}. The result must fit in 32 bits. +// Returns the quotient directly and the remainder in *r #if (LIBDIVIDE_IS_i386 || LIBDIVIDE_IS_X86_64) && LIBDIVIDE_GCC_STYLE_ASM static uint32_t libdivide_64_div_32_to_32(uint32_t u1, uint32_t u0, uint32_t v, uint32_t *r) { uint32_t result; @@ -440,44 +517,47 @@ static uint32_t libdivide_64_div_32_to_32(uint32_t u1, uint32_t u0, uint32_t v, return result; } #endif - + #if LIBDIVIDE_IS_X86_64 && LIBDIVIDE_GCC_STYLE_ASM static uint64_t libdivide_128_div_64_to_64(uint64_t u1, uint64_t u0, uint64_t v, uint64_t *r) { - //u0 -> rax - //u1 -> rdx - //divq + // u0 -> rax + // u1 -> rdx + // divq uint64_t result; __asm__("divq %[v]" : "=a"(result), "=d"(*r) : [v] "r"(v), "a"(u0), "d"(u1) ); return result; - } #else - -/* Code taken from Hacker's Delight, http://www.hackersdelight.org/HDcode/divlu.c . License permits inclusion here per http://www.hackersdelight.org/permissions.htm - */ -static uint64_t libdivide_128_div_64_to_64(uint64_t u1, uint64_t u0, uint64_t v, uint64_t *r) { + +// Code taken from Hacker's Delight: +// http://www.hackersdelight.org/HDcode/divlu.c. +// License permits inclusion here per: +// http://www.hackersdelight.org/permissions.htm + +static uint64_t libdivide_128_div_64_to_64(uint64_t u1, uint64_t u0, uint64_t v, uint64_t *r) { const uint64_t b = (1ULL << 32); // Number base (16 bits). - uint64_t un1, un0, // Norm. dividend LSD's. - vn1, vn0, // Norm. divisor digits. - q1, q0, // Quotient digits. - un64, un21, un10,// Dividend digit pairs. - rhat; // A remainder. - int s; // Shift amount for norm. - - if (EDUKE32_PREDICT_FALSE(u1 >= v)) { // If overflow, set rem. - if (r != NULL) // to an impossible value, - *r = (uint64_t)(-1); // and return the largest - return (uint64_t)(-1);} // possible quotient. - - /* count leading zeros */ + uint64_t un1, un0, // Norm. dividend LSD's. + vn1, vn0, // Norm. divisor digits. + q1, q0, // Quotient digits. + un64, un21, un10, // Dividend digit pairs. + rhat; // A remainder. + int s; // Shift amount for norm. + + if (u1 >= v) { // If overflow, set rem. + if (r != NULL) // to an impossible value, + *r = (uint64_t) -1; // and return the largest + return (uint64_t) -1; // possible quotient. + } + + // count leading zeros s = libdivide__count_leading_zeros64(v); // 0 <= s <= 63. - if (EDUKE32_PREDICT_TRUE(s > 0)) { - v = v << s; // Normalize divisor. + if (s > 0) { + v = v << s; // Normalize divisor. un64 = (u1 << s) | ((u0 >> (64 - s)) & (-s >> 31)); - un10 = u0 << s; // Shift dividend left. + un10 = u0 << s; // Shift dividend left. } else { // Avoid undefined behavior. un64 = u1 | u0; @@ -489,77 +569,209 @@ static uint64_t libdivide_128_div_64_to_64(uint64_t u1, uint64_t u0, uint64_t v, un1 = un10 >> 32; // Break right half of un0 = un10 & 0xFFFFFFFF; // dividend into two digits. - + q1 = un64/vn1; // Compute the first rhat = un64 - q1*vn1; // quotient digit, q1. again1: if (q1 >= b || q1*vn0 > b*rhat + un1) { q1 = q1 - 1; rhat = rhat + vn1; - if (rhat < b) goto again1;} - + if (rhat < b) goto again1; + } + un21 = un64*b + un1 - q1*v; // Multiply and subtract. - + q0 = un21/vn1; // Compute the second rhat = un21 - q0*vn1; // quotient digit, q0. again2: if (q0 >= b || q0*vn0 > b*rhat + un0) { q0 = q0 - 1; rhat = rhat + vn1; - if (rhat < b) goto again2;} - - if (r != NULL) // If remainder is wanted, - *r = (un21*b + un0 - q0*v) >> s; // return it. + if (rhat < b) goto again2; + } + + if (r != NULL) // If remainder is wanted, + *r = (un21*b + un0 - q0*v) >> s; // return it. return q1*b + q0; } #endif - -#if LIBDIVIDE_ASSERTIONS_ON -#define LIBDIVIDE_ASSERT(x) do { if (! (x)) { fprintf(stderr, "Assertion failure on line %ld: %s\n", (long)__LINE__, #x); exit(-1); } } while (0) + +// Bitshift a u128 in place, left (signed_shift > 0) or right (signed_shift < 0) +static inline void libdivide_u128_shift(uint64_t *u1, uint64_t *u0, int32_t signed_shift) +{ + if (signed_shift > 0) { + uint32_t shift = signed_shift; + *u1 <<= shift; + *u1 |= *u0 >> (64 - shift); + *u0 <<= shift; + } else { + uint32_t shift = -signed_shift; + *u0 >>= shift; + *u0 |= *u1 << (64 - shift); + *u1 >>= shift; + } +} + +// Computes a 128 / 128 -> 64 bit division, with a 128 bit remainder. +static uint64_t libdivide_128_div_128_to_64(uint64_t u_hi, uint64_t u_lo, uint64_t v_hi, uint64_t v_lo, uint64_t *r_hi, uint64_t *r_lo) { +#if HAS_INT128_T + __uint128_t ufull = u_hi; + ufull = (ufull << 64) | u_lo; + __uint128_t vfull = v_hi; + vfull = (vfull << 64) | v_lo; + __uint128_t remainder = ufull % vfull; + *r_lo = (uint64_t)remainder; + *r_hi = (uint64_t)(remainder >> 64); + return (uint64_t)(ufull / vfull); #else -#define LIBDIVIDE_ASSERT(x) + // Adapted from "Unsigned Doubleword Division" in Hacker's Delight + // We want to compute u / v + typedef struct { uint64_t hi; uint64_t lo; } u128_t; + u128_t u = {u_hi, u_lo}; + u128_t v = {v_hi, v_lo}; + if (v.hi == 0) { + // divisor v is a 64 bit value, so we just need one 128/64 division + // Note that we are simpler than Hacker's Delight here, because we know + // the quotient fits in 64 bits whereas Hacker's Delight demands a full + // 128 bit quotient + *r_hi = 0; + return libdivide_128_div_64_to_64(u.hi, u.lo, v.lo, r_lo); + } + // Here v >= 2**64 + // We know that v.hi != 0, so count leading zeros is OK + // We have 0 <= n <= 63 + uint32_t n = libdivide__count_leading_zeros64(v.hi); + + // Normalize the divisor so its MSB is 1 + u128_t v1t = v; + libdivide_u128_shift(&v1t.hi, &v1t.lo, n); + uint64_t v1 = v1t.hi; // i.e. v1 = v1t >> 64 + + // To ensure no overflow + u128_t u1 = u; + libdivide_u128_shift(&u1.hi, &u1.lo, -1); + + // Get quotient from divide unsigned insn. + uint64_t rem_ignored; + uint64_t q1 = libdivide_128_div_64_to_64(u1.hi, u1.lo, v1, &rem_ignored); + + // Undo normalization and division of u by 2. + u128_t q0 = {0, q1}; + libdivide_u128_shift(&q0.hi, &q0.lo, n); + libdivide_u128_shift(&q0.hi, &q0.lo, -63); + + // Make q0 correct or too small by 1 + // Equivalent to `if (q0 != 0) q0 = q0 - 1;` + if (q0.hi != 0 || q0.lo != 0) { + q0.hi -= (q0.lo == 0); // borrow + q0.lo -= 1; + } + + // Now q0 is correct. + // Compute q0 * v as q0v + // = (q0.hi<<64 + q0.lo) * (v.hi<<64 + v.lo) + // = (q0.hi*v.hi<<128 + q0.hi*v.lo<<64 + q0.lo*v.hi<<64 + q0.lo*v.lo) + // Each term is 128 bit + // High half of full product (upper 128 bits!) are dropped + u128_t q0v = {0, 0}; + q0v.hi = q0.hi*v.lo + q0.lo*v.hi + libdivide__mullhi_u64(q0.lo, v.lo); + q0v.lo = q0.lo*v.lo; + + // Compute u - q0v as u_q0v + // This is the remainder + u128_t u_q0v = u; + u_q0v.hi -= q0v.hi + (u.lo < q0v.lo); // second term is borrow + u_q0v.lo -= q0v.lo; + + // Check if u_q0v >= v + // This checks if our remainder is larger than the divisor + if ((u_q0v.hi > v.hi) || (u_q0v.hi == v.hi && u_q0v.lo >= v.lo)) { + // Increment q0 + q0.lo += 1; + q0.hi += (q0.lo == 0); // carry + + // Subtract v from remainder + u_q0v.hi -= v.hi + (u_q0v.lo < v.lo); + u_q0v.lo -= v.lo; + } + + *r_hi = u_q0v.hi; + *r_lo = u_q0v.lo; + + LIBDIVIDE_ASSERT(q0.hi == 0); + return q0.lo; #endif - +} + +#ifndef LIBDIVIDE_HEADER_ONLY + ////////// UINT32 -libdivide_u32_t libdivide_u32_gen(uint32_t d) { - libdivide_u32_t result; - if (EDUKE32_PREDICT_FALSE((d & (d - 1)) == 0)) { - result.magic = 0; - result.more = libdivide__count_trailing_zeros32(d) | LIBDIVIDE_U32_SHIFT_PATH; - } - else { - const uint32_t floor_log_2_d = 31 - libdivide__count_leading_zeros32(d); - - uint8_t more; - uint32_t rem, proposed_m = libdivide_64_div_32_to_32(1U << floor_log_2_d, 0, d, &rem); +static inline struct libdivide_u32_t libdivide_internal_u32_gen(uint32_t d, int branchfree) { + // 1 is not supported with branchfree algorithm + LIBDIVIDE_ASSERT(!branchfree || d != 1); - const uint32_t e = d - rem; - LIBDIVIDE_ASSERT(rem > 0 && rem < d); - - /* This power works if e < 2**floor_log_2_d. */ - if (e < (1U << floor_log_2_d)) { - /* This power works */ - more = floor_log_2_d; + struct libdivide_u32_t result; + const uint32_t floor_log_2_d = 31 - libdivide__count_leading_zeros32(d); + if ((d & (d - 1)) == 0) { + // Power of 2 + if (! branchfree) { + result.magic = 0; + result.more = floor_log_2_d | LIBDIVIDE_U32_SHIFT_PATH; + } else { + // We want a magic number of 2**32 and a shift of floor_log_2_d + // but one of the shifts is taken up by LIBDIVIDE_ADD_MARKER, so we + // subtract 1 from the shift + result.magic = 0; + result.more = (floor_log_2_d-1) | LIBDIVIDE_ADD_MARKER; } - else { - /* We have to use the general 33-bit algorithm. We need to compute (2**power) / d. However, we already have (2**(power-1))/d