qzdoom/src/r_draw_rgba.cpp
2016-10-19 03:49:42 +02:00

2050 lines
58 KiB
C++

// Emacs style mode select -*- C++ -*-
//-----------------------------------------------------------------------------
//
// $Id:$
//
// Copyright (C) 1993-1996 by id Software, Inc.
//
// This source is available for distribution and/or modification
// only under the terms of the DOOM Source Code License as
// published by id Software. All rights reserved.
//
// The source is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// FITNESS FOR A PARTICULAR PURPOSE. See the DOOM Source Code License
// for more details.
//
// $Log:$
//
// DESCRIPTION:
// True color span/column drawing functions.
//
//-----------------------------------------------------------------------------
#include <stddef.h>
#include "templates.h"
#include "doomdef.h"
#include "i_system.h"
#include "w_wad.h"
#include "r_local.h"
#include "v_video.h"
#include "doomstat.h"
#include "st_stuff.h"
#include "g_game.h"
#include "g_level.h"
#include "r_data/r_translate.h"
#include "v_palette.h"
#include "r_data/colormaps.h"
#include "r_plane.h"
#include "r_draw_rgba.h"
#include "r_compiler/llvmdrawers.h"
#include "gl/data/gl_matrix.h"
#include "gi.h"
#include "stats.h"
#include "x86.h"
#include <vector>
extern "C" short spanend[MAXHEIGHT];
extern float rw_light;
extern float rw_lightstep;
extern int wallshade;
// Use linear filtering when scaling up
CVAR(Bool, r_magfilter, false, CVAR_ARCHIVE | CVAR_GLOBALCONFIG);
// Use linear filtering when scaling down
CVAR(Bool, r_minfilter, true, CVAR_ARCHIVE | CVAR_GLOBALCONFIG);
// Use mipmapped textures
CVAR(Bool, r_mipmap, true, CVAR_ARCHIVE | CVAR_GLOBALCONFIG);
/////////////////////////////////////////////////////////////////////////////
class DrawSpanLLVMCommand : public DrawerCommand
{
public:
DrawSpanLLVMCommand()
{
args.xfrac = ds_xfrac;
args.yfrac = ds_yfrac;
args.xstep = ds_xstep;
args.ystep = ds_ystep;
args.x1 = ds_x1;
args.x2 = ds_x2;
args.y = ds_y;
args.xbits = ds_xbits;
args.ybits = ds_ybits;
args.destorg = (uint32_t*)dc_destorg;
args.destpitch = dc_pitch;
args.source = (const uint32_t*)ds_source;
args.light = LightBgra::calc_light_multiplier(ds_light);
args.light_red = ds_shade_constants.light_red;
args.light_green = ds_shade_constants.light_green;
args.light_blue = ds_shade_constants.light_blue;
args.light_alpha = ds_shade_constants.light_alpha;
args.fade_red = ds_shade_constants.fade_red;
args.fade_green = ds_shade_constants.fade_green;
args.fade_blue = ds_shade_constants.fade_blue;
args.fade_alpha = ds_shade_constants.fade_alpha;
args.desaturate = ds_shade_constants.desaturate;
args.srcalpha = dc_srcalpha >> (FRACBITS - 8);
args.destalpha = dc_destalpha >> (FRACBITS - 8);
args.flags = 0;
if (ds_shade_constants.simple_shade)
args.flags |= DrawSpanArgs::simple_shade;
if (!sampler_setup(args.source, args.xbits, args.ybits, args.xstep, args.ystep, ds_source_mipmapped))
args.flags |= DrawSpanArgs::nearest_filter;
}
void Execute(DrawerThread *thread) override
{
if (thread->skipped_by_thread(args.y))
return;
LLVMDrawers::Instance()->DrawSpan(&args);
}
FString DebugInfo() override
{
return "DrawSpanLLVMCommand\n" + args.ToString();
}
protected:
DrawSpanArgs args;
private:
inline static bool sampler_setup(const uint32_t * &source, int &xbits, int &ybits, fixed_t xstep, fixed_t ystep, bool mipmapped)
{
// Is this a magfilter or minfilter?
fixed_t xmagnitude = abs(xstep) >> (32 - xbits - FRACBITS);
fixed_t ymagnitude = abs(ystep) >> (32 - ybits - FRACBITS);
fixed_t magnitude = (xmagnitude + ymagnitude) * 2 + (1 << (FRACBITS - 1));
bool magnifying = (magnitude >> FRACBITS == 0);
if (r_mipmap && mipmapped)
{
int level = magnitude >> (FRACBITS + 1);
while (level != 0)
{
if (xbits <= 2 || ybits <= 2)
break;
source += (1 << (xbits)) * (1 << (ybits));
xbits -= 1;
ybits -= 1;
level >>= 1;
}
}
return (magnifying && r_magfilter) || (!magnifying && r_minfilter);
}
};
class DrawSpanMaskedLLVMCommand : public DrawSpanLLVMCommand
{
public:
void Execute(DrawerThread *thread) override
{
if (thread->skipped_by_thread(args.y))
return;
LLVMDrawers::Instance()->DrawSpanMasked(&args);
}
};
class DrawSpanTranslucentLLVMCommand : public DrawSpanLLVMCommand
{
public:
void Execute(DrawerThread *thread) override
{
if (thread->skipped_by_thread(args.y))
return;
LLVMDrawers::Instance()->DrawSpanTranslucent(&args);
}
};
class DrawSpanMaskedTranslucentLLVMCommand : public DrawSpanLLVMCommand
{
public:
void Execute(DrawerThread *thread) override
{
if (thread->skipped_by_thread(args.y))
return;
LLVMDrawers::Instance()->DrawSpanMaskedTranslucent(&args);
}
};
class DrawSpanAddClampLLVMCommand : public DrawSpanLLVMCommand
{
public:
void Execute(DrawerThread *thread) override
{
if (thread->skipped_by_thread(args.y))
return;
LLVMDrawers::Instance()->DrawSpanAddClamp(&args);
}
};
class DrawSpanMaskedAddClampLLVMCommand : public DrawSpanLLVMCommand
{
public:
void Execute(DrawerThread *thread) override
{
if (thread->skipped_by_thread(args.y))
return;
LLVMDrawers::Instance()->DrawSpanMaskedAddClamp(&args);
}
};
/////////////////////////////////////////////////////////////////////////////
class DrawWall4LLVMCommand : public DrawerCommand
{
protected:
DrawWallArgs args;
WorkerThreadData ThreadData(DrawerThread *thread)
{
WorkerThreadData d;
d.core = thread->core;
d.num_cores = thread->num_cores;
d.pass_start_y = thread->pass_start_y;
d.pass_end_y = thread->pass_end_y;
return d;
}
public:
DrawWall4LLVMCommand()
{
args.dest = (uint32_t*)dc_dest;
args.dest_y = _dest_y;
args.count = dc_count;
args.pitch = dc_pitch;
args.light_red = dc_shade_constants.light_red;
args.light_green = dc_shade_constants.light_green;
args.light_blue = dc_shade_constants.light_blue;
args.light_alpha = dc_shade_constants.light_alpha;
args.fade_red = dc_shade_constants.fade_red;
args.fade_green = dc_shade_constants.fade_green;
args.fade_blue = dc_shade_constants.fade_blue;
args.fade_alpha = dc_shade_constants.fade_alpha;
args.desaturate = dc_shade_constants.desaturate;
for (int i = 0; i < 4; i++)
{
args.texturefrac[i] = vplce[i];
args.iscale[i] = vince[i];
args.texturefracx[i] = buftexturefracx[i];
args.textureheight[i] = bufheight[i];
args.source[i] = (const uint32_t *)bufplce[i];
args.source2[i] = (const uint32_t *)bufplce2[i];
args.light[i] = LightBgra::calc_light_multiplier(palookuplight[i]);
}
args.srcalpha = dc_srcalpha >> (FRACBITS - 8);
args.destalpha = dc_destalpha >> (FRACBITS - 8);
args.flags = 0;
if (dc_shade_constants.simple_shade)
args.flags |= DrawWallArgs::simple_shade;
if (args.source2[0] == nullptr)
args.flags |= DrawWallArgs::nearest_filter;
DetectRangeError(args.dest, args.dest_y, args.count);
}
void Execute(DrawerThread *thread) override
{
WorkerThreadData d = ThreadData(thread);
LLVMDrawers::Instance()->vlinec4(&args, &d);
}
FString DebugInfo() override
{
return "DrawWall4LLVMCommand\n" + args.ToString();
}
};
class DrawWall1LLVMCommand : public DrawerCommand
{
protected:
DrawWallArgs args;
WorkerThreadData ThreadData(DrawerThread *thread)
{
WorkerThreadData d;
d.core = thread->core;
d.num_cores = thread->num_cores;
d.pass_start_y = thread->pass_start_y;
d.pass_end_y = thread->pass_end_y;
return d;
}
public:
DrawWall1LLVMCommand()
{
args.dest = (uint32_t*)dc_dest;
args.dest_y = _dest_y;