and its remainder. By doubling both, and then correcting the remainder, we can compute the larger division. */ + } else { + uint8_t more; + uint32_t rem, proposed_m; + proposed_m = libdivide_64_div_32_to_32(1U << floor_log_2_d, 0, d, &rem); + + LIBDIVIDE_ASSERT(rem > 0 && rem < d); + const uint32_t e = d - rem; + + // This power works if e < 2**floor_log_2_d. + if (!branchfree && (e < (1U << floor_log_2_d))) { + // This power works + more = floor_log_2_d; + } else { + // We have to use the general 33-bit algorithm. We need to compute + // (2**power) / d. However, we already have (2**(power-1))/d and + // its remainder. By doubling both, and then correcting the + // remainder, we can compute the larger division. + // don't care about overflow here - in fact, we expect it + proposed_m += proposed_m; const uint32_t twice_rem = rem + rem; - proposed_m += proposed_m; //don't care about overflow here - in fact, we expect it if (twice_rem >= d || twice_rem < rem) proposed_m += 1; more = floor_log_2_d | LIBDIVIDE_ADD_MARKER; } result.magic = 1 + proposed_m; result.more = more; - //result.more's shift should in general be ceil_log_2_d. But if we used the smaller power, we subtract one from the shift because we're using the smaller power. If we're using the larger power, we subtract one from the shift because it's taken care of by the add indicator. So floor_log_2_d happens to be correct in both cases. - + // result.more's shift should in general be ceil_log_2_d. But if we + // used the smaller power, we subtract one from the shift because we're + // using the smaller power. If we're using the larger power, we + // subtract one from the shift because it's taken care of by the add + // indicator. So floor_log_2_d happens to be correct in both cases. } return result; } -uint32_t libdivide_u32_do(uint32_t numer, const libdivide_u32_t *denom) { +struct libdivide_u32_t libdivide_u32_gen(uint32_t d) { + return libdivide_internal_u32_gen(d, 0); +} + +struct libdivide_u32_branchfree_t libdivide_u32_branchfree_gen(uint32_t d) { + struct libdivide_u32_t tmp = libdivide_internal_u32_gen(d, 1); + struct libdivide_u32_branchfree_t ret = {tmp.magic, (uint8_t)(tmp.more & LIBDIVIDE_32_SHIFT_MASK)}; + return ret; +} + +uint32_t libdivide_u32_do(uint32_t numer, const struct libdivide_u32_t *denom) { uint8_t more = denom->more; - if (EDUKE32_PREDICT_FALSE(more & LIBDIVIDE_U32_SHIFT_PATH)) { + if (more & LIBDIVIDE_U32_SHIFT_PATH) { return numer >> (more & LIBDIVIDE_32_SHIFT_MASK); } else { @@ -569,40 +781,89 @@ uint32_t libdivide_u32_do(uint32_t numer, const libdivide_u32_t *denom) { return t >> (more & LIBDIVIDE_32_SHIFT_MASK); } else { - return q >> more; //all upper bits are 0 - don't need to mask them off + return q >> more; // all upper bits are 0 - don't need to mask them off } } } - -int libdivide_u32_get_algorithm(const libdivide_u32_t *denom) { +uint32_t libdivide_u32_recover(const struct libdivide_u32_t *denom) { + uint8_t more = denom->more; + uint8_t shift = more & LIBDIVIDE_32_SHIFT_MASK; + if (more & LIBDIVIDE_U32_SHIFT_PATH) { + return 1U << shift; + } else if (! (more & LIBDIVIDE_ADD_MARKER)) { + // We compute q = n/d = n*m / 2^(32 + shift) + // Therefore we have d = 2^(32 + shift) / m + // We need to ceil it. + // We know d is not a power of 2, so m is not a power of 2, + // so we can just add 1 to the floor + uint32_t hi_dividend = 1U << shift; + uint32_t rem_ignored; + return 1 + libdivide_64_div_32_to_32(hi_dividend, 0, denom->magic, &rem_ignored); + } else { + // Here we wish to compute d = 2^(32+shift+1)/(m+2^32). + // Notice (m + 2^32) is a 33 bit number. Use 64 bit division for now + // Also note that shift may be as high as 31, so shift + 1 will + // overflow. So we have to compute it as 2^(32+shift)/(m+2^32), and + // then double the quotient and remainder. + // TODO: do something better than 64 bit math + uint64_t half_n = 1ULL << (32 + shift); + uint64_t d = (1ULL << 32) | denom->magic; + // Note that the quotient is guaranteed <= 32 bits, but the remainder + // may need 33! + uint32_t half_q = (uint32_t)(half_n / d); + uint64_t rem = half_n % d; + // We computed 2^(32+shift)/(m+2^32) + // Need to double it, and then add 1 to the quotient if doubling th + // remainder would increase the quotient. + // Note that rem<<1 cannot overflow, since rem < d and d is 33 bits + uint32_t full_q = half_q + half_q + ((rem<<1) >= d); + + // We rounded down in gen unless we're a power of 2 (i.e. in branchfree case) + // We can detect that by looking at m. If m zero, we're a power of 2 + return full_q + (denom->magic != 0); + } +} + +uint32_t libdivide_u32_branchfree_recover(const struct libdivide_u32_branchfree_t *denom) { + struct libdivide_u32_t denom_u32 = {denom->magic, (uint8_t)(denom->more | LIBDIVIDE_ADD_MARKER)}; + return libdivide_u32_recover(&denom_u32); +} + +int libdivide_u32_get_algorithm(const struct libdivide_u32_t *denom) { uint8_t more = denom->more; if (more & LIBDIVIDE_U32_SHIFT_PATH) return 0; else if (! (more & LIBDIVIDE_ADD_MARKER)) return 1; else return 2; } - -uint32_t libdivide_u32_do_alg0(uint32_t numer, const libdivide_u32_t *denom) { + +uint32_t libdivide_u32_do_alg0(uint32_t numer, const struct libdivide_u32_t *denom) { return numer >> (denom->more & LIBDIVIDE_32_SHIFT_MASK); } - -uint32_t libdivide_u32_do_alg1(uint32_t numer, const libdivide_u32_t *denom) { + +uint32_t libdivide_u32_do_alg1(uint32_t numer, const struct libdivide_u32_t *denom) { uint32_t q = libdivide__mullhi_u32(denom->magic, numer); return q >> denom->more; -} - -uint32_t libdivide_u32_do_alg2(uint32_t numer, const libdivide_u32_t *denom) { +} + +uint32_t libdivide_u32_do_alg2(uint32_t numer, const struct libdivide_u32_t *denom) { // denom->add != 0 uint32_t q = libdivide__mullhi_u32(denom->magic, numer); uint32_t t = ((numer - q) >> 1) + q; + // Note that this mask is typically free. Only the low bits are meaningful + // to a shift, so compilers can optimize out this AND. return t >> (denom->more & LIBDIVIDE_32_SHIFT_MASK); } +uint32_t libdivide_u32_branchfree_do(uint32_t numer, const struct libdivide_u32_branchfree_t *denom) { + // same as alg 2 + uint32_t q = libdivide__mullhi_u32(denom->magic, numer); + uint32_t t = ((numer - q) >> 1) + q; + return t >> denom->more; +} - - -#if LIBDIVIDE_USE_SSE2 -__m128i libdivide_u32_do_vector(__m128i numers, const libdivide_u32_t *denom) { +#if LIBDIVIDE_USE_SSE2 +__m128i libdivide_u32_do_vector(__m128i numers, const struct libdivide_u32_t *denom) { uint8_t more = denom->more; if (more & LIBDIVIDE_U32_SHIFT_PATH) { return _mm_srl_epi32(numers, libdivide_u32_to_m128i(more & LIBDIVIDE_32_SHIFT_MASK)); @@ -610,75 +871,113 @@ __m128i libdivide_u32_do_vector(__m128i numers, const libdivide_u32_t *denom) { else { __m128i q = libdivide__mullhi_u32_flat_vector(numers, _mm_set1_epi32(denom->magic)); if (more & LIBDIVIDE_ADD_MARKER) { - //uint32_t t = ((numer - q) >> 1) + q; - //return t >> denom->shift; + // uint32_t t = ((numer - q) >> 1) + q; + // return t >> denom->shift; __m128i t = _mm_add_epi32(_mm_srli_epi32(_mm_sub_epi32(numers, q), 1), q); return _mm_srl_epi32(t, libdivide_u32_to_m128i(more & LIBDIVIDE_32_SHIFT_MASK)); - + } else { - //q >> denom->shift + // q >> denom->shift return _mm_srl_epi32(q, libdivide_u32_to_m128i(more)); } } } -__m128i libdivide_u32_do_vector_alg0(__m128i numers, const libdivide_u32_t *denom) { +__m128i libdivide_u32_do_vector_alg0(__m128i numers, const struct libdivide_u32_t *denom) { return _mm_srl_epi32(numers, libdivide_u32_to_m128i(denom->more & LIBDIVIDE_32_SHIFT_MASK)); } -__m128i libdivide_u32_do_vector_alg1(__m128i numers, const libdivide_u32_t *denom) { +__m128i libdivide_u32_do_vector_alg1(__m128i numers, const struct libdivide_u32_t *denom) { __m128i q = libdivide__mullhi_u32_flat_vector(numers, _mm_set1_epi32(denom->magic)); return _mm_srl_epi32(q, libdivide_u32_to_m128i(denom->more)); } -__m128i libdivide_u32_do_vector_alg2(__m128i numers, const libdivide_u32_t *denom) { +__m128i libdivide_u32_do_vector_alg2(__m128i numers, const struct libdivide_u32_t *denom) { __m128i q = libdivide__mullhi_u32_flat_vector(numers, _mm_set1_epi32(denom->magic)); __m128i t = _mm_add_epi32(_mm_srli_epi32(_mm_sub_epi32(numers, q), 1), q); return _mm_srl_epi32(t, libdivide_u32_to_m128i(denom->more & LIBDIVIDE_32_SHIFT_MASK)); } +LIBDIVIDE_API __m128i libdivide_u32_branchfree_do_vector(__m128i numers, const struct libdivide_u32_branchfree_t * denom) { + // same as alg 2 + __m128i q = libdivide__mullhi_u32_flat_vector(numers, _mm_set1_epi32(denom->magic)); + __m128i t = _mm_add_epi32(_mm_srli_epi32(_mm_sub_epi32(numers, q), 1), q); + return _mm_srl_epi32(t, libdivide_u32_to_m128i(denom->more)); +} + #endif - + /////////// UINT64 -libdivide_u64_t libdivide_u64_gen(uint64_t d) { - libdivide_u64_t result; - if (EDUKE32_PREDICT_FALSE((d & (d - 1)) == 0)) { - result.more = libdivide__count_trailing_zeros64(d) | LIBDIVIDE_U64_SHIFT_PATH; - result.magic = 0; - } - else { - const uint32_t floor_log_2_d = 63 - libdivide__count_leading_zeros64(d); - - uint64_t rem, proposed_m = libdivide_128_div_64_to_64(1ULL << floor_log_2_d, 0, d, &rem); //== (1 << (64 + floor_log_2_d)) / d +static inline struct libdivide_u64_t libdivide_internal_u64_gen(uint64_t d, int branchfree) { + // 1 is not supported with branchfree algorithm + LIBDIVIDE_ASSERT(!branchfree || d != 1); + + struct libdivide_u64_t result; + const uint32_t floor_log_2_d = 63 - libdivide__count_leading_zeros64(d); + if ((d & (d - 1)) == 0) { + // Power of 2 + if (! branchfree) { + result.magic = 0; + result.more = floor_log_2_d | LIBDIVIDE_U64_SHIFT_PATH; + } else { + // We want a magic number of 2**64 and a shift of floor_log_2_d + // but one of the shifts is taken up by LIBDIVIDE_ADD_MARKER, so we + // subtract 1 from the shift + result.magic = 0; + result.more = (floor_log_2_d-1) | LIBDIVIDE_ADD_MARKER; + } + } else { + uint64_t proposed_m, rem; uint8_t more; - const uint64_t e = d - rem; + proposed_m = libdivide_128_div_64_to_64(1ULL << floor_log_2_d, 0, d, &rem); // == (1 << (64 + floor_log_2_d)) / d LIBDIVIDE_ASSERT(rem > 0 && rem < d); - - /* This power works if e < 2**floor_log_2_d. */ - if (e < (1ULL << floor_log_2_d)) { - /* This power works */ + const uint64_t e = d - rem; + + // This power works if e < 2**floor_log_2_d. + if (!branchfree && e < (1ULL << floor_log_2_d)) { + // This power works more = floor_log_2_d; - } - else { - /* We have to use the general 65-bit algorithm. We need to compute (2**power) / d. However, we already have (2**(power-1))/d and its remainder. By doubling both, and then correcting the remainder, we can compute the larger division. */ + } else { + // We have to use the general 65-bit algorithm. We need to compute + // (2**power) / d. However, we already have (2**(power-1))/d and + // its remainder. By doubling both, and then correcting the + // remainder, we can compute the larger division. + // don't care about overflow here - in fact, we expect it + proposed_m += proposed_m; const uint64_t twice_rem = rem + rem; - proposed_m += proposed_m; //don't care about overflow here - in fact, we expect it if (twice_rem >= d || twice_rem < rem) proposed_m += 1; - more = floor_log_2_d | LIBDIVIDE_ADD_MARKER; + more = floor_log_2_d | LIBDIVIDE_ADD_MARKER; } result.magic = 1 + proposed_m; result.more = more; - //result.more's shift should in general be ceil_log_2_d. But if we used the smaller power, we subtract one from the shift because we're using the smaller power. If we're using the larger power, we subtract one from the shift because it's taken care of by the add indicator. So floor_log_2_d happens to be correct in both cases, which is why we do it outside of the if statement. + // result.more's shift should in general be ceil_log_2_d. But if we + // used the smaller power, we subtract one from the shift because we're + // using the smaller power. If we're using the larger power, we + // subtract one from the shift because it's taken care of by the add + // indicator. So floor_log_2_d happens to be correct in both cases, + // which is why we do it outside of the if statement. } return result; } -uint64_t libdivide_u64_do(uint64_t numer, const libdivide_u64_t *denom) { +struct libdivide_u64_t libdivide_u64_gen(uint64_t d) +{ + return libdivide_internal_u64_gen(d, 0); +} + +struct libdivide_u64_branchfree_t libdivide_u64_branchfree_gen(uint64_t d) +{ + struct libdivide_u64_t tmp = libdivide_internal_u64_gen(d, 1); + struct libdivide_u64_branchfree_t ret = {tmp.magic, (uint8_t)(tmp.more & LIBDIVIDE_64_SHIFT_MASK)}; + return ret; +} + +uint64_t libdivide_u64_do(uint64_t numer, const struct libdivide_u64_t *denom) { uint8_t more = denom->more; - if (EDUKE32_PREDICT_FALSE(more & LIBDIVIDE_U64_SHIFT_PATH)) { + if (more & LIBDIVIDE_U64_SHIFT_PATH) { return numer >> (more & LIBDIVIDE_64_SHIFT_MASK); } else { @@ -688,36 +987,97 @@ uint64_t libdivide_u64_do(uint64_t numer, const libdivide_u64_t *denom) { return t >> (more & LIBDIVIDE_64_SHIFT_MASK); } else { - return q >> more; //all upper bits are 0 - don't need to mask them off + return q >> more; // all upper bits are 0 - don't need to mask them off } } } - -int libdivide_u64_get_algorithm(const libdivide_u64_t *denom) { +uint64_t libdivide_u64_recover(const struct libdivide_u64_t *denom) { uint8_t more = denom->more; - if (EDUKE32_PREDICT_FALSE(more & LIBDIVIDE_U64_SHIFT_PATH)) return 0; + uint8_t shift = more & LIBDIVIDE_64_SHIFT_MASK; + if (more & LIBDIVIDE_U64_SHIFT_PATH) { + return 1ULL << shift; + } else if (! (more & LIBDIVIDE_ADD_MARKER)) { + // We compute q = n/d = n*m / 2^(64 + shift) + // Therefore we have d = 2^(64 + shift) / m + // We need to ceil it. + // We know d is not a power of 2, so m is not a power of 2, + // so we can just add 1 to the floor + uint64_t hi_dividend = 1ULL << shift; + uint64_t rem_ignored; + return 1 + libdivide_128_div_64_to_64(hi_dividend, 0, denom->magic, &rem_ignored); + } else { + // Here we wish to compute d = 2^(64+shift+1)/(m+2^64). + // Notice (m + 2^64) is a 65 bit number. This gets hairy. See + // libdivide_u32_recover for more on what we do here. + // TODO: do something better than 128 bit math + + // Hack: if d is not a power of 2, this is a 128/128->64 divide + // If d is a power of 2, this may be a bigger divide + // However we can optimize that easily + if (denom->magic == 0) { + // 2^(64 + shift + 1) / (2^64) == 2^(shift + 1) + return 1ULL << (shift + 1); + } + + // Full n is a (potentially) 129 bit value + // half_n is a 128 bit value + // Compute the hi half of half_n. Low half is 0. + uint64_t half_n_hi = 1ULL << shift, half_n_lo = 0; + // d is a 65 bit value. The high bit is always set to 1. + const uint64_t d_hi = 1, d_lo = denom->magic; + // Note that the quotient is guaranteed <= 64 bits, + // but the remainder may need 65! + uint64_t r_hi, r_lo; + uint64_t half_q = libdivide_128_div_128_to_64(half_n_hi, half_n_lo, d_hi, d_lo, &r_hi, &r_lo); + // We computed 2^(64+shift)/(m+2^64) + // Double the remainder ('dr') and check if that is larger than d + // Note that d is a 65 bit value, so r1 is small and so r1 + r1 cannot + // overflow + uint64_t dr_lo = r_lo + r_lo; + uint64_t dr_hi = r_hi + r_hi + (dr_lo < r_lo); // last term is carry + int dr_exceeds_d = (dr_hi > d_hi) || (dr_hi == d_hi && dr_lo >= d_lo); + uint64_t full_q = half_q + half_q + (dr_exceeds_d ? 1 : 0); + return full_q + 1; + } +} + +uint64_t libdivide_u64_branchfree_recover(const struct libdivide_u64_branchfree_t *denom) { + struct libdivide_u64_t denom_u64 = {denom->magic, (uint8_t)(denom->more | LIBDIVIDE_ADD_MARKER)}; + return libdivide_u64_recover(&denom_u64); +} + +int libdivide_u64_get_algorithm(const struct libdivide_u64_t *denom) { + uint8_t more = denom->more; + if (more & LIBDIVIDE_U64_SHIFT_PATH) return 0; else if (! (more & LIBDIVIDE_ADD_MARKER)) return 1; else return 2; } - -uint64_t libdivide_u64_do_alg0(uint64_t numer, const libdivide_u64_t *denom) { - return numer >> (denom->more & LIBDIVIDE_64_SHIFT_MASK); + +uint64_t libdivide_u64_do_alg0(uint64_t numer, const struct libdivide_u64_t *denom) { + return numer >> (denom->more & LIBDIVIDE_64_SHIFT_MASK); } - -uint64_t libdivide_u64_do_alg1(uint64_t numer, const libdivide_u64_t *denom) { + +uint64_t libdivide_u64_do_alg1(uint64_t numer, const struct libdivide_u64_t *denom) { uint64_t q = libdivide__mullhi_u64(denom->magic, numer); return q >> denom->more; } - -uint64_t libdivide_u64_do_alg2(uint64_t numer, const libdivide_u64_t *denom) { + +uint64_t libdivide_u64_do_alg2(uint64_t numer, const struct libdivide_u64_t *denom) { uint64_t q = libdivide__mullhi_u64(denom->magic, numer); uint64_t t = ((numer - q) >> 1) + q; return t >> (denom->more & LIBDIVIDE_64_SHIFT_MASK); } - -#if LIBDIVIDE_USE_SSE2 -__m128i libdivide_u64_do_vector(__m128i numers, const libdivide_u64_t * denom) { + +uint64_t libdivide_u64_branchfree_do(uint64_t numer, const struct libdivide_u64_branchfree_t *denom) { + // same as alg 2 + uint64_t q = libdivide__mullhi_u64(denom->magic, numer); + uint64_t t = ((numer - q) >> 1) + q; + return t >> denom->more; +} + +#if LIBDIVIDE_USE_SSE2 +__m128i libdivide_u64_do_vector(__m128i numers, const