args.pitch = dc_pitch;
args.count = dc_count;
args.texturefrac[0] = dc_texturefrac;
args.texturefracx[0] = dc_texturefracx;
args.iscale[0] = dc_iscale;
args.textureheight[0] = dc_textureheight;
args.source[0] = (const uint32 *)dc_source;
args.source2[0] = (const uint32 *)dc_source2;
args.light[0] = LightBgra::calc_light_multiplier(dc_light);
args.light_red = dc_shade_constants.light_red;
args.light_green = dc_shade_constants.light_green;
args.light_blue = dc_shade_constants.light_blue;
args.light_alpha = dc_shade_constants.light_alpha;
args.fade_red = dc_shade_constants.fade_red;
args.fade_green = dc_shade_constants.fade_green;
args.fade_blue = dc_shade_constants.fade_blue;
args.fade_alpha = dc_shade_constants.fade_alpha;
args.desaturate = dc_shade_constants.desaturate;
args.srcalpha = dc_srcalpha >> (FRACBITS - 8);
args.destalpha = dc_destalpha >> (FRACBITS - 8);
args.flags = 0;
if (dc_shade_constants.simple_shade)
args.flags |= DrawWallArgs::simple_shade;
if (args.source2[0] == nullptr)
args.flags |= DrawWallArgs::nearest_filter;
DetectRangeError(args.dest, args.dest_y, args.count);
}
void Execute(DrawerThread *thread) override
{
WorkerThreadData d = ThreadData(thread);
LLVMDrawers::Instance()->vlinec1(&args, &d);
}
FString DebugInfo() override
{
return "DrawWall1LLVMCommand\n" + args.ToString();
}
};
class DrawColumnLLVMCommand : public DrawerCommand
{
protected:
DrawColumnArgs args;
WorkerThreadData ThreadData(DrawerThread *thread)
{
WorkerThreadData d;
d.core = thread->core;
d.num_cores = thread->num_cores;
d.pass_start_y = thread->pass_start_y;
d.pass_end_y = thread->pass_end_y;
return d;
}
FString DebugInfo() override
{
return "DrawColumnLLVMCommand\n" + args.ToString();
}
public:
DrawColumnLLVMCommand()
{
args.dest = (uint32_t*)dc_dest;
args.source = dc_source;
args.colormap = dc_colormap;
args.translation = dc_translation;
args.basecolors = (const uint32_t *)GPalette.BaseColors;
args.pitch = dc_pitch;
args.count = dc_count;
args.dest_y = _dest_y;
args.iscale = dc_iscale;
args.texturefrac = dc_texturefrac;
args.light = LightBgra::calc_light_multiplier(dc_light);
args.color = LightBgra::shade_pal_index_simple(dc_color, args.light);
args.srccolor = dc_srccolor_bgra;
args.srcalpha = dc_srcalpha >> (FRACBITS - 8);
args.destalpha = dc_destalpha >> (FRACBITS - 8);
args.light_red = dc_shade_constants.light_red;
args.light_green = dc_shade_constants.light_green;
args.light_blue = dc_shade_constants.light_blue;
args.light_alpha = dc_shade_constants.light_alpha;
args.fade_red = dc_shade_constants.fade_red;
args.fade_green = dc_shade_constants.fade_green;
args.fade_blue = dc_shade_constants.fade_blue;
args.fade_alpha = dc_shade_constants.fade_alpha;
args.desaturate = dc_shade_constants.desaturate;
args.flags = 0;
if (dc_shade_constants.simple_shade)
args.flags |= DrawColumnArgs::simple_shade;
DetectRangeError(args.dest, args.dest_y, args.count);
}
void Execute(DrawerThread *thread) override
{
WorkerThreadData d = ThreadData(thread);
LLVMDrawers::Instance()->DrawColumn(&args, &d);
}
};
class DrawSkyLLVMCommand : public DrawerCommand
{
protected:
DrawSkyArgs args;
WorkerThreadData ThreadData(DrawerThread *thread)
{
WorkerThreadData d;
d.core = thread->core;
d.num_cores = thread->num_cores;
d.pass_start_y = thread->pass_start_y;
d.pass_end_y = thread->pass_end_y;
return d;
}
public:
DrawSkyLLVMCommand(uint32_t solid_top, uint32_t solid_bottom)
{
args.dest = (uint32_t*)dc_dest;
args.dest_y = _dest_y;
args.count = dc_count;
args.pitch = dc_pitch;
for (int i = 0; i < 4; i++)
{
args.texturefrac[i] = vplce[i];
args.iscale[i] = vince[i];
args.source0[i] = (const uint32_t *)bufplce[i];
args.source1[i] = (const uint32_t *)bufplce2[i];
}
args.textureheight0 = bufheight[0];
args.textureheight1 = bufheight[1];
args.top_color = solid_top;
args.bottom_color = solid_bottom;
DetectRangeError(args.dest, args.dest_y, args.count);
}
FString DebugInfo() override
{
return "DrawSkyLLVMCommand\n" + args.ToString();
}
};
#define DECLARE_DRAW_COMMAND(name, func, base) \
class name##LLVMCommand : public base \
{ \
public: \
using base::base; \
void Execute(DrawerThread *thread) override \
{ \
WorkerThreadData d = ThreadData(thread); \
LLVMDrawers::Instance()->func(&args, &d); \
} \
};
//DECLARE_DRAW_COMMAND(name, func, DrawSpanLLVMCommand);
DECLARE_DRAW_COMMAND(DrawWallMasked4, mvlinec4, DrawWall4LLVMCommand);
DECLARE_DRAW_COMMAND(DrawWallAdd4, tmvline4_add, DrawWall4LLVMCommand);
DECLARE_DRAW_COMMAND(DrawWallAddClamp4, tmvline4_addclamp, DrawWall4LLVMCommand);
DECLARE_DRAW_COMMAND(DrawWallSubClamp4, tmvline4_subclamp, DrawWall4LLVMCommand);
DECLARE_DRAW_COMMAND(DrawWallRevSubClamp4, tmvline4_revsubclamp, DrawWall4LLVMCommand);
DECLARE_DRAW_COMMAND(DrawWallMasked1, mvlinec1, DrawWall1LLVMCommand);
DECLARE_DRAW_COMMAND(DrawWallAdd1, tmvline1_add, DrawWall1LLVMCommand);
DECLARE_DRAW_COMMAND(DrawWallAddClamp1, tmvline1_addclamp, DrawWall1LLVMCommand);
DECLARE_DRAW_COMMAND(DrawWallSubClamp1, tmvline1_subclamp, DrawWall1LLVMCommand);
DECLARE_DRAW_COMMAND(DrawWallRevSubClamp1, tmvline1_revsubclamp, DrawWall1LLVMCommand);
DECLARE_DRAW_COMMAND(DrawColumnAdd, DrawColumnAdd, DrawColumnLLVMCommand);
DECLARE_DRAW_COMMAND(DrawColumnTranslated, DrawColumnTranslated, DrawColumnLLVMCommand);
DECLARE_DRAW_COMMAND(DrawColumnTlatedAdd, DrawColumnTlatedAdd, DrawColumnLLVMCommand);
DECLARE_DRAW_COMMAND(DrawColumnShaded, DrawColumnShaded, DrawColumnLLVMCommand);
DECLARE_DRAW_COMMAND(DrawColumnAddClamp, DrawColumnAddClamp, DrawColumnLLVMCommand);
DECLARE_DRAW_COMMAND(DrawColumnAddClampTranslated, DrawColumnAddClampTranslated, DrawColumnLLVMCommand);
DECLARE_DRAW_COMMAND(DrawColumnSubClamp, DrawColumnSubClamp, DrawColumnLLVMCommand);
DECLARE_DRAW_COMMAND(DrawColumnSubClampTranslated, DrawColumnSubClampTranslated, DrawColumnLLVMCommand);
DECLARE_DRAW_COMMAND(DrawColumnRevSubClamp, DrawColumnRevSubClamp, DrawColumnLLVMCommand);
DECLARE_DRAW_COMMAND(DrawColumnRevSubClampTranslated, DrawColumnRevSubClampTranslated, DrawColumnLLVMCommand);
DECLARE_DRAW_COMMAND(FillColumn, FillColumn, DrawColumnLLVMCommand);
DECLARE_DRAW_COMMAND(FillColumnAdd, FillColumnAdd, DrawColumnLLVMCommand);
DECLARE_DRAW_COMMAND(FillColumnAddClamp, FillColumnAddClamp, DrawColumnLLVMCommand);
DECLARE_DRAW_COMMAND(FillColumnSubClamp, FillColumnSubClamp, DrawColumnLLVMCommand);
DECLARE_DRAW_COMMAND(FillColumnRevSubClamp, FillColumnRevSubClamp, DrawColumnLLVMCommand);
DECLARE_DRAW_COMMAND(DrawSingleSky1, DrawSky1, DrawSkyLLVMCommand);
DECLARE_DRAW_COMMAND(DrawSingleSky4, DrawSky4, DrawSkyLLVMCommand);
DECLARE_DRAW_COMMAND(DrawDoubleSky1, DrawDoubleSky1, DrawSkyLLVMCommand);
DECLARE_DRAW_COMMAND(DrawDoubleSky4, DrawDoubleSky4, DrawSkyLLVMCommand);
/////////////////////////////////////////////////////////////////////////////
class DrawFuzzColumnRGBACommand : public DrawerCommand
{
int _x;
int _yl;
int _yh;
BYTE * RESTRICT _destorg;
int _pitch;
int _fuzzpos;
int _fuzzviewheight;
public:
DrawFuzzColumnRGBACommand()
{
_x = dc_x;
_yl = dc_yl;
_yh = dc_yh;
_destorg = dc_destorg;
_pitch = dc_pitch;
_fuzzpos = fuzzpos;
_fuzzviewheight = fuzzviewheight;
}
void Execute(DrawerThread *thread) override
{
int yl = MAX(_yl, 1);
int yh = MIN(_yh, _fuzzviewheight);
int count = thread->count_for_thread(yl, yh - yl + 1);
// Zero length.