struct libdivide_u64_t * denom) { uint8_t more = denom->more; if (more & LIBDIVIDE_U64_SHIFT_PATH) { return _mm_srl_epi64(numers, libdivide_u32_to_m128i(more & LIBDIVIDE_64_SHIFT_MASK)); @@ -725,164 +1085,273 @@ __m128i libdivide_u64_do_vector(__m128i numers, const libdivide_u64_t * denom) { else { __m128i q = libdivide_mullhi_u64_flat_vector(numers, libdivide__u64_to_m128(denom->magic)); if (more & LIBDIVIDE_ADD_MARKER) { - //uint32_t t = ((numer - q) >> 1) + q; - //return t >> denom->shift; + // uint32_t t = ((numer - q) >> 1) + q; + // return t >> denom->shift; __m128i t = _mm_add_epi64(_mm_srli_epi64(_mm_sub_epi64(numers, q), 1), q); return _mm_srl_epi64(t, libdivide_u32_to_m128i(more & LIBDIVIDE_64_SHIFT_MASK)); } else { - //q >> denom->shift + // q >> denom->shift return _mm_srl_epi64(q, libdivide_u32_to_m128i(more)); } } } -__m128i libdivide_u64_do_vector_alg0(__m128i numers, const libdivide_u64_t *denom) { +__m128i libdivide_u64_do_vector_alg0(__m128i numers, const struct libdivide_u64_t *denom) { return _mm_srl_epi64(numers, libdivide_u32_to_m128i(denom->more & LIBDIVIDE_64_SHIFT_MASK)); } -__m128i libdivide_u64_do_vector_alg1(__m128i numers, const libdivide_u64_t *denom) { +__m128i libdivide_u64_do_vector_alg1(__m128i numers, const struct libdivide_u64_t *denom) { __m128i q = libdivide_mullhi_u64_flat_vector(numers, libdivide__u64_to_m128(denom->magic)); return _mm_srl_epi64(q, libdivide_u32_to_m128i(denom->more)); } -__m128i libdivide_u64_do_vector_alg2(__m128i numers, const libdivide_u64_t *denom) { +__m128i libdivide_u64_do_vector_alg2(__m128i numers, const struct libdivide_u64_t *denom) { __m128i q = libdivide_mullhi_u64_flat_vector(numers, libdivide__u64_to_m128(denom->magic)); __m128i t = _mm_add_epi64(_mm_srli_epi64(_mm_sub_epi64(numers, q), 1), q); return _mm_srl_epi64(t, libdivide_u32_to_m128i(denom->more & LIBDIVIDE_64_SHIFT_MASK)); } - +__m128i libdivide_u64_branchfree_do_vector(__m128i numers, const struct libdivide_u64_branchfree_t * denom) { + __m128i q = libdivide_mullhi_u64_flat_vector(numers, libdivide__u64_to_m128(denom->magic)); + __m128i t = _mm_add_epi64(_mm_srli_epi64(_mm_sub_epi64(numers, q), 1), q); + return _mm_srl_epi64(t, libdivide_u32_to_m128i(denom->more)); +} + #endif - + /////////// SINT32 - static inline int32_t libdivide__mullhi_s32(int32_t x, int32_t y) { int64_t xl = x, yl = y; int64_t rl = xl * yl; - return (int32_t)(rl >> 32); //needs to be arithmetic shift + return (int32_t)(rl >> 32); // needs to be arithmetic shift } -libdivide_s32_t libdivide_s32_gen(int32_t d) { - libdivide_s32_t result; - - /* If d is a power of 2, or negative a power of 2, we have to use a shift. This is especially important because the magic algorithm fails for -1. To check if d is a power of 2 or its inverse, it suffices to check whether its absolute value has exactly one bit set. This works even for INT_MIN, because abs(INT_MIN) == INT_MIN, and INT_MIN has one bit set and is a power of 2. */ - uint32_t absD = (uint32_t)(d < 0 ? -d : d); //gcc optimizes this to the fast abs trick - if (EDUKE32_PREDICT_FALSE((absD & (absD - 1)) == 0)) { //check if exactly one bit is set, don't care if absD is 0 since that's divide by zero +static inline struct libdivide_s32_t libdivide_internal_s32_gen(int32_t d, int branchfree) { + // branchfree cannot support or -1 + LIBDIVIDE_ASSERT(!branchfree || (d != 1 && d != -1)); + + struct libdivide_s32_t result; + + // If d is a power of 2, or negative a power of 2, we have to use a shift. + // This is especially important because the magic algorithm fails for -1. + // To check if d is a power of 2 or its inverse, it suffices to check + // whether its absolute value has exactly one bit set. This works even for + // INT_MIN, because abs(INT_MIN) == INT_MIN, and INT_MIN has one bit set + // and is a power of 2. + uint32_t ud = (uint32_t)d; + uint32_t absD = (d < 0 ? -ud : ud); // gcc optimizes this to the fast abs trick + const uint32_t floor_log_2_d = 31 - libdivide__count_leading_zeros32(absD); + // check if exactly one bit is set, + // don't care if absD is 0 since that's divide by zero + if ((absD & (absD - 1)) == 0) { + // Branchfree and normal paths are exactly the same result.magic = 0; - result.more = libdivide__count_trailing_zeros32(absD) | (d < 0 ? LIBDIVIDE_NEGATIVE_DIVISOR : 0) | LIBDIVIDE_S32_SHIFT_PATH; - } - else { - const uint32_t floor_log_2_d = 31 - libdivide__count_leading_zeros32(absD); - + result.more = floor_log_2_d | (d < 0 ? LIBDIVIDE_NEGATIVE_DIVISOR : 0) | LIBDIVIDE_S32_SHIFT_PATH; + } else { + LIBDIVIDE_ASSERT(floor_log_2_d >= 1); + uint8_t more; - //the dividend here is 2**(floor_log_2_d + 31), so the low 32 bit word is 0 and the high word is floor_log_2_d - 1 - uint32_t rem, proposed_m = libdivide_64_div_32_to_32(1U << (floor_log_2_d - 1), 0, absD, &rem); + // the dividend here is 2**(floor_log_2_d + 31), so the low 32 bit word + // is 0 and the high word is floor_log_2_d - 1 + uint32_t rem, proposed_m; + proposed_m = libdivide_64_div_32_to_32(1U << (floor_log_2_d - 1), 0, absD, &rem); const uint32_t e = absD - rem; - LIBDIVIDE_ASSERT(floor_log_2_d >= 1); - - /* We are going to start with a power of floor_log_2_d - 1. This works if works if e < 2**floor_log_2_d. */ - if (e < (1U << floor_log_2_d)) { - /* This power works */ + + // We are going to start with a power of floor_log_2_d - 1. + // This works if works if e < 2**floor_log_2_d. + if (!branchfree && e < (1U << floor_log_2_d)) { + // This power works more = floor_log_2_d - 1; - } - else { - /* We need to go one higher. This should not make proposed_m overflow, but it will make it negative when interpreted as an int32_t. */ - const uint32_t twice_rem = rem + rem; + } else { + // We need to go one higher. This should not make proposed_m + // overflow, but it will make it negative when interpreted as an + // int32_t. proposed_m += proposed_m; + const uint32_t twice_rem = rem + rem; if (twice_rem >= absD || twice_rem < rem) proposed_m += 1; - more = floor_log_2_d | LIBDIVIDE_ADD_MARKER | (d < 0 ? LIBDIVIDE_NEGATIVE_DIVISOR : 0); //use the general algorithm + more = floor_log_2_d | LIBDIVIDE_ADD_MARKER; } + proposed_m += 1; - result.magic = (d < 0 ? -(int32_t)proposed_m : (int32_t)proposed_m); + int32_t magic = (int32_t)proposed_m; + + // Mark if we are negative. Note we only negate the magic number in the + // branchfull case. + if (d < 0) { + more |= LIBDIVIDE_NEGATIVE_DIVISOR; + if (! branchfree) { + magic = -magic; + } + } + result.more = more; - + result.magic = magic; } return result; } -int32_t libdivide_s32_do(int32_t numer, const libdivide_s32_t *denom) { +LIBDIVIDE_API struct libdivide_s32_t libdivide_s32_gen(int32_t d) { + return libdivide_internal_s32_gen(d, 0); +} + +LIBDIVIDE_API struct libdivide_s32_branchfree_t libdivide_s32_branchfree_gen(int32_t d) { + struct libdivide_s32_t tmp = libdivide_internal_s32_gen(d, 1); + struct libdivide_s32_branchfree_t result = {tmp.magic, tmp.more}; + return result; +} + +int32_t libdivide_s32_do(int32_t numer, const struct libdivide_s32_t *denom) { uint8_t more = denom->more; + uint32_t sign = (int8_t)more >> 7; if (more & LIBDIVIDE_S32_SHIFT_PATH) { uint8_t shifter = more & LIBDIVIDE_32_SHIFT_MASK; - int32_t q = (numer + ((numer >> 31) & ((1 << shifter) - 1))) >> shifter; - int32_t shiftMask = (int8_t)more >> 7; //must be arithmetic shift and then sign-extend - q = (q ^ shiftMask) - shiftMask; + uint32_t uq = (uint32_t)(numer + ((numer >> 31) & ((1U << shifter) - 1))); + int32_t q = (int32_t)uq; + q = q >> shifter; + q = (q ^ sign) - sign; return q; - } - else { - int32_t q = libdivide__mullhi_s32(denom->magic, numer); + } else { + uint32_t uq = (uint32_t)libdivide__mullhi_s32(denom->magic, numer); if (more & LIBDIVIDE_ADD_MARKER) { - int32_t sign = (int8_t)more >> 7; //must be arithmetic shift and then sign extend - q += ((numer ^ sign) - sign); + // must be arithmetic shift and then sign extend + int32_t sign = (int8_t)more >> 7; + // q += (more < 0 ? -numer : numer), casts to avoid UB + uq += (((uint32_t)numer ^ sign) - sign); } + int32_t q = (int32_t)uq; q >>= more & LIBDIVIDE_32_SHIFT_MASK; q += (q < 0); return q; } -} - -int libdivide_s32_get_algorithm(const libdivide_s32_t *denom) { +} + +int32_t libdivide_s32_branchfree_do(int32_t numer, const struct libdivide_s32_branchfree_t *denom) { uint8_t more = denom->more; - int positiveDivisor = ! (more & LIBDIVIDE_NEGATIVE_DIVISOR); - if (more & LIBDIVIDE_S32_SHIFT_PATH) return (positiveDivisor ? 0 : 1); - else if (more & LIBDIVIDE_ADD_MARKER) return (positiveDivisor ? 2 : 3); - else return 4; -} - -int32_t libdivide_s32_do_alg0(int32_t numer, const libdivide_s32_t *denom) { - uint8_t shifter = denom->more & LIBDIVIDE_32_SHIFT_MASK; - int32_t q = numer + ((numer >> 31) & ((1 << shifter) - 1)); - return q >> shifter; -} - -int32_t libdivide_s32_do_alg1(int32_t numer, const libdivide_s32_t *denom) { - uint8_t shifter = denom->more & LIBDIVIDE_32_SHIFT_MASK; - int32_t q = numer + ((numer >> 31) & ((1 << shifter) - 1)); - return - (q >> shifter); -} - -int32_t libdivide_s32_do_alg2(int32_t numer, const libdivide_s32_t *denom) { - int32_t q = libdivide__mullhi_s32(denom->magic, numer); + uint8_t shift = more & LIBDIVIDE_32_SHIFT_MASK; + // must be arithmetic shift and then sign extend + int32_t sign = (int8_t)more >> 7; + + int32_t magic = denom->magic; + int32_t q = libdivide__mullhi_s32(magic, numer); q += numer; - q >>= denom->more & LIBDIVIDE_32_SHIFT_MASK; - q += (q < 0); - return q; -} - -int32_t libdivide_s32_do_alg3(int32_t numer, const libdivide_s32_t *denom) { - int32_t q = libdivide__mullhi_s32(denom->magic, numer); - q -= numer; - q >>= denom->more & LIBDIVIDE_32_SHIFT_MASK; - q += (q < 0); - return q; -} - -int32_t libdivide_s32_do_alg4(int32_t numer, const libdivide_s32_t *denom) { - int32_t q = libdivide__mullhi_s32(denom->magic, numer); - q >>= denom->more & LIBDIVIDE_32_SHIFT_MASK; - q += (q < 0); + + // If q is non-negative, we have nothing to do + // If q is negative, we want to add either (2**shift)-1 if d is a power of + // 2, or (2**shift) if it is not a power of 2 + uint32_t is_power_of_2 = !!(more & LIBDIVIDE_S32_SHIFT_PATH); + uint32_t q_sign = (uint32_t)(q >> 31); + q += q_sign & ((1 << shift) - is_power_of_2); + + // Now arithmetic right shift + q >>= shift; + + // Negate if needed + q = ((q ^ sign) - sign); + return q; } -#if LIBDIVIDE_USE_SSE2 -__m128i libdivide_s32_do_vector(__m128i numers, const libdivide_s32_t * denom) { +int32_t libdivide_s32_recover(const struct libdivide_s32_t *denom) { + uint8_t more = denom->more; + uint8_t shift = more & LIBDIVIDE_32_SHIFT_MASK; + if (more & LIBDIVIDE_S32_SHIFT_PATH) { + uint32_t absD = 1U << shift; + if (more & LIBDIVIDE_NEGATIVE_DIVISOR) { + absD = -absD; + } + return (int32_t)absD; + } else { + // Unsigned math is much easier + // We negate the magic number only in the branchfull case, and we don't + // know which case we're in. However we have enough information to + // determine the correct sign of the magic number. The divisor was + // negative if LIBDIVIDE_NEGATIVE_DIVISOR is set. If ADD_MARKER is set, + // the magic number's sign is opposite that of the divisor. + // We want to compute the positive magic number. + int negative_divisor = (more & LIBDIVIDE_NEGATIVE_DIVISOR); + int magic_was_negated = (more & LIBDIVIDE_ADD_MARKER) ? denom->magic > 0 : denom->magic < 0; + + // Handle the power of 2 case (including branchfree) + if (denom->magic == 0) { + int32_t result = 1 << shift; + return negative_divisor ? -result : result; + } + + uint32_t d = (uint32_t)(magic_was_negated ? -denom->magic : denom->magic); + uint64_t n = 1ULL << (32 + shift); // Note that the shift cannot exceed 30 + uint32_t q = (uint32_t)(n / d); + int32_t result = (int32_t)q; + result += 1; + return negative_divisor ? -result : result; + } +} + +int32_t libdivide_s32_branchfree_recover(const struct libdivide_s32_branchfree_t *denom) { + return libdivide_s32_recover((const struct libdivide_s32_t *)denom); +} + +int libdivide_s32_get_algorithm(const struct libdivide_s32_t *denom) { + uint8_t more = denom->more; + int positiveDivisor = ! (more & LIBDIVIDE_NEGATIVE_DIVISOR); + if (more & LIBDIVIDE_S32_SHIFT_PATH) return (positiveDivisor ? 0 : 1); + else if (more & LIBDIVIDE_ADD_MARKER) return (positiveDivisor ? 2 : 3); + else return 4; +} + +int32_t libdivide_s32_do_alg0(int32_t numer, const struct libdivide_s32_t *denom) { + uint8_t shifter = denom->more & LIBDIVIDE_32_SHIFT_MASK; + int32_t q = numer + ((numer >> 31) & ((1U << shifter) - 1)); + return q >> shifter; +} + +int32_t libdivide_s32_do_alg1(int32_t numer, const struct libdivide_s32_t *denom) { + uint8_t shifter = denom->more & LIBDIVIDE_32_SHIFT_MASK; + int32_t q = numer + ((numer >> 31) & ((1U << shifter) - 1)); + return - (q >> shifter); +} + +int32_t libdivide_s32_do_alg2(int32_t numer, const struct libdivide_s32_t *denom) { + int32_t q = libdivide__mullhi_s32(denom->magic, numer); + q += numer; + q >>= denom->more & LIBDIVIDE_32_SHIFT_MASK; + q += (q < 0); + return q; +} + +int32_t libdivide_s32_do_alg3(int32_t numer, const struct libdivide_s32_t *denom) { + int32_t q = libdivide__mullhi_s32(denom->magic, numer); + q -= numer; + q >>= denom->more & LIBDIVIDE_32_SHIFT_MASK; + q += (q < 0); + return q; +} + +int32_t libdivide_s32_do_alg4(int32_t numer, const struct libdivide_s32_t *denom) { + int32_t q = libdivide__mullhi_s32(denom->magic, numer); + q >>= denom->more & LIBDIVIDE_32_SHIFT_MASK; + q += (q < 0); + return q; +} + +#if LIBDIVIDE_USE_SSE2 +__m128i libdivide_s32_do_vector(__m128i numers, const struct libdivide_s32_t * denom) { uint8_t more = denom->more; if (more & LIBDIVIDE_S32_SHIFT_PATH) { uint32_t shifter = more & LIBDIVIDE_32_SHIFT_MASK; - __m128i roundToZeroTweak = _mm_set1_epi32((1 << shifter) - 1); //could use _mm_srli_epi32 with an all -1 register + __m128i roundToZeroTweak = _mm_set1_epi32((1U << shifter) - 1); // could use _mm_srli_epi32 with an all -1 register __m128i q = _mm_add_epi32(numers, _mm_and_si128(_mm_srai_epi32(numers, 31), roundToZeroTweak)); //q = numer + ((numer >> 31) & roundToZeroTweak); q = _mm_sra_epi32(q, libdivide_u32_to_m128i(shifter)); // q = q >> shifter - __m128i shiftMask = _mm_set1_epi32((int32_t)((int8_t)more >> 7)); //set all bits of shift mask = to the sign bit of more - q = _mm_sub_epi32(_mm_xor_si128(q, shiftMask), shiftMask); //q = (q ^ shiftMask) - shiftMask; + __m128i shiftMask = _mm_set1_epi32((int32_t)((int8_t)more >> 7)); // set all bits of shift mask = to the sign bit of more + q = _mm_sub_epi32(_mm_xor_si128(q, shiftMask), shiftMask); // q = (q ^ shiftMask) - shiftMask; return q; } else { __m128i q = libdivide_mullhi_s32_flat_vector(numers, _mm_set1_epi32(denom->magic)); if (more & LIBDIVIDE_ADD_MARKER) { - __m128i sign = _mm_set1_epi32((int32_t)(int8_t)more >> 7); //must be arithmetic shift - q = _mm_add_epi32(q, _mm_sub_epi32(_mm_xor_si128(numers, sign), sign)); // q += ((numer ^ sign) - sign); + __m128i sign = _mm_set1_epi32((int32_t)(int8_t)more >> 7); // must be arithmetic shift + q = _mm_add_epi32(q, _mm_sub_epi32(_mm_xor_si128(numers, sign), sign)); // q += ((numer ^ sign) - sign); } q = _mm_sra_epi32(q, libdivide_u32_to_m128i(more & LIBDIVIDE_32_SHIFT_MASK)); //q >>= shift q = _mm_add_epi32(q, _mm_srli_epi32(q, 31)); // q += (q < 0) @@ -890,193 +1359,306 @@ __m128i libdivide_s32_do_vector(__m128i numers, const libdivide_s32_t * denom) { } } -__m128i libdivide_s32_do_vector_alg0(__m128i numers, const libdivide_s32_t *denom) { +__m128i libdivide_s32_do_vector_alg0(__m128i numers, const struct libdivide_s32_t *denom) { uint8_t shifter = denom->more & LIBDIVIDE_32_SHIFT_MASK; - __m128i roundToZeroTweak = _mm_set1_epi32((1 << shifter) - 1); + __m128i roundToZeroTweak = _mm_set1_epi32((1U << shifter) - 1); __m128i q = _mm_add_epi32(numers, _mm_and_si128(_mm_srai_epi32(numers, 31), roundToZeroTweak)); return _mm_sra_epi32(q, libdivide_u32_to_m128i(shifter)); } -__m128i libdivide_s32_do_vector_alg1(__m128i numers, const libdivide_s32_t *denom) { +__m128i libdivide_s32_do_vector_alg1(__m128i numers, const struct libdivide_s32_t *denom) { uint8_t shifter = denom->more & LIBDIVIDE_32_SHIFT_MASK; - __m128i roundToZeroTweak = _mm_set1_epi32((1 << shifter) - 1); + __m128i roundToZeroTweak = _mm_set1_epi32((1U << shifter) - 1); __m128i q = _mm_add_epi32(numers, _mm_and_si128(_mm_srai_epi32(numers, 31), roundToZeroTweak)); return _mm_sub_epi32(_mm_setzero_si128(), _mm_sra_epi32(q, libdivide_u32_to_m128i(shifter))); } -__m128i libdivide_s32_do_vector_alg2(__m128i numers, const libdivide_s32_t *denom) { +__m128i libdivide_s32_do_vector_alg2(__m128i numers, const struct libdivide_s32_t *denom) { __m128i q = libdivide_mullhi_s32_flat_vector(numers, _mm_set1_epi32(denom->magic)); q = _mm_add_epi32(q, numers); q = _mm_sra_epi32(q, libdivide_u32_to_m128i(denom->more & LIBDIVIDE_32_SHIFT_MASK)); - q = _mm_add_epi32(q, _mm_srli_epi32(q, 31)); + q = _mm_add_epi32(q, _mm_srli_epi32(q, 31)); return q; } -__m128i libdivide_s32_do_vector_alg3(__m128i numers, const libdivide_s32_t *denom) { +__m128i libdivide_s32_do_vector_alg3(__m128i numers, const struct libdivide_s32_t *denom) { __m128i q = libdivide_mullhi_s32_flat_vector(numers, _mm_set1_epi32(denom->magic)); q = _mm_sub_epi32(q, numers); q = _mm_sra_epi32(q, libdivide_u32_to_m128i(denom->more & LIBDIVIDE_32_SHIFT_MASK)); - q = _mm_add_epi32(q, _mm_srli_epi32(q, 31)); + q = _mm_add_epi32(q, _mm_srli_epi32(q, 31)); return q; } -__m128i libdivide_s32_do_vector_alg4(__m128i numers, const libdivide_s32_t *denom) { +__m128i libdivide_s32_do_vector_alg4(__m128i numers, const struct libdivide_s32_t *denom) { + uint8_t more = denom->more; __m128i q = libdivide_mullhi_s32_flat_vector(numers, _mm_set1_epi32(denom->magic)); - q = _mm_sra_epi32(q, libdivide_u32_to_m128i(denom->more)); //q >>= shift + q = _mm_sra_epi32(q, libdivide_u32_to_m128i(more & LIBDIVIDE_32_SHIFT_MASK)); //q >>= shift q = _mm_add_epi32(q, _mm_srli_epi32(q, 31)); // q += (q < 0) - return q; + return q; +} + +__m128i libdivide_s32_branchfree_do_vector(__m128i numers, const struct libdivide_s32_branchfree_t * denom) { + int32_t magic = denom->magic; + uint8_t more = denom->more; + uint8_t shift = more & LIBDIVIDE_32_SHIFT_MASK; + __m128i sign = _mm_set1_epi32((int32_t)(int8_t)more >> 7); // must be arithmetic shift + + // libdivide__mullhi_s32(numers, magic); + __m128i q = libdivide_mullhi_s32_flat_vector(numers, _mm_set1_epi32(magic)); + q = _mm_add_epi32(q, numers); // q += numers + + // If q is non-negative, we have nothing to do + // If q is negative, we want to add either (2**shift)-1 if d is a power of + // 2, or (2**shift) if it is not a power of 2 + uint32_t is_power_of_2 = (magic == 0); + __m128i q_sign = _mm_srai_epi32(q, 31); // q_sign = q >> 31 + q = _mm_add_epi32(q, _mm_and_si128(q_sign, _mm_set1_epi32((1 << shift) - is_power_of_2))); // q = q + (q_sign & ((1 << shift) - is_power_of_2) + q = _mm_srai_epi32(q, shift); //q >>= shift + q = _mm_sub_epi32(_mm_xor_si128(q, sign), sign); // q = (q ^ sign) - sign + return q; } #endif - -///////////// SINT64 - -libdivide_s64_t libdivide_s64_gen(int64_t d) { - libdivide_s64_t result; - - /* If d is a power of 2, or negative a power of 2, we have to use a shift. This is especially important because the magic algorithm fails for -1. To check if d is a power of 2 or its inverse, it suffices to check whether its absolute value has exactly one bit set. This works even for INT_MIN, because abs(INT_MIN) == INT_MIN, and INT_MIN has one bit set and is a power of 2. */ - const uint64_t absD = (uint64_t)(d < 0 ? -d : d); //gcc optimizes this to the fast abs trick - if (EDUKE32_PREDICT_FALSE((absD & (absD - 1)) == 0)) { //check if exactly one bit is set, don't care if absD is 0 since that's divide by zero - result.more = libdivide__count_trailing_zeros64(absD) | (d < 0 ? LIBDIVIDE_NEGATIVE_DIVISOR : 0); +///////////// SINT64 + +static inline struct libdivide_s64_t libdivide_internal_s64_gen(int64_t d, int branchfree) { + LIBDIVIDE_ASSERT(!branchfree || (d != 1 && d != -1)); + struct libdivide_s64_t result; + + // If d is a power of 2, or negative a power of 2, we have to use a shift. + // This is especially important because the magic algorithm fails for -1. + // To check if d is a power of 2 or its inverse, it suffices to check + // whether its absolute value has exactly one bit set. This works even for + // INT_MIN, because abs(INT_MIN) == INT_MIN, and INT_MIN has one bit set + // and is a power of 2. + const uint64_t ud = (uint64_t)d; + const uint64_t absD = (d < 0 ? -ud : ud); // gcc optimizes this to the fast abs trick + const uint32_t floor_log_2_d = 63 - libdivide__count_leading_zeros64(absD); + // check if exactly one bit is set, + // don't care if absD is 0 since that's divide by zero + if ((absD & (absD - 1)) == 0) { + // Branchfree and non-branchfree cases are the same result.magic = 0; - } - else { - const uint32_t floor_log_2_d = 63 - libdivide__count_leading_zeros64(absD); - - //the dividend here is 2**(floor_log_2_d + 63), so the low 64 bit word is 0 and the high word is floor_log_2_d - 1 + result.more = floor_log_2_d | (d < 0 ? LIBDIVIDE_NEGATIVE_DIVISOR : 0); + } else { + // the dividend here is 2**(floor_log_2_d + 63), so the low 64 bit word + // is 0 and the high word is floor_log_2_d - 1 uint8_t more; - uint64_t rem, proposed_m = libdivide_128_div_64_to_64(1ULL << (floor_log_2_d - 1), 0, absD, &rem); + uint64_t rem, proposed_m; + proposed_m = libdivide_128_div_64_to_64(1ULL << (floor_log_2_d - 1), 0, absD, &rem); const uint64_t e = absD - rem; - - /* We are going to start with a power of floor_log_2_d - 1. This works if works if e < 2**floor_log_2_d. */ - if (e < (1ULL << floor_log_2_d)) { - /* This power works */ + + // We are going to start with a power of floor_log_2_d - 1. + // This works if works if e < 2**floor_log_2_d. + if (!branchfree && e < (1ULL << floor_log_2_d)) { + // This power works more = floor_log_2_d - 1; - } - else { - /* We need to go one higher. This should not make proposed_m overflow, but it will make it negative when interpreted as an int32_t. */ - const uint64_t twice_rem = rem + rem; + } else { + // We need to go one higher. This should not make proposed_m + // overflow, but it will make it negative when interpreted as an + // int32_t. proposed_m += proposed_m; + const uint64_t twice_rem = rem + rem; if (twice_rem >= absD || twice_rem < rem) proposed_m += 1; - more = floor_log_2_d | LIBDIVIDE_ADD_MARKER | (d < 0 ? LIBDIVIDE_NEGATIVE_DIVISOR : 0); + // note that we only set the LIBDIVIDE_NEGATIVE_DIVISOR bit if we + // also set ADD_MARKER this is an annoying optimization that + // enables algorithm #4 to avoid the mask. However we always set it + // in the branchfree case + more = floor_log_2_d | LIBDIVIDE_ADD_MARKER; } proposed_m += 1; + int64_t magic = (int64_t)proposed_m; + + // Mark if we are negative + if (d < 0) { + more |= LIBDIVIDE_NEGATIVE_DIVISOR; + if (! branchfree) { + magic = -magic; + } + } + result.more = more; - result.magic = (d < 0 ? -(int64_t)proposed_m : (int64_t)proposed_m); + result.magic = magic; } return result; } -int64_t libdivide_s64_do(int64_t numer, const libdivide_s64_t *denom) { +struct libdivide_s64_t libdivide_s64_gen(int64_t d) { + return libdivide_internal_s64_gen(d, 0); +} + +struct libdivide_s64_branchfree_t libdivide_s64_branchfree_gen(int64_t d) { + struct libdivide_s64_t tmp = libdivide_internal_s64_gen(d, 1); + struct libdivide_s64_branchfree_t ret = {tmp.magic, tmp.more}; + return ret; +} + +int64_t libdivide_s64_do(int64_t numer, const struct libdivide_s64_t *denom) { uint8_t more = denom->more; int64_t magic = denom->magic; if (magic == 0) { //shift path uint32_t shifter = more & LIBDIVIDE_64_SHIFT_MASK; - int64_t q = (numer + ((numer >> 63) & ((1LL << shifter) - 1))) >> shifter; - int64_t shiftMask = (int8_t)more >> 7; //must be arithmetic shift and then sign-extend + uint64_t uq = (uint64_t)numer + ((numer >> 63) & ((1ULL << shifter) - 1)); + int64_t q = (int64_t)uq; + q = q >> shifter; + // must be arithmetic shift and then sign-extend + int64_t shiftMask = (int8_t)more >> 7; q = (q ^ shiftMask) - shiftMask; return q; - } - else { - int64_t q = libdivide__mullhi_s64(magic, numer); + } else { + uint64_t uq = (uint64_t)libdivide__mullhi_s64(magic, numer); if (more & LIBDIVIDE_ADD_MARKER) { - int64_t sign = (int8_t)more >> 7; //must be arithmetic shift and then sign extend - q += ((numer ^ sign) - sign); + // must be arithmetic shift and then sign extend + int64_t sign = (int8_t)more >> 7; + uq += (((uint64_t)numer ^ sign) - sign); } + int64_t q = (int64_t)uq; q >>= more & LIBDIVIDE_64_SHIFT_MASK; q += (q < 0); return q; } -} - - -int libdivide_s64_get_algorithm(const libdivide_s64_t *denom) { +} + +int64_t libdivide_s64_branchfree_do(int64_t numer, const struct libdivide_s64_branchfree_t *denom) { + uint8_t more = denom->more; + uint32_t shift = more & LIBDIVIDE_64_SHIFT_MASK; + // must be arithmetic shift and then sign extend + int64_t sign = (int8_t)more >> 7; + int64_t magic = denom->magic; + int64_t q = libdivide__mullhi_s64(magic, numer); + q += numer; + + // If q is non-negative, we have nothing to do. + // If q is negative, we want to add either (2**shift)-1 if d is a power of + // 2, or (2**shift) if it is not a power of 2. + uint32_t is_power_of_2 = (magic == 0); + uint64_t q_sign = (uint64_t)(q >> 63); + q += q_sign & ((1ULL << shift) - is_power_of_2); + + // Arithmetic right shift + q >>= shift; + + // Negate if needed + q = ((q ^ sign) - sign); + return q; +} + +int64_t libdivide_s64_recover(const struct libdivide_s64_t *denom) { + uint8_t more = denom->more; + uint8_t shift = more & LIBDIVIDE_64_SHIFT_MASK; + if (denom->magic == 0) { // shift path + uint64_t absD = 1ULL << shift; + if (more & LIBDIVIDE_NEGATIVE_DIVISOR) { + absD = -absD; + } + return (int64_t)absD; + } else { + // Unsigned math is much easier + int negative_divisor = (more & LIBDIVIDE_NEGATIVE_DIVISOR); + int magic_was_negated = (more & LIBDIVIDE_ADD_MARKER) ? denom->magic > 0 : denom->magic < 0; + + uint64_t d = (uint64_t)(magic_was_negated ? -denom->magic : denom->magic); + uint64_t n_hi = 1ULL << shift, n_lo = 0; + uint64_t rem_ignored; + uint64_t q = libdivide_128_div_64_to_64(n_hi, n_lo, d, &rem_ignored); + int64_t result = (int64_t)(q + 1); + if (negative_divisor) { + result = -result; + } + return result; + } +} + +int64_t libdivide_s64_branchfree_recover(const struct libdivide_s64_branchfree_t *denom) { + return libdivide_s64_recover((const struct libdivide_s64_t *)denom); +} + +int libdivide_s64_get_algorithm(const struct libdivide_s64_t *denom) { uint8_t more = denom->more; int positiveDivisor = ! (more & LIBDIVIDE_NEGATIVE_DIVISOR); - if (denom->magic == 0) return (positiveDivisor ? 