if (count <= 0)
return;
uint32_t *dest = thread->dest_for_thread(yl, _pitch, ylookup[yl] + _x + (uint32_t*)_destorg);
int pitch = _pitch * thread->num_cores;
int fuzzstep = thread->num_cores;
int fuzz = (_fuzzpos + thread->skipped_by_thread(yl)) % FUZZTABLE;
yl += thread->skipped_by_thread(yl);
// Handle the case where we would go out of bounds at the top:
if (yl < fuzzstep)
{
uint32_t *srcdest = dest + fuzzoffset[fuzz] * fuzzstep + pitch;
//assert(static_cast<int>((srcdest - (uint32_t*)dc_destorg) / (_pitch)) < viewheight);
uint32_t bg = *srcdest;
uint32_t red = RPART(bg) * 3 / 4;
uint32_t green = GPART(bg) * 3 / 4;
uint32_t blue = BPART(bg) * 3 / 4;
*dest = 0xff000000 | (red << 16) | (green << 8) | blue;
dest += pitch;
fuzz += fuzzstep;
fuzz %= FUZZTABLE;
count--;
if (count == 0)
return;
}
bool lowerbounds = (yl + (count + fuzzstep - 1) * fuzzstep > _fuzzviewheight);
if (lowerbounds)
count--;
// Fuzz where fuzzoffset stays within bounds
while (count > 0)
{
int available = (FUZZTABLE - fuzz);
int next_wrap = available / fuzzstep;
if (available % fuzzstep != 0)
next_wrap++;
int cnt = MIN(count, next_wrap);
count -= cnt;
do
{
uint32_t *srcdest = dest + fuzzoffset[fuzz] * fuzzstep;
//assert(static_cast<int>((srcdest - (uint32_t*)dc_destorg) / (_pitch)) < viewheight);
uint32_t bg = *srcdest;
uint32_t red = RPART(bg) * 3 / 4;
uint32_t green = GPART(bg) * 3 / 4;
uint32_t blue = BPART(bg) * 3 / 4;
*dest = 0xff000000 | (red << 16) | (green << 8) | blue;
dest += pitch;
fuzz += fuzzstep;
} while (--cnt);
fuzz %= FUZZTABLE;
}
// Handle the case where we would go out of bounds at the bottom
if (lowerbounds)
{
uint32_t *srcdest = dest + fuzzoffset[fuzz] * fuzzstep - pitch;
//assert(static_cast<int>((srcdest - (uint32_t*)dc_destorg) / (_pitch)) < viewheight);
uint32_t bg = *srcdest;
uint32_t red = RPART(bg) * 3 / 4;
uint32_t green = GPART(bg) * 3 / 4;
uint32_t blue = BPART(bg) * 3 / 4;
*dest = 0xff000000 | (red << 16) | (green << 8) | blue;
}
}
FString DebugInfo() override
{
return "DrawFuzzColumnRGBACommand";
}
};
class FillSpanRGBACommand : public DrawerCommand
{
int _x1;
int _x2;
int _y;
BYTE * RESTRICT _destorg;
fixed_t _light;
int _color;
public:
FillSpanRGBACommand()
{
_x1 = ds_x1;
_x2 = ds_x2;
_y = ds_y;
_destorg = dc_destorg;
_light = ds_light;
_color = ds_color;
}
void Execute(DrawerThread *thread) override
{
if (thread->line_skipped_by_thread(_y))
return;
uint32_t *dest = ylookup[_y] + _x1 + (uint32_t*)_destorg;
int count = (_x2 - _x1 + 1);
uint32_t light = LightBgra::calc_light_multiplier(_light);
uint32_t color = LightBgra::shade_pal_index_simple(_color, light);
for (int i = 0; i < count; i++)
dest[i] = color;
}
FString DebugInfo() override
{
return "FillSpanRGBACommand";
}
};
/////////////////////////////////////////////////////////////////////////////
class DrawSlabRGBACommand : public DrawerCommand
{
int _dx;
fixed_t _v;
int _dy;
fixed_t _vi;
const BYTE *_voxelptr;
uint32_t *_p;
ShadeConstants _shade_constants;
const BYTE *_colormap;
fixed_t _light;
int _pitch;
int _start_y;
public:
DrawSlabRGBACommand(int dx, fixed_t v, int dy, fixed_t vi, const BYTE *vptr, BYTE *p, ShadeConstants shade_constants, const BYTE *colormap, fixed_t light)
{
_dx = dx;
_v = v;
_dy = dy;
_vi = vi;
_voxelptr = vptr;
_p = (uint32_t *)p;
_shade_constants = shade_constants;
_colormap = colormap;
_light = light;
_pitch = dc_pitch;
_start_y = static_cast<int>((p - dc_destorg) / (dc_pitch * 4));
assert(dx > 0);
}
void Execute(DrawerThread *thread) override
{
int dx = _dx;
fixed_t v = _v;
int dy = _dy;
fixed_t vi = _vi;
const BYTE *vptr = _voxelptr;
uint32_t *p = _p;
ShadeConstants shade_constants = _shade_constants;
const BYTE *colormap = _colormap;
uint32_t light = LightBgra::calc_light_multiplier(_light);
int pitch = _pitch;
int x;
dy = thread->count_for_thread(_start_y, dy);
p = thread->dest_for_thread(_start_y, pitch, p);
v += vi * thread->skipped_by_thread(_start_y);
vi *= thread->num_cores;
pitch *= thread->num_cores;
if (dx == 1)
{
while (dy > 0)
{
*p = LightBgra::shade_pal_index(colormap[vptr[v >> FRACBITS]], light, shade_constants);
p += pitch;
v += vi;
dy--;
}
}
else if (dx == 2)
{
while (dy > 0)
{
uint32_t color = LightBgra::shade_pal_index(colormap[vptr[v >> FRACBITS]], light, shade_constants);
p[0] = color;
p[1] = color;
p += pitch;
v += vi;
dy--;
}
}
else if (dx == 3)
{
while (dy > 0)
{
uint32_t color = LightBgra::shade_pal_index(colormap[vptr[v >> FRACBITS]], light, shade_constants);
p[0] = color;
p[1] = color;
p[2] = color;
p += pitch;
v += vi;
dy--;
}
}
else if (dx == 4)
{
while (dy > 0)
{
uint32_t color = LightBgra::shade_pal_index(colormap[vptr[v >> FRACBITS]], light, shade_constants);
p[0] = color;
p[1] = color;
p[2] = color;
p[3] = color;
p += pitch;
v += vi;
dy--;
}
}
else while (dy > 0)
{
uint32_t color = LightBgra::shade_pal_index(colormap[vptr[v >> FRACBITS]], light, shade_constants);
// The optimizer will probably turn this into a memset call.
// Since dx is not likely to be large, I'm not sure that's a good thing,
// hence the alternatives above.
for (x = 0; x < dx; x++)
{
p[x] = color;
}
p += pitch;
v += vi;
dy--;
}
}
FString DebugInfo() override
{
return "DrawSlabRGBACommand";
}
};
/////////////////////////////////////////////////////////////////////////////
class DrawFogBoundaryLineRGBACommand : public DrawerCommand
{
int _y;
int _x;
int _x2;
BYTE * RESTRICT _destorg;
fixed_t _light;
ShadeConstants _shade_constants;
public:
DrawFogBoundaryLineRGBACommand(int y, int x, int x2)
{
_y = y;
_x = x;
_x2 = x2;
_destorg = dc_destorg;
_light = dc_light;
_shade_constants = dc_shade_constants;
}
void Execute(DrawerThread *thread) override
{
if (thread->line_skipped_by_thread(_y))
return;
int y = _y;
int x = _x;
int x2 = _x2;
uint32_t *dest = ylookup[y] + (uint32_t*)_destorg;
uint32_t light = LightBgra::calc_light_multiplier(_light);
ShadeConstants constants = _shade_constants;
do
{
uint32_t red = (dest[x] >> 16) & 0xff;
uint32_t green = (dest[x] >> 8) & 0xff;
uint32_t blue = dest[x] & 0xff;
if (constants.simple_shade)
{
red = red * light / 256;
green = green * light / 256;
blue = blue * light / 256;
}
else
{
uint32_t inv_light = 256 - light;
uint32_t inv_desaturate = 256 - constants.desaturate;
uint32_t intensity = ((red * 77 + green * 143 + blue * 37) >> 8) * constants.desaturate;
red = (red * inv_desaturate + intensity) / 256;
green = (green * inv_desaturate + intensity) / 256;
blue = (blue * inv_desaturate + intensity) / 256;
red = (constants.fade_red * inv_light + red * light) / 256;
green = (constants.fade_green * inv_light + green * light) / 256;
blue = (constants.fade_blue * inv_light + blue * light) / 256;
red = (red * constants.light_red) / 256;
green = (green * constants.light_green) / 256;
blue = (blue * constants.light_blue) / 256;
}
dest[x] = 0xff000000 | (red << 16) | (green << 8) | blue;
} while (++x <= x2);
}
FString DebugInfo() override
{
return "DrawFogBoundaryLineRGBACommand";
}
};
class DrawTiltedSpanRGBACommand : public DrawerCommand
{
int _x1;
int _x2;
int _y;
BYTE * RESTRICT _destorg;
fixed_t _light;
ShadeConstants _shade_constants;
FVector3 _plane_sz;
FVector3 _plane_su;
FVector3 _plane_sv;
bool _plane_shade;
int _planeshade;
float _planelightfloat;
fixed_t _pviewx;
fixed_t _pviewy;
int _xbits;
int _ybits;
const uint32_t * RESTRICT _source;
public:
DrawTiltedSpanRGBACommand(int y, int x1, int x2, const FVector3 &plane_sz, const FVector3 &plane_su, const FVector3 &plane_sv, bool plane_shade, int planeshade, float planelightfloat, fixed_t pviewx, fixed_t pviewy)
{
_x1 = x1;
_x2 = x2;
_y = y;
_destorg = dc_destorg;
_light = ds_light;
_shade_constants = ds_shade_constants;
_plane_sz = plane_sz;
_plane_su = plane_su;
_plane_sv = plane_sv;
_plane_shade = plane_shade;
_planeshade = planeshade;
_planelightfloat = planelightfloat;
_pviewx = pviewx;
_pviewy = pviewy;
_source = (const uint32_t*)ds_source;
_xbits = ds_xbits;
_ybits = ds_ybits;
}
void Execute(DrawerThread *thread) override
{
if (thread->line_skipped_by_thread(_y))
return;
//#define SPANSIZE 32
//#define INVSPAN 0.03125f
//#define SPANSIZE 8
//#define INVSPAN 0.125f
#define SPANSIZE 16
#define INVSPAN 0.0625f
int source_width = 1 << _xbits;
int source_height = 1 << _ybits;
uint32_t *dest = ylookup[_y] + _x1 + (uint32_t*)_destorg;
int count = _x2 - _x1 + 1;
// Depth (Z) change across the span
double iz = _plane_sz[2] + _plane_sz[1] * (centery - _y) + _plane_sz[0] * (_x1 - centerx);
// Light change across the span
fixed_t lightstart = _light;
fixed_t lightend = lightstart;
if (_plane_shade)
{
double vis_start = iz * _planelightfloat;
double vis_end = (iz + _plane_sz[0] * count) * _planelightfloat;
lightstart = LIGHTSCALE(vis_start, _planeshade);
lightend = LIGHTSCALE(vis_end, _planeshade);
}
fixed_t light = lightstart;
fixed_t steplight = (lightend - lightstart) / count;
// Texture coordinates
double uz = _plane_su[2] + _plane_su[1] * (centery - _y) + _plane_su[0] * (_x1 - centerx);
double vz = _plane_sv[2] + _plane_sv[1] * (centery - _y) + _plane_sv[0] * (_x1 - centerx);
double startz = 1.f / iz;
double startu = uz*startz;
double startv = vz*startz;
double izstep = _plane_sz[0] * SPANSIZE;
double uzstep = _plane_su[0] * SPANSIZE;
double vzstep = _plane_sv[0] * SPANSIZE;
// Linear interpolate in sizes of SPANSIZE to increase speed
while (count >= SPANSIZE)
{
iz += izstep;
uz += uzstep;
vz += vzstep;
double endz = 1.f / iz;
double endu = uz*endz;
double endv = vz*endz;
uint32_t stepu = (uint32_t)(SQWORD((endu - startu) * INVSPAN));
uint32_t stepv = (uint32_t)(SQWORD((endv - startv) * INVSPAN));
uint32_t u = (uint32_t)(SQWORD(startu) + _pviewx);
uint32_t v = (uint32_t)(SQWORD(startv) + _pviewy);
for (int i = 0; i < SPANSIZE; i++)
{
uint32_t sx = ((u >> 16) * source_width) >> 16;
uint32_t sy = ((v >> 16) * source_height) >> 16;
uint32_t fg = _source[sy + sx * source_height];
if (_shade_constants.simple_shade)
*(dest++) = LightBgra::shade_bgra_simple(fg, LightBgra::calc_light_multiplier(light));
else
*(dest++) = LightBgra::shade_bgra(fg, LightBgra::calc_light_multiplier(light), _shade_constants);
u += stepu;
v += stepv;
light += steplight;
}
startu = endu;
startv = endv;
count -= SPANSIZE;
}
// The last few pixels at the end
while (count > 0)
{
double endz = 1.f / iz;
startu = uz*endz;
startv = vz*endz;
uint32_t u = (uint32_t)(SQWORD(startu) + _pviewx);
uint32_t v = (uint32_t)(SQWORD(startv) + _pviewy);
uint32_t sx = ((u >> 16) * source_width) >> 16;
uint32_t sy = ((v >> 16) * source_height) >> 16;
uint32_t fg = _source[sy + sx * source_height];
if (_shade_constants.simple_shade)
*(dest++) = LightBgra::shade_bgra_simple(fg, LightBgra::calc_light_multiplier(light));
else
*(dest++) = LightBgra::shade_bgra(fg, LightBgra::calc_light_multiplier(light), _shade_constants);
iz += _plane_sz[0];
uz += _plane_su[0];
vz += _plane_sv[0];
light += steplight;
count--;
}
}
FString DebugInfo() override
{
return "DrawTiltedSpanRGBACommand";
}
};
class DrawColoredSpanRGBACommand : public DrawerCommand
{
int _y;
int _x1;
int _x2;
BYTE * RESTRICT _destorg;
fixed_t _light;
int _color;
public:
DrawColoredSpanRGBACommand(int y, int x1, int x2)
{
_y = y;
_x1 = x1;
_x2 = x2;
_destorg = dc_destorg;
_light = ds_light;
_color = ds_color;
}
void Execute(DrawerThread *thread) override
{
if (thread->line_skipped_by_thread(_y))
return;
int y = _y;
int x1 = _x1;
int x2 = _x2;
uint32_t *dest = ylookup[y] + x1 + (uint32_t*)_destorg;
int count = (x2 - x1 + 1);
uint32_t light = LightBgra::calc_light_multiplier(_light);
uint32_t color = LightBgra::shade_pal_index_simple(_color, light);
for (int i = 0; i < count; i++)
dest[i] = color;
}
FString DebugInfo() override
{
return "DrawColoredSpanRGBACommand";
}
};
class FillTransColumnRGBACommand : public DrawerCommand
{
int _x;
int _y1;
int _y2;
int _color;
int _a;
BYTE * RESTRICT _destorg;
int _pitch;
fixed_t _light;
public:
FillTransColumnRGBACommand(int x, int y1, int y2, int color, int a)
{
_x = x;
_y1 = y1;
_y2 = y2;
_color = color;
_a = a;
_destorg = dc_destorg;
_pitch = dc_pitch;
}
void Execute(DrawerThread *thread) override
{
int x = _x;
int y1 = _y1;
int y2 = _y2;
int color = _color;
int a = _a;
int ycount = thread->count_for_thread(y1, y2 - y1 + 1);
if (ycount <= 0)
return;
uint32_t fg = GPalette.BaseColors[color].d;
uint32_t fg_red = (fg >> 16) & 0xff;
uint32_t fg_green = (fg >> 8) & 0xff;
uint32_t fg_blue = fg & 0xff;
uint32_t alpha = a + 1;
uint32_t inv_alpha = 256 - alpha;
fg_red *= alpha;
fg_green *= alpha;
fg_blue *= alpha;
int spacing = _pitch * thread->num_cores;
uint32_t *dest = thread->dest_for_thread(y1, _pitch, ylookup[y1] + x + (uint32_t*)_destorg);
for (int y = 0; y < ycount; y++)
{
uint32_t bg_red = (*dest >> 16) & 0xff;
uint32_t bg_green = (*dest >> 8) & 0xff;
uint32_t bg_blue = (*dest) & 0xff;
uint32_t red = (fg_red + bg_red * inv_alpha) / 256;
uint32_t green = (fg_green + bg_green * inv_alpha) / 256;
uint32_t blue = (fg_blue + bg_blue * inv_alpha) / 256;
*dest = 0xff000000 | (red << 16) | (green << 8) | blue;
dest += spacing;
}
}
FString DebugInfo() override
{
return "FillTransColumnRGBACommand";
}
};
ApplySpecialColormapRGBACommand::ApplySpecialColormapRGBACommand(FSpecialColormap *colormap, DFrameBuffer *screen)
{
buffer = screen->GetBuffer();
pitch = screen->GetPitch();
width = screen->GetWidth();
height = screen->GetHeight();
start_red = (int)(colormap->ColorizeStart[0] * 255);
start_green = (int)(colormap->ColorizeStart[1] * 255);
start_blue = (int)(colormap->ColorizeStart[2] * 255);