0 : 1); //shift path + if (denom->magic == 0) return (positiveDivisor ? 0 : 1); // shift path else if (more & LIBDIVIDE_ADD_MARKER) return (positiveDivisor ? 2 : 3); else return 4; } - -int64_t libdivide_s64_do_alg0(int64_t numer, const libdivide_s64_t *denom) { + +int64_t libdivide_s64_do_alg0(int64_t numer, const struct libdivide_s64_t *denom) { uint32_t shifter = denom->more & LIBDIVIDE_64_SHIFT_MASK; - int64_t q = numer + ((numer >> 63) & ((1LL << shifter) - 1)); - return q >> shifter; + int64_t q = numer + ((numer >> 63) & ((1ULL << shifter) - 1)); + return q >> shifter; } - -int64_t libdivide_s64_do_alg1(int64_t numer, const libdivide_s64_t *denom) { - //denom->shifter != -1 && demo->shiftMask != 0 + +int64_t libdivide_s64_do_alg1(int64_t numer, const struct libdivide_s64_t *denom) { + // denom->shifter != -1 && demo->shiftMask != 0 uint32_t shifter = denom->more & LIBDIVIDE_64_SHIFT_MASK; - int64_t q = numer + ((numer >> 63) & ((1LL << shifter) - 1)); + int64_t q = numer + ((numer >> 63) & ((1ULL << shifter) - 1)); return - (q >> shifter); } - -int64_t libdivide_s64_do_alg2(int64_t numer, const libdivide_s64_t *denom) { + +int64_t libdivide_s64_do_alg2(int64_t numer, const struct libdivide_s64_t *denom) { int64_t q = libdivide__mullhi_s64(denom->magic, numer); q += numer; q >>= denom->more & LIBDIVIDE_64_SHIFT_MASK; q += (q < 0); return q; } - -int64_t libdivide_s64_do_alg3(int64_t numer, const libdivide_s64_t *denom) { + +int64_t libdivide_s64_do_alg3(int64_t numer, const struct libdivide_s64_t *denom) { int64_t q = libdivide__mullhi_s64(denom->magic, numer); q -= numer; q >>= denom->more & LIBDIVIDE_64_SHIFT_MASK; - q += (q < 0); + q += (q < 0); return q; } - -int64_t libdivide_s64_do_alg4(int64_t numer, const libdivide_s64_t *denom) { + +int64_t libdivide_s64_do_alg4(int64_t numer, const struct libdivide_s64_t *denom) { int64_t q = libdivide__mullhi_s64(denom->magic, numer); - q >>= denom->more; + q >>= denom->more & LIBDIVIDE_64_SHIFT_MASK; q += (q < 0); - return q; + return q; } - #if LIBDIVIDE_USE_SSE2 -__m128i libdivide_s64_do_vector(__m128i numers, const libdivide_s64_t * denom) { +__m128i libdivide_s64_do_vector(__m128i numers, const struct libdivide_s64_t * denom) { uint8_t more = denom->more; int64_t magic = denom->magic; - if (magic == 0) { //shift path + if (magic == 0) { // shift path uint32_t shifter = more & LIBDIVIDE_64_SHIFT_MASK; - __m128i roundToZeroTweak = libdivide__u64_to_m128((1LL << shifter) - 1); - __m128i q = _mm_add_epi64(numers, _mm_and_si128(libdivide_s64_signbits(numers), roundToZeroTweak)); //q = numer + ((numer >> 63) & roundToZeroTweak); + __m128i roundToZeroTweak = libdivide__u64_to_m128((1ULL << shifter) - 1); + __m128i q = _mm_add_epi64(numers, _mm_and_si128(libdivide_s64_signbits(numers), roundToZeroTweak)); // q = numer + ((numer >> 63) & roundToZeroTweak); q = libdivide_s64_shift_right_vector(q, shifter); // q = q >> shifter __m128i shiftMask = _mm_set1_epi32((int32_t)((int8_t)more >> 7)); - q = _mm_sub_epi64(_mm_xor_si128(q, shiftMask), shiftMask); //q = (q ^ shiftMask) - shiftMask; + q = _mm_sub_epi64(_mm_xor_si128(q, shiftMask), shiftMask); // q = (q ^ shiftMask) - shiftMask; return q; } else { __m128i q = libdivide_mullhi_s64_flat_vector(numers, libdivide__u64_to_m128(magic)); if (more & LIBDIVIDE_ADD_MARKER) { - __m128i sign = _mm_set1_epi32((int32_t)((int8_t)more >> 7)); //must be arithmetic shift - q = _mm_add_epi64(q, _mm_sub_epi64(_mm_xor_si128(numers, sign), sign)); // q += ((numer ^ sign) - sign); + __m128i sign = _mm_set1_epi32((int32_t)((int8_t)more >> 7)); // must be arithmetic shift + q = _mm_add_epi64(q, _mm_sub_epi64(_mm_xor_si128(numers, sign), sign)); // q += ((numer ^ sign) - sign); } - q = libdivide_s64_shift_right_vector(q, more & LIBDIVIDE_64_SHIFT_MASK); //q >>= denom->mult_path.shift + q = libdivide_s64_shift_right_vector(q, more & LIBDIVIDE_64_SHIFT_MASK); // q >>= denom->mult_path.shift q = _mm_add_epi64(q, _mm_srli_epi64(q, 63)); // q += (q < 0) return q; } } -__m128i libdivide_s64_do_vector_alg0(__m128i numers, const libdivide_s64_t *denom) { +__m128i libdivide_s64_do_vector_alg0(__m128i numers, const struct libdivide_s64_t *denom) { uint32_t shifter = denom->more & LIBDIVIDE_64_SHIFT_MASK; - __m128i roundToZeroTweak = libdivide__u64_to_m128((1LL << shifter) - 1); + __m128i roundToZeroTweak = libdivide__u64_to_m128((1ULL << shifter) - 1); __m128i q = _mm_add_epi64(numers, _mm_and_si128(libdivide_s64_signbits(numers), roundToZeroTweak)); q = libdivide_s64_shift_right_vector(q, shifter); return q; } -__m128i libdivide_s64_do_vector_alg1(__m128i numers, const libdivide_s64_t *denom) { +__m128i libdivide_s64_do_vector_alg1(__m128i numers, const struct libdivide_s64_t *denom) { uint32_t shifter = denom->more & LIBDIVIDE_64_SHIFT_MASK; - __m128i roundToZeroTweak = libdivide__u64_to_m128((1LL << shifter) - 1); + __m128i roundToZeroTweak = libdivide__u64_to_m128((1ULL << shifter) - 1); __m128i q = _mm_add_epi64(numers, _mm_and_si128(libdivide_s64_signbits(numers), roundToZeroTweak)); q = libdivide_s64_shift_right_vector(q, shifter); return _mm_sub_epi64(_mm_setzero_si128(), q); } -__m128i libdivide_s64_do_vector_alg2(__m128i numers, const libdivide_s64_t *denom) { +__m128i libdivide_s64_do_vector_alg2(__m128i numers, const struct libdivide_s64_t *denom) { __m128i q = libdivide_mullhi_s64_flat_vector(numers, libdivide__u64_to_m128(denom->magic)); q = _mm_add_epi64(q, numers); q = libdivide_s64_shift_right_vector(q, denom->more & LIBDIVIDE_64_SHIFT_MASK); @@ -1084,22 +1666,272 @@ __m128i libdivide_s64_do_vector_alg2(__m128i numers, const libdivide_s64_t *deno return q; } -__m128i libdivide_s64_do_vector_alg3(__m128i numers, const libdivide_s64_t *denom) { +__m128i libdivide_s64_do_vector_alg3(__m128i numers, const struct libdivide_s64_t *denom) { __m128i q = libdivide_mullhi_s64_flat_vector(numers, libdivide__u64_to_m128(denom->magic)); q = _mm_sub_epi64(q, numers); q = libdivide_s64_shift_right_vector(q, denom->more & LIBDIVIDE_64_SHIFT_MASK); q = _mm_add_epi64(q, _mm_srli_epi64(q, 63)); // q += (q < 0) - return q; + return q; } -__m128i libdivide_s64_do_vector_alg4(__m128i numers, const libdivide_s64_t *denom) { +__m128i libdivide_s64_do_vector_alg4(__m128i numers, const struct libdivide_s64_t *denom) { __m128i q = libdivide_mullhi_s64_flat_vector(numers, libdivide__u64_to_m128(denom->magic)); - q = libdivide_s64_shift_right_vector(q, denom->more); + q = libdivide_s64_shift_right_vector(q, denom->more & LIBDIVIDE_64_SHIFT_MASK); q = _mm_add_epi64(q, _mm_srli_epi64(q, 63)); - return q; + return q; +} + +__m128i libdivide_s64_branchfree_do_vector(__m128i numers, const struct libdivide_s64_branchfree_t * denom) { + int64_t magic = denom->magic; + uint8_t more = denom->more; + uint8_t shift = more & LIBDIVIDE_64_SHIFT_MASK; + __m128i sign = _mm_set1_epi32((int32_t)(int8_t)more >> 7); // must be arithmetic shift + + // libdivide__mullhi_s64(numers, magic); + __m128i q = libdivide_mullhi_s64_flat_vector(numers, libdivide__u64_to_m128(magic)); + q = _mm_add_epi64(q, numers); // q += numers + + // If q is non-negative, we have nothing to do. + // If q is negative, we want to add either (2**shift)-1 if d is a power of + // 2, or (2**shift) if it is not a power of 2. + uint32_t is_power_of_2 = (magic == 0); + __m128i q_sign = libdivide_s64_signbits(q); // q_sign = q >> 63 + q = _mm_add_epi64(q, _mm_and_si128(q_sign, libdivide__u64_to_m128((1ULL << shift) - is_power_of_2))); // q = q + (q_sign & ((1 << shift) - is_power_of_2) + q = libdivide_s64_shift_right_vector(q, shift); // q >>= shift + q = _mm_sub_epi64(_mm_xor_si128(q, sign), sign); // q = (q ^ sign) - sign + return q; } #endif - - -#endif //LIBDIVIDE_HEADER_ONLY + +/////////// C++ stuff + +#ifdef __cplusplus + +// Our divider struct is templated on both a type (like uint64_t) and an +// algorithm index. BRANCHFULL is the default algorithm, BRANCHFREE is the +// branchfree variant, and the indexed variants are for unswitching. +enum { + BRANCHFULL = -1, + BRANCHFREE = -2, + ALGORITHM0 = 0, + ALGORITHM1 = 1, + ALGORITHM2 = 2, + ALGORITHM3 = 3, + ALGORITHM4 = 4 +}; + +namespace libdivide_internal { + +#if LIBDIVIDE_USE_SSE2 +#define MAYBE_VECTOR(X) X +#define MAYBE_VECTOR_PARAM(X) __m128i vector_func(__m128i, const X *) + +#else +#define MAYBE_VECTOR(X) 0 +#define MAYBE_VECTOR_PARAM(X) int vector_func +#endif + + // Some bogus unswitch functions for unsigned types so the same + // (presumably templated) code can work for both signed and unsigned. + uint32_t crash_u32(uint32_t, const libdivide_u32_t *) { abort(); return *(uint32_t *)NULL; } + uint64_t crash_u64(uint64_t, const libdivide_u64_t *) { abort(); return *(uint64_t *)NULL; } +#if LIBDIVIDE_USE_SSE2 + __m128i crash_u32_vector(__m128i, const libdivide_u32_t *) { abort(); return *(__m128i *)NULL; } + __m128i crash_u64_vector(__m128i, const libdivide_u64_t *) { abort(); return *(__m128i *)NULL; } +#endif + + // Base divider, which provides storage for the actual divider + template // like libdivide_u32_do_vector + struct base { + // Storage for the actual divider + DenomType denom; + + // Constructor that takes a divisor value, and applies the gen function + base(IntType d) : denom(gen_func(d)) { } + + // Copy constructor + base(const DenomType & d) : denom(d) { } + + // Default constructor to allow uninitialized uses in e.g. arrays + base() {} + + // Scalar divide + IntType perform_divide(IntType val) const { return do_func(val, &denom); } + +#if LIBDIVIDE_USE_SSE2 + // Vector divide + __m128i perform_divide_vector(__m128i val) const { return vector_func(val, &denom); } +#endif + }; + + // Type-specific dispatch + + // uint32 + template + struct denom_u32 { + typedef base divider; + }; + template struct algo_u32 { }; + template<> struct algo_u32 { typedef denom_u32::divider divider; }; + template<> struct algo_u32 { typedef denom_u32::divider divider; }; + template<> struct algo_u32 { typedef denom_u32::divider divider; }; + template<> struct algo_u32 { typedef denom_u32::divider divider; }; + template<> struct algo_u32 { typedef base divider; }; + + // uint64 + template + struct denom_u64 { + typedef base divider; + }; + template struct algo_u64 { }; + template<> struct algo_u64 { typedef denom_u64::divider divider; }; + template<> struct algo_u64 { typedef denom_u64::divider divider; }; + template<> struct algo_u64 { typedef denom_u64::divider divider; }; + template<> struct algo_u64 { typedef denom_u64::divider divider; }; + template<> struct algo_u64 { typedef base divider; }; + + // int32 + template + struct denom_s32 { + typedef base divider; + }; + template struct algo_s32 { }; + template<> struct algo_s32 { typedef denom_s32::divider divider; }; + template<> struct algo_s32 { typedef denom_s32::divider divider; }; + template<> struct algo_s32 { typedef denom_s32::divider divider; }; + template<> struct algo_s32 { typedef denom_s32::divider divider; }; + template<> struct algo_s32 { typedef denom_s32::divider divider; }; + template<> struct algo_s32 { typedef denom_s32::divider divider; }; + template<> struct algo_s32 { typedef base divider; }; + + // int64 + template + struct denom_s64 { + typedef base divider; + }; + template struct algo_s64 { }; + template<> struct algo_s64 { typedef denom_s64::divider divider; }; + template<> struct algo_s64 { typedef denom_s64::divider divider; }; + template<> struct algo_s64 { typedef denom_s64::divider divider; }; + template<> struct algo_s64 { typedef denom_s64::divider divider; }; + template<> struct algo_s64 { typedef denom_s64::divider divider; }; + template<> struct algo_s64 { typedef denom_s64::divider divider; }; + template<> struct algo_s64 { typedef base divider; }; + + // Bogus versions to allow templated code to operate on int and uint uniformly + template<> struct algo_u32 { typedef denom_u32::divider divider; }; + template<> struct algo_u32 { typedef denom_u32::divider divider; }; + template<> struct algo_u64 { typedef denom_u64::divider divider; }; + template<> struct algo_u64 { typedef denom_u64::divider divider; }; + + // Templated dispatch using partial specialization + template struct dispatcher{}; + template struct dispatcher { typedef struct algo_u32 algo; }; + template struct dispatcher { typedef struct algo_s32 algo; }; + template struct dispatcher { typedef struct algo_u64 algo; }; + template struct dispatcher { typedef struct algo_s64 algo; }; + + // Overloads that don't depend on the algorithm. + inline uint32_t recover(const libdivide_u32_t *s) { return libdivide_u32_recover(s); } + inline int32_t recover(const libdivide_s32_t *s) { return libdivide_s32_recover(s); } + inline uint64_t recover(const libdivide_u64_t *s) { return libdivide_u64_recover(s); } + inline int64_t recover(const libdivide_s64_t *s) { return libdivide_s64_recover(s); } + + inline uint32_t recover(const libdivide_u32_branchfree_t *s) { return libdivide_u32_branchfree_recover(s); } + inline int32_t recover(const libdivide_s32_branchfree_t *s) { return libdivide_s32_branchfree_recover(s); } + inline uint64_t recover(const libdivide_u64_branchfree_t *s) { return libdivide_u64_branchfree_recover(s); } + inline int64_t recover(const libdivide_s64_branchfree_t *s) { return libdivide_s64_branchfree_recover(s); } + + inline int get_algorithm(const libdivide_u32_t *s) { return libdivide_u32_get_algorithm(s); } + inline int get_algorithm(const libdivide_s32_t *s) { return libdivide_s32_get_algorithm(s); } + inline int get_algorithm(const libdivide_u64_t *s) { return libdivide_u64_get_algorithm(s); } + inline int get_algorithm(const libdivide_s64_t *s) { return libdivide_s64_get_algorithm(s); } + + // Fallback for branchfree variants, which do not support unswitching + template int get_algorithm(const T *) { return -1; } +} + +template +class divider +{ + private: + // Here's the actual divider + typedef typename libdivide_internal::dispatcher::algo::divider div_t; + div_t sub; + + // unswitch() friend declaration + template friend divider unswitch(const divider & d); + + // Constructor used by the unswitch friend + divider(const div_t &denom) : sub(denom) { } + + public: + + // Ordinary constructor, that takes the divisor as a parameter. + divider(T n) : sub(n) { } + + // Default constructor. We leave this deliberately undefined so that + // creating an array of divider and then initializing them doesn't slow us + // down. + divider() { } + + // Divides the parameter by the divisor, returning the quotient + T perform_divide(T val) const { return sub.perform_divide(val); } + + // Recovers the divisor that was used to initialize the divider + T recover_divisor() const { return libdivide_internal::recover(&sub.denom); } + +#if LIBDIVIDE_USE_SSE2 + // Treats the vector as either two or four packed values (depending on the + // size), and divides each of them by the divisor, returning the packed + // quotients. + __m128i perform_divide_vector(__m128i val) const { return sub.perform_divide_vector(val); } +#endif + + // Returns the index of algorithm, for use in the unswitch function. Does + // not apply to branchfree variant. + // Returns the algorithm for unswitching. + int get_algorithm() const { return libdivide_internal::get_algorithm(&sub.denom); } + + // operator== + bool operator==(const divider & him) const { return sub.denom.magic == him.sub.denom.magic && sub.denom.more == him.sub.denom.more; } + bool operator!=(const divider & him) const { return ! (*this == him); } +}; + +// Returns a divider specialized for the given algorithm. +template +divider unswitch(const divider & d) { return divider(d.sub.denom); } + +// Overload of the / operator for scalar division. +template +int_type operator/(int_type numer, const divider & denom) { + return denom.perform_divide(numer); +} + +#if LIBDIVIDE_USE_SSE2 +// Overload of the / operator for vector division. +template +__m128i operator/(__m128i numer, const divider & denom) { + return denom.perform_divide_vector(numer); +} +#endif + +#endif // __cplusplus + +#endif // LIBDIVIDE_HEADER_ONLY + +#ifdef __cplusplus +} // close namespace libdivide +} // close anonymous namespace +#endif