end_red = (int)(colormap->ColorizeEnd[0] * 255);
end_green = (int)(colormap->ColorizeEnd[1] * 255);
end_blue = (int)(colormap->ColorizeEnd[2] * 255);
}
#ifdef NO_SSE
void ApplySpecialColormapRGBACommand::Execute(DrawerThread *thread)
{
int y = thread->skipped_by_thread(0);
int count = thread->count_for_thread(0, height);
while (count > 0)
{
BYTE *pixels = buffer + y * pitch * 4;
for (int x = 0; x < width; x++)
{
int fg_red = pixels[2];
int fg_green = pixels[1];
int fg_blue = pixels[0];
int gray = (fg_red * 77 + fg_green * 143 + fg_blue * 37) >> 8;
gray += (gray >> 7); // gray*=256/255
int inv_gray = 256 - gray;
int red = clamp((start_red * inv_gray + end_red * gray) >> 8, 0, 255);
int green = clamp((start_green * inv_gray + end_green * gray) >> 8, 0, 255);
int blue = clamp((start_blue * inv_gray + end_blue * gray) >> 8, 0, 255);
pixels[0] = (BYTE)blue;
pixels[1] = (BYTE)green;
pixels[2] = (BYTE)red;
pixels[3] = 0xff;
pixels += 4;
}
y += thread->num_cores;
count--;
}
}
#else
void ApplySpecialColormapRGBACommand::Execute(DrawerThread *thread)
{
int y = thread->skipped_by_thread(0);
int count = thread->count_for_thread(0, height);
__m128i gray_weight = _mm_set_epi16(256, 77, 143, 37, 256, 77, 143, 37);
__m128i start_end = _mm_set_epi16(255, start_red, start_green, start_blue, 255, end_red, end_green, end_blue);
while (count > 0)
{
BYTE *pixels = buffer + y * pitch * 4;
int sse_length = width / 4;
for (int x = 0; x < sse_length; x++)
{
// Unpack to integers:
__m128i p = _mm_loadu_si128((const __m128i*)pixels);
__m128i p16_0 = _mm_unpacklo_epi8(p, _mm_setzero_si128());
__m128i p16_1 = _mm_unpackhi_epi8(p, _mm_setzero_si128());
// Add gray weighting to colors
__m128i mullo0 = _mm_mullo_epi16(p16_0, gray_weight);
__m128i mullo1 = _mm_mullo_epi16(p16_1, gray_weight);
__m128i p32_0 = _mm_unpacklo_epi16(mullo0, _mm_setzero_si128());
__m128i p32_1 = _mm_unpackhi_epi16(mullo0, _mm_setzero_si128());
__m128i p32_2 = _mm_unpacklo_epi16(mullo1, _mm_setzero_si128());
__m128i p32_3 = _mm_unpackhi_epi16(mullo1, _mm_setzero_si128());
// Transpose to get color components in individual vectors:
__m128 tmpx = _mm_castsi128_ps(p32_0);
__m128 tmpy = _mm_castsi128_ps(p32_1);
__m128 tmpz = _mm_castsi128_ps(p32_2);
__m128 tmpw = _mm_castsi128_ps(p32_3);
_MM_TRANSPOSE4_PS(tmpx, tmpy, tmpz, tmpw);
__m128i blue = _mm_castps_si128(tmpx);
__m128i green = _mm_castps_si128(tmpy);
__m128i red = _mm_castps_si128(tmpz);
__m128i alpha = _mm_castps_si128(tmpw);
// Calculate gray and 256-gray values:
__m128i gray = _mm_srli_epi32(_mm_add_epi32(_mm_add_epi32(red, green), blue), 8);
__m128i inv_gray = _mm_sub_epi32(_mm_set1_epi32(256), gray);
// p32 = start * inv_gray + end * gray:
__m128i gray0 = _mm_shuffle_epi32(gray, _MM_SHUFFLE(0, 0, 0, 0));
__m128i gray1 = _mm_shuffle_epi32(gray, _MM_SHUFFLE(1, 1, 1, 1));
__m128i gray2 = _mm_shuffle_epi32(gray, _MM_SHUFFLE(2, 2, 2, 2));
__m128i gray3 = _mm_shuffle_epi32(gray, _MM_SHUFFLE(3, 3, 3, 3));
__m128i inv_gray0 = _mm_shuffle_epi32(inv_gray, _MM_SHUFFLE(0, 0, 0, 0));
__m128i inv_gray1 = _mm_shuffle_epi32(inv_gray, _MM_SHUFFLE(1, 1, 1, 1));
__m128i inv_gray2 = _mm_shuffle_epi32(inv_gray, _MM_SHUFFLE(2, 2, 2, 2));
__m128i inv_gray3 = _mm_shuffle_epi32(inv_gray, _MM_SHUFFLE(3, 3, 3, 3));
__m128i gray16_0 = _mm_packs_epi32(gray0, inv_gray0);
__m128i gray16_1 = _mm_packs_epi32(gray1, inv_gray1);
__m128i gray16_2 = _mm_packs_epi32(gray2, inv_gray2);
__m128i gray16_3 = _mm_packs_epi32(gray3, inv_gray3);
__m128i gray16_0_mullo = _mm_mullo_epi16(gray16_0, start_end);
__m128i gray16_1_mullo = _mm_mullo_epi16(gray16_1, start_end);
__m128i gray16_2_mullo = _mm_mullo_epi16(gray16_2, start_end);
__m128i gray16_3_mullo = _mm_mullo_epi16(gray16_3, start_end);
__m128i gray16_0_mulhi = _mm_mulhi_epi16(gray16_0, start_end);
__m128i gray16_1_mulhi = _mm_mulhi_epi16(gray16_1, start_end);
__m128i gray16_2_mulhi = _mm_mulhi_epi16(gray16_2, start_end);
__m128i gray16_3_mulhi = _mm_mulhi_epi16(gray16_3, start_end);
p32_0 = _mm_srli_epi32(_mm_add_epi32(_mm_unpacklo_epi16(gray16_0_mullo, gray16_0_mulhi), _mm_unpackhi_epi16(gray16_0_mullo, gray16_0_mulhi)), 8);
p32_1 = _mm_srli_epi32(_mm_add_epi32(_mm_unpacklo_epi16(gray16_1_mullo, gray16_1_mulhi), _mm_unpackhi_epi16(gray16_1_mullo, gray16_1_mulhi)), 8);
p32_2 = _mm_srli_epi32(_mm_add_epi32(_mm_unpacklo_epi16(gray16_2_mullo, gray16_2_mulhi), _mm_unpackhi_epi16(gray16_2_mullo, gray16_2_mulhi)), 8);
p32_3 = _mm_srli_epi32(_mm_add_epi32(_mm_unpacklo_epi16(gray16_3_mullo, gray16_3_mulhi), _mm_unpackhi_epi16(gray16_3_mullo, gray16_3_mulhi)), 8);
p16_0 = _mm_packs_epi32(p32_0, p32_1);
p16_1 = _mm_packs_epi32(p32_2, p32_3);
p = _mm_packus_epi16(p16_0, p16_1);
_mm_storeu_si128((__m128i*)pixels, p);
pixels += 16;
}
for (int x = sse_length * 4; x < width; x++)
{
int fg_red = pixels[2];
int fg_green = pixels[1];
int fg_blue = pixels[0];
int gray = (fg_red * 77 + fg_green * 143 + fg_blue * 37) >> 8;
gray += (gray >> 7); // gray*=256/255
int inv_gray = 256 - gray;
int red = clamp((start_red * inv_gray + end_red * gray) >> 8, 0, 255);
int green = clamp((start_green * inv_gray + end_green * gray) >> 8, 0, 255);
int blue = clamp((start_blue * inv_gray + end_blue * gray) >> 8, 0, 255);
pixels[0] = (BYTE)blue;
pixels[1] = (BYTE)green;
pixels[2] = (BYTE)red;
pixels[3] = 0xff;
pixels += 4;
}
y += thread->num_cores;
count--;
}
}
#endif
/////////////////////////////////////////////////////////////////////////////
struct TriVertex
{
TriVertex() { }
TriVertex(float x, float y, float z, float w, float u, float v, float light) : x(x), y(y), z(z), w(w) { varying[0] = u; varying[1] = v; varying[2] = light; }
enum { NumVarying = 3 };
float x, y, z, w;
float varying[NumVarying];
};
float gradx(float x0, float y0, float x1, float y1, float x2, float y2, float c0, float c1, float c2)
{
float top = (c1 - c2) * (y0 - y2) - (c0 - c2) * (y1 - y2);
float bottom = (x1 - x2) * (y0 - y2) - (x0 - x2) * (y1 - y2);
return top / bottom;
}
float grady(float x0, float y0, float x1, float y1, float x2, float y2, float c0, float c1, float c2)
{
float top = (c1 - c2) * (x0 - x2) - (c0 - c2) * (x1 - x2);
float bottom = -((x1 - x2) * (y0 - y2) - (x0 - x2) * (y1 - y2));
return top / bottom;
}
void triangle(uint32_t *dest, int pitch, const TriVertex &v1, const TriVertex &v2, const TriVertex &v3)
{
// 28.4 fixed-point coordinates
const int Y1 = (int)round(16.0f * v1.y);
const int Y2 = (int)round(16.0f * v2.y);
const int Y3 = (int)round(16.0f * v3.y);
const int X1 = (int)round(16.0f * v1.x);
const int X2 = (int)round(16.0f * v2.x);
const int X3 = (int)round(16.0f * v3.x);
// Deltas
const int DX12 = X1 - X2;
const int DX23 = X2 - X3;
const int DX31 = X3 - X1;
const int DY12 = Y1 - Y2;
const int DY23 = Y2 - Y3;
const int DY31 = Y3 - Y1;
// Fixed-point deltas
const int FDX12 = DX12 << 4;
const int FDX23 = DX23 << 4;
const int FDX31 = DX31 << 4;
const int FDY12 = DY12 << 4;
const int FDY23 = DY23 << 4;
const int FDY31 = DY31 << 4;
// Bounding rectangle
int minx = MAX((MIN(MIN(X1, X2), X3) + 0xF) >> 4, 0);
int maxx = MIN((MAX(MAX(X1, X2), X3) + 0xF) >> 4, viewwidth);
int miny = MAX((MIN(MIN(Y1, Y2), Y3) + 0xF) >> 4, 0);
int maxy = MIN((MAX(MAX(Y1, Y2), Y3) + 0xF) >> 4, viewheight);
if (minx >= maxx || miny >= maxy)
return;
// Block size, standard 8x8 (must be power of two)
const int q = 8;
// Start in corner of 8x8 block
minx &= ~(q - 1);
miny &= ~(q - 1);
dest += miny * pitch;
// Half-edge constants
int C1 = DY12 * X1 - DX12 * Y1;
int C2 = DY23 * X2 - DX23 * Y2;
int C3 = DY31 * X3 - DX31 * Y3;
// Correct for fill convention
if (DY12 < 0 || (DY12 == 0 && DX12 > 0)) C1++;
if (DY23 < 0 || (DY23 == 0 && DX23 > 0)) C2++;
if (DY31 < 0 || (DY31 == 0 && DX31 > 0)) C3++;
// Gradients
float gradWX = gradx(v1.x, v1.y, v2.x, v2.y, v3.x, v3.y, v1.w, v2.w, v3.w);
float gradWY = grady(v1.x, v1.y, v2.x, v2.y, v3.x, v3.y, v1.w, v2.w, v3.w);
float startW = v1.w + gradWX * (minx - v1.x) + gradWY * (miny - v1.y);
float gradVaryingX[TriVertex::NumVarying], gradVaryingY[TriVertex::NumVarying], startVarying[TriVertex::NumVarying];
for (int i = 0; i < TriVertex::NumVarying; i++)
{
gradVaryingX[i] = gradx(v1.x, v1.y, v2.x, v2.y, v3.x, v3.y, v1.varying[i] * v1.w, v2.varying[i] * v2.w, v3.varying[i] * v3.w);
gradVaryingY[i] = grady(v1.x, v1.y, v2.x, v2.y, v3.x, v3.y, v1.varying[i] * v1.w, v2.varying[i] * v2.w, v3.varying[i] * v3.w);
startVarying[i] = v1.varying[i] * v1.w + gradVaryingX[i] * (minx - v1.x) + gradVaryingY[i] * (miny - v1.y);
}
// Loop through blocks
for (int y = miny; y < maxy; y += q)
{
for (int x = minx; x < maxx; x += q)
{
// Corners of block
int x0 = x << 4;
int x1 = (x + q - 1) << 4;
int y0 = y << 4;
int y1 = (y + q - 1) << 4;
// Evaluate half-space functions
bool a00 = C1 + DX12 * y0 - DY12 * x0 > 0;
bool a10 = C1 + DX12 * y0 - DY12 * x1 > 0;
bool a01 = C1 + DX12 * y1 - DY12 * x0 > 0;
bool a11 = C1 + DX12 * y1 - DY12 * x1 > 0;
int a = (a00 << 0) | (a10 << 1) | (a01 << 2) | (a11 << 3);
bool b00 = C2 + DX23 * y0 - DY23 * x0 > 0;
bool b10 = C2 + DX23 * y0 - DY23 * x1 > 0;
bool b01 = C2 + DX23 * y1 - DY23 * x0 > 0;
bool b11 = C2 + DX23 * y1 - DY23 * x1 > 0;
int b = (b00 << 0) | (b10 << 1) | (b01 << 2) | (b11 << 3);
bool c00 = C3 + DX31 * y0 - DY31 * x0 > 0;
bool c10 = C3 + DX31 * y0 - DY31 * x1 > 0;
bool c01 = C3 + DX31 * y1 - DY31 * x0 > 0;
bool c11 = C3 + DX31 * y1 - DY31 * x1 > 0;
int c = (c00 << 0) | (c10 << 1) | (c01 << 2) | (c11 << 3);
// Skip block when outside an edge
if (a == 0x0 || b == 0x0 || c == 0x0) continue;
// Calculate varying variables for affine block
float offx0 = (x - minx) + 0.5f;
float offy0 = (y - miny) + 0.5f;
float offx1 = offx0 + q;
float offy1 = offy0 + q;
float rcpWTL = 1.0f / (startW + offx0 * gradWX + offy0 * gradWY);
float rcpWTR = 1.0f / (startW + offx1 * gradWX + offy0 * gradWY);
float rcpWBL = 1.0f / (startW + offx0 * gradWX + offy1 * gradWY);
float rcpWBR = 1.0f / (startW + offx1 * gradWX + offy1 * gradWY);
float varyingTL[TriVertex::NumVarying];
float varyingTR[TriVertex::NumVarying];
float varyingBL[TriVertex::NumVarying];
float varyingBR[TriVertex::NumVarying];
for (int i = 0; i < TriVertex::NumVarying; i++)
{
varyingTL[i] = (startVarying[i] + offx0 * gradVaryingX[i] + offy0 * gradVaryingY[i]) * rcpWTL;
varyingTR[i] = (startVarying[i] + offx1 * gradVaryingX[i] + offy0 * gradVaryingY[i]) * rcpWTR;
varyingBL[i] = ((startVarying[i] + offx0 * gradVaryingX[i] + offy1 * gradVaryingY[i]) * rcpWBL - varyingTL[i]) * (1.0f / q);
varyingBR[i] = ((startVarying[i] + offx1 * gradVaryingX[i] + offy1 * gradVaryingY[i]) * rcpWBR - varyingTR[i]) * (1.0f / q);
}
uint32_t *buffer = dest;
// Accept whole block when totally covered
if (a == 0xF && b == 0xF && c == 0xF)
{
for (int iy = 0; iy < q; iy++)
{
float varying[TriVertex::NumVarying], varyingStep[TriVertex::NumVarying];
for (int i = 0; i < TriVertex::NumVarying; i++)
{
varying[i] = varyingTL[i] + varyingBL[i] * iy;
varyingStep[i] = (varyingTR[i] + varyingBR[i] * iy - varying[i]) * (1.0f / q);
}
for (int ix = x; ix < x + q; ix++)
{
uint32_t red = (uint32_t)clamp(varying[0] * 255.0f + 0.5f, 0.0f, 255.0f);
uint32_t green = (uint32_t)clamp(varying[1] * 255.0f + 0.5f, 0.0f, 255.0f);
uint32_t blue = (uint32_t)clamp(varying[2] * 255.0f + 0.5f, 0.0f, 255.0f);
buffer[ix] = 0xff000000 | (red << 16) | (green << 8) | blue;
for (int i = 0; i < TriVertex::NumVarying; i++)
varying[i] += varyingStep[i];
}
buffer += pitch;
}
}
else // Partially covered block
{
int CY1 = C1 + DX12 * y0 - DY12 * x0;
int CY2 = C2 + DX23 * y0 - DY23 * x0;
int CY3 = C3 + DX31 * y0 - DY31 * x0;
for (int iy = 0; iy < q; iy++)
{
int CX1 = CY1;
int CX2 = CY2;
int CX3 = CY3;
float varying[TriVertex::NumVarying], varyingStep[TriVertex::NumVarying];
for (int i = 0; i < TriVertex::NumVarying; i++)
{
varying[i] = varyingTL[i] + varyingBL[i] * iy;
varyingStep[i] = (varyingTR[i] + varyingBR[i] * iy - varying[i]) * (1.0f / q);
}
for (int ix = x; ix < x + q; ix++)
{
if (CX1 > 0 && CX2 > 0 && CX3 > 0)
{
uint32_t red = (uint32_t)clamp(varying[0] * 255.0f + 0.5f, 0.0f, 255.0f);
uint32_t green = (uint32_t)clamp(varying[1] * 255.0f + 0.5f, 0.0f, 255.0f);
uint32_t blue = (uint32_t)clamp(varying[2] * 255.0f + 0.5f, 0.0f, 255.0f);
buffer[ix] = 0xff000000 | (red << 16) | (green << 8) | blue;
}
for (int i = 0; i < TriVertex::NumVarying; i++)
varying[i] += varyingStep[i];
CX1 -= FDY12;
CX2 -= FDY23;
CX3 -= FDY31;
}
CY1 += FDX12;
CY2 += FDX23;
CY3 += FDX31;
buffer += pitch;
}
}
}
dest += q * pitch;
}
}
bool cullhalfspace(float clipdistance1, float clipdistance2, float &t1, float &t2)
{
if (clipdistance1 < 0.0f && clipdistance2 < 0.0f)
return true;
if (clipdistance1 < 0.0f)
t1 = MAX(-clipdistance1 / (clipdistance2 - clipdistance1), t1);
if (clipdistance2 < 0.0f)
t2 = MIN(1.0f - clipdistance2 / (clipdistance1 - clipdistance2), t2);
return false;
}
void clipedge(const TriVertex &v1, const TriVertex &v2, TriVertex *clippedvert, int &numclipvert)
{
// Clip and cull so that the following is true for all vertices:
// -v.w <= v.x <= v.w
// -v.w <= v.y <= v.w
// -v.w <= v.z <= v.w
float t1 = 0.0f, t2 = 1.0f;
bool culled =
cullhalfspace(v1.x + v1.w, v2.x + v2.w, t1, t2) ||
cullhalfspace(v1.w - v1.x, v2.w - v2.x, t1, t2) ||
cullhalfspace(v1.y + v1.w, v2.y + v2.w, t1, t2) ||
cullhalfspace(v1.w - v1.y, v2.w - v2.y, t1, t2) ||
cullhalfspace(v1.z + v1.w, v2.z + v2.w, t1, t2) ||
cullhalfspace(v1.w - v1.z, v2.w - v2.z, t1, t2);
if (culled)
return;
if (t1 == 0.0f)
{
clippedvert[numclipvert++] = v1;
}
else
{
auto &v = clippedvert[numclipvert++];
v.x = v1.x * (1.0f - t1) + v2.x * t1;
v.y = v1.y * (1.0f - t1) + v2.y * t1;
v.z = v1.z * (1.0f - t1) + v2.z * t1;
v.w = v1.w * (1.0f - t1) + v2.w * t1;
for (int i = 0; i < TriVertex::NumVarying; i++)
v.varying[i] = v1.varying[i] * (1.0f - t1) + v2.varying[i] * t1;
}
if (t2 != 1.0f)
{
auto &v = clippedvert[numclipvert++];
v.x = v1.x * (1.0f - t2) + v2.x * t2;
v.y = v1.y * (1.0f - t2) + v2.y * t2;
v.z = v1.z * (1.0f - t2) + v2.z * t2;
v.w = v1.w * (1.0f - t2) + v2.w * t2;
for (int i = 0; i < TriVertex::NumVarying; i++)
v.varying[i] = v1.varying[i] * (1.0f - t2) + v2.varying[i] * t2;
}
}
void R_DrawTriangle()
{
TriVertex cube[6 * 6] =
{
{-1.0f, 1.0f, 1.0f, 1.0f, 0.0f, 0.0f, 0.0f },
{ 1.0f, 1.0f, 1.0f, 1.0f, 0.0f, 0.0f, 0.0f },
{ 1.0f, -1.0f, 1.0f, 1.0f, 0.0f, 0.0f, 0.0f },
{ 1.0f, -1.0f, 1.0f, 1.0f, 0.0f, 0.0f, 0.0f },
{-1.0f, -1.0f, 1.0f, 1.0f, 0.0f, 0.0f, 0.0f },
{-1.0f, 1.0f, 1.0f, 1.0f, 0.0f, 0.0f, 0.0f },
{ 1.0f, -1.0f, -1.0f, 1.0f, 0.0f, 0.0f, 0.0f },
{ 1.0f, 1.0f, -1.0f, 1.0f, 0.0f, 0.0f, 0.0f },
{-1.0f, 1.0f, -1.0f, 1.0f, 0.0f, 0.0f, 0.0f },
{-1.0f, 1.0f, -1.0f, 1.0f, 0.0f, 0.0f, 0.0f },
{-1.0f, -1.0f, -1.0f, 1.0f, 0.0f, 0.0f, 0.0f },
{ 1.0f, -1.0f, -1.0f, 1.0f, 0.0f, 0.0f, 0.0f },
{ 1.0f, 1.0f, -1.0f, 1.0f, 0.0f, 0.0f, 0.0f },
{ 1.0f, 1.0f, 1.0f, 1.0f, 0.0f, 0.0f, 0.0f },
{-1.0f, 1.0f, 1.0f, 1.0f, 0.0f, 0.0f, 0.0f },
{-1.0f, 1.0f, 1.0f, 1.0f, 0.0f, 0.0f, 0.0f },
{-1.0f, 1.0f, -1.0f, 1.0f, 0.0f, 0.0f, 0.0f },
{ 1.0f, 1.0f, -1.0f, 1.0f, 0.0f, 0.0f, 0.0f },
{-1.0f, -1.0f, 1.0f, 1.0f, 0.0f, 0.0f, 0.0f },
{ 1.0f, -1.0f, 1.0f, 1.0f, 0.0f, 0.0f, 0.0f },
{ 1.0f, -1.0f, -1.0f, 1.0f, 0.0f, 0.0f, 0.0f },
{ 1.0f, -1.0f, -1.0f, 1.0f, 0.0f, 0.0f, 0.0f },
{-1.0f, -1.0f, -1.0f, 1.0f, 0.0f, 0.0f, 0.0f },
{-1.0f, -1.0f, 1.0f, 1.0f, 0.0f, 0.0f, 0.0f },
{ 1.0f, -1.0f, 1.0f, 1.0f, 0.0f, 0.0f, 0.0f },
{ 1.0f, 1.0f, 1.0f, 1.0f, 0.0f, 0.0f, 0.0f },
{ 1.0f, 1.0f, -1.0f, 1.0f, 0.0f, 0.0f, 0.0f },
{ 1.0f, 1.0f, -1.0f, 1.0f, 0.0f, 0.0f, 0.0f },
{ 1.0f, -1.0f, -1.0f, 1.0f, 0.0f, 0.0f, 0.0f },
{ 1.0f, -1.0f, 1.0f, 1.0f, 0.0f, 0.0f, 0.0f },
{-1.0f, 1.0f, -1.0f, 1.0f, 0.0f, 0.0f, 0.0f },
{-1.0f, 1.0f, 1.0f, 1.0f, 0.0f, 0.0f, 0.0f },
{-1.0f, -1.0f, 1.0f, 1.0f, 0.0f, 0.0f, 0.0f },
{-1.0f, -1.0f, 1.0f, 1.0f, 0.0f, 0.0f, 0.0f },
{-1.0f, -1.0f, -1.0f, 1.0f, 0.0f, 0.0f, 0.0f },
{-1.0f, 1.0f, -1.0f, 1.0f, 0.0f, 0.0f, 0.0f }
};
for (int i = 0; i < 6; i++)
{
cube[i * 6 + 0].varying[0] = 1.0f;
cube[i * 6 + 1].varying[1] = 1.0f;
cube[i * 6 + 2].varying[2] = 1.0f;
cube[i * 6 + 3].varying[2] = 1.0f;
cube[i * 6 + 4].varying[0] = 1.0f;
cube[i * 6 + 4].varying[1] = 1.0f;
cube[i * 6 + 4].varying[2] = 1.0f;
cube[i * 6 + 5].varying[0] = 1.0f;
}
static float angle = 0.0f;
angle = fmod(angle + 0.5f, 360.0f);
VSMatrix objectToWorld(0);
objectToWorld.translate((float)ViewPos.X, (float)ViewPos.Y + 5.0f, (float)ViewPos.Z);
objectToWorld.rotate(angle, 0.57735f, 0.57735f, 0.57735f);
TriVertex *vinput = cube;
for (int i = 0; i < 6 * 6 / 3; i++)
{
TriVertex vert[3];
// Vertex shader stuff:
for (int j = 0; j < 3; j++)
{
auto &v = vert[j];
v = *(vinput++);
// Apply object to world transform:
const float *matrix = objectToWorld.get();
float vx = matrix[0 * 4 + 0] * v.x + matrix[1 * 4 + 0] * v.y + matrix[2 * 4 + 0] * v.z + matrix[3 * 4 + 0] * v.w;
float vy = matrix[0 * 4 + 1] * v.x + matrix[1 * 4 + 1] * v.y + matrix[2 * 4 + 1] * v.z + matrix[3 * 4 + 1] * v.w;
float vz = matrix[0 * 4 + 2] * v.x + matrix[1 * 4 + 2] * v.y + matrix[2 * 4 + 2] * v.z + matrix[3 * 4 + 2] * v.w;
float vw = matrix[0 * 4 + 3] * v.x + matrix[1 * 4 + 3] * v.y + matrix[2 * 4 + 3] * v.z + matrix[3 * 4 + 3] * v.w;
v.x = vx;
v.y = vy;
v.z = vz;
v.w = vw;
// The software renderer world to clip transform:
double nearp = 5.0f;
double farp = 65536.f;
double tr_x = v.x - ViewPos.X;
double tr_y = v.y - ViewPos.Y;
double tr_z = v.z - ViewPos.Z;
double tx = tr_x * ViewSin - tr_y * ViewCos;
double tz = tr_x * ViewTanCos + tr_y * ViewTanSin;
v.x = (float)tx;
v.y = (float)tr_z;
v.z = (float)(-tz * (farp + nearp) / (nearp - farp) + (2.0f * farp * nearp) / (nearp - farp));
v.w = (float)tz;
}
// Cull, clip and generate additional vertices as needed
TriVertex clippedvert[6];
int numclipvert = 0;
clipedge(vert[0], vert[1], clippedvert, numclipvert);
clipedge(vert[1], vert[2], clippedvert, numclipvert);
clipedge(vert[2], vert[0], clippedvert, numclipvert);
// Map to 2D viewport:
for (int j = 0; j < numclipvert; j++)
{
auto &v = clippedvert[j];
// Calculate normalized device coordinates:
v.w = 1.0f / v.w;
v.x *= v.w;
v.y *= v.w;
v.z *= v.w;
// Apply viewport scale to get screen coordinates:
v.x = (float)(CenterX + v.x * CenterX);
v.y = (float)(CenterY - v.y * InvZtoScale);
}
for (int i = numclipvert; i > 1; i--)
{
triangle((uint32_t*)dc_destorg, dc_pitch, clippedvert[numclipvert - 1], clippedvert[i - 1], clippedvert[i - 2]);
}
}
}
/////////////////////////////////////////////////////////////////////////////
void R_DrawSingleSkyCol1(uint32_t solid_top, uint32_t solid_bottom)
{
DrawerCommandQueue::QueueCommand<DrawSingleSky1LLVMCommand>(solid_top, solid_bottom);
}
void R_DrawSingleSkyCol4(uint32_t solid_top, uint32_t solid_bottom)
{
DrawerCommandQueue::QueueCommand<DrawSingleSky4LLVMCommand>(solid_top, solid_bottom);
}
void R_DrawDoubleSkyCol1(uint32_t solid_top, uint32_t solid_bottom)
{
DrawerCommandQueue::QueueCommand<DrawDoubleSky1LLVMCommand>(solid_top, solid_bottom);
}
void R_DrawDoubleSkyCol4(uint32_t solid_top, uint32_t solid_bottom)
{
DrawerCommandQueue::QueueCommand<DrawDoubleSky4LLVMCommand>(solid_top, solid_bottom);
}
void R_DrawColumn_rgba()
{
DrawerCommandQueue::QueueCommand<DrawColumnLLVMCommand>();
}
void R_FillColumn_rgba()
{
DrawerCommandQueue::QueueCommand<FillColumnLLVMCommand>();
}
void R_FillAddColumn_rgba()
{
DrawerCommandQueue::QueueCommand<FillColumnAddLLVMCommand>();
}
void R_FillAddClampColumn_rgba()
{
DrawerCommandQueue::QueueCommand<FillColumnAddClampLLVMCommand>();
}
void R_FillSubClampColumn_rgba()
{
DrawerCommandQueue::QueueCommand<FillColumnSubClampLLVMCommand>();
}
void R_FillRevSubClampColumn_rgba()
{
DrawerCommandQueue::QueueCommand<FillColumnRevSubClampLLVMCommand>();
}
void R_DrawFuzzColumn_rgba()
{
DrawerCommandQueue::QueueCommand<DrawFuzzColumnRGBACommand>();
dc_yl = MAX(dc_yl, 1);
dc_yh = MIN(dc_yh, fuzzviewheight);
if (dc_yl <= dc_yh)
fuzzpos = (fuzzpos + dc_yh - dc_yl + 1) % FUZZTABLE;
}
void R_DrawAddColumn_rgba()
{
DrawerCommandQueue::QueueCommand<DrawColumnAddLLVMCommand>();
}
void R_DrawTranslatedColumn_rgba()
{
DrawerCommandQueue::QueueCommand<DrawColumnTranslatedLLVMCommand>();
}
void R_DrawTlatedAddColumn_rgba()
{
DrawerCommandQueue::QueueCommand<DrawColumnTlatedAddLLVMCommand>();
}
void R_DrawShadedColumn_rgba()
{
DrawerCommandQueue::QueueCommand<DrawColumnShadedLLVMCommand>();
}
void R_DrawAddClampColumn_rgba()
{
DrawerCommandQueue::QueueCommand<DrawColumnAddClampLLVMCommand>();
}
void R_DrawAddClampTranslatedColumn_rgba()
{
DrawerCommandQueue::QueueCommand<DrawColumnAddClampTranslatedLLVMCommand>();
}
void R_DrawSubClampColumn_rgba()
{
DrawerCommandQueue::QueueCommand<DrawColumnSubClampLLVMCommand>();
}
void R_DrawSubClampTranslatedColumn_rgba()
{
DrawerCommandQueue::QueueCommand<DrawColumnSubClampTranslatedLLVMCommand>();
}
void R_DrawRevSubClampColumn_rgba()
{
DrawerCommandQueue::QueueCommand<DrawColumnRevSubClampLLVMCommand>();
}
void R_DrawRevSubClampTranslatedColumn_rgba()
{
DrawerCommandQueue::QueueCommand<DrawColumnRevSubClampTranslatedLLVMCommand>();
}
void R_DrawSpan_rgba()
{
DrawerCommandQueue::QueueCommand<DrawSpanLLVMCommand>();
}
void R_DrawSpanMasked_rgba()
{
DrawerCommandQueue::QueueCommand<DrawSpanMaskedLLVMCommand>();
}
void R_DrawSpanTranslucent_rgba()
{
DrawerCommandQueue::QueueCommand<DrawSpanTranslucentLLVMCommand>();
}
void R_DrawSpanMaskedTranslucent_rgba()
{
DrawerCommandQueue::QueueCommand<DrawSpanMaskedTranslucentLLVMCommand>();
}
void R_DrawSpanAddClamp_rgba()
{
DrawerCommandQueue::QueueCommand<DrawSpanAddClampLLVMCommand>();
}
void R_DrawSpanMaskedAddClamp_rgba()
{
DrawerCommandQueue::QueueCommand<DrawSpanMaskedAddClampLLVMCommand>();
}
void R_FillSpan_rgba()
{
DrawerCommandQueue::QueueCommand<FillSpanRGBACommand>();
}
void R_DrawTiltedSpan_rgba(int y, int x1, int x2, const FVector3 &plane_sz, const FVector3 &plane_su, const FVector3 &plane_sv, bool plane_shade, int planeshade, float planelightfloat, fixed_t pviewx, fixed_t pviewy)
{
DrawerCommandQueue::QueueCommand<DrawTiltedSpanRGBACommand>(y, x1, x2, plane_sz, plane_su, plane_sv, plane_shade, planeshade, planelightfloat, pviewx, pviewy);
}
void R_DrawColoredSpan_rgba(int y, int x1, int x2)
{
DrawerCommandQueue::QueueCommand<DrawColoredSpanRGBACommand>(y, x1, x2);
}
static ShadeConstants slab_rgba_shade_constants;
static const BYTE *slab_rgba_colormap;
static fixed_t slab_rgba_light;
void R_SetupDrawSlab_rgba(FSWColormap *base_colormap, float light, int shade)
{
slab_rgba_shade_constants.light_red = base_colormap->Color.r * 256 / 255;
slab_rgba_shade_constants.light_green = base_colormap->Color.g * 256 / 255;
slab_rgba_shade_constants.light_blue = base_colormap->Color.b * 256 / 255;
slab_rgba_shade_constants.light_alpha = base_colormap->Color.a * 256 / 255;
slab_rgba_shade_constants.fade_red = base_colormap->Fade.r;
slab_rgba_shade_constants.fade_green = base_colormap->Fade.g;
slab_rgba_shade_constants.fade_blue = base_colormap->Fade.b;
slab_rgba_shade_constants.fade_alpha = base_colormap->Fade.a;
slab_rgba_shade_constants.desaturate = MIN(abs(base_colormap->Desaturate), 255) * 255 / 256;
slab_rgba_shade_constants.simple_shade = (base_colormap->Color.d == 0x00ffffff && base_colormap->Fade.d == 0x00000000 && base_colormap->Desaturate == 0);
slab_rgba_colormap = base_colormap->Maps;
slab_rgba_light = LIGHTSCALE(light, shade);
}
void R_DrawSlab_rgba(int dx, fixed_t v, int dy, fixed_t vi, const BYTE *vptr, BYTE *p)
{
DrawerCommandQueue::QueueCommand<DrawSlabRGBACommand>(dx, v, dy, vi, vptr, p, slab_rgba_shade_constants, slab_rgba_colormap, slab_rgba_light);
}
DWORD vlinec1_rgba()
{
DrawerCommandQueue::QueueCommand<DrawWall1LLVMCommand>();
return dc_texturefrac + dc_count * dc_iscale;
}
void vlinec4_rgba()
{
DrawerCommandQueue::QueueCommand<DrawWall4LLVMCommand>();
for (int i = 0; i < 4; i++)
vplce[i] += vince[i] * dc_count;
}
DWORD mvlinec1_rgba()
{
DrawerCommandQueue::QueueCommand<DrawWallMasked1LLVMCommand>();
return dc_texturefrac + dc_count * dc_iscale;
}
void mvlinec4_rgba()
{
DrawerCommandQueue::QueueCommand<DrawWallMasked4LLVMCommand>();
for (int i = 0; i < 4; i++)
vplce[i] += vince[i] * dc_count;
}
fixed_t tmvline1_add_rgba()
{
DrawerCommandQueue::QueueCommand<DrawWallAdd1LLVMCommand>();
return dc_texturefrac + dc_count * dc_iscale;
}
void tmvline4_add_rgba()
{
DrawerCommandQueue::QueueCommand<DrawWallAdd4LLVMCommand>();
for (int i = 0; i < 4; i++)
vplce[i] += vince[i] * dc_count;
}
fixed_t tmvline1_addclamp_rgba()
{
DrawerCommandQueue::QueueCommand<DrawWallAddClamp1LLVMCommand>();
return dc_texturefrac + dc_count * dc_iscale;
}
void tmvline4_addclamp_rgba()
{
DrawerCommandQueue::QueueCommand<DrawWallAddClamp4LLVMCommand>();
for (int i = 0; i < 4; i++)
vplce[i] += vince[i] * dc_count;
}
fixed_t tmvline1_subclamp_rgba()
{
DrawerCommandQueue::QueueCommand<DrawWallSubClamp1LLVMCommand>();
return dc_texturefrac + dc_count * dc_iscale;
}
void tmvline4_subclamp_rgba()
{
DrawerCommandQueue::QueueCommand<DrawWallSubClamp4LLVMCommand>();
for (int i = 0; i < 4; i++)
vplce[i] += vince[i] * dc_count;
}
fixed_t tmvline1_revsubclamp_rgba()
{
DrawerCommandQueue::QueueCommand<DrawWallRevSubClamp1LLVMCommand>();
return dc_texturefrac + dc_count * dc_iscale;
}
void tmvline4_revsubclamp_rgba()
{
DrawerCommandQueue::QueueCommand<DrawWallRevSubClamp4LLVMCommand>();
for (int i = 0; i < 4; i++)
vplce[i] += vince[i] * dc_count;
}
void R_DrawFogBoundarySection_rgba(int y, int y2, int x1)
{
for (; y < y2; ++y)
{
int x2 = spanend[y];
DrawerCommandQueue::QueueCommand<DrawFogBoundaryLineRGBACommand>(y, x1, x2);
}
}
void R_DrawFogBoundary_rgba(int x1, int x2, short *uclip, short *dclip)
{
// To do: we do not need to create new spans when using rgba output - instead we should calculate light on a per pixel basis
// This is essentially the same as R_MapVisPlane but with an extra step
// to create new horizontal spans whenever the light changes enough that
// we need to use a new colormap.
double lightstep = rw_lightstep;
double light = rw_light + rw_lightstep*(x2 - x1 - 1);
int x = x2 - 1;
int t2 = uclip[x];
int b2 = dclip[x];
int rcolormap = GETPALOOKUP(light, wallshade);
int lcolormap;
BYTE *basecolormapdata = basecolormap->Maps;
if (b2 > t2)
{
clearbufshort(spanend + t2, b2 - t2, x);
}
R_SetColorMapLight(basecolormap, (float)light, wallshade);
BYTE *fake_dc_colormap = basecolormap->Maps + (GETPALOOKUP(light, wallshade) << COLORMAPSHIFT);
for (--x; x >= x1; --x)
{
int t1 = uclip[x];
int b1 = dclip[x];
const int xr = x + 1;
int stop;
light -= rw_lightstep;
lcolormap = GETPALOOKUP(light, wallshade);
if (lcolormap != rcolormap)
{
if (t2 < b2 && rcolormap != 0)
{ // Colormap 0 is always the identity map, so rendering it is
// just a waste of time.
R_DrawFogBoundarySection_rgba(t2, b2, xr);
}
if (t1 < t2) t2 = t1;
if (b1 > b2) b2 = b1;
if (t2 < b2)
{
clearbufshort(spanend + t2, b2 - t2, x);
}
rcolormap = lcolormap;
R_SetColorMapLight(basecolormap, (float)light, wallshade);
fake_dc_colormap = basecolormap->Maps + (GETPALOOKUP(light, wallshade) << COLORMAPSHIFT);
}
else
{
if (fake_dc_colormap != basecolormapdata)
{
stop = MIN(t1, b2);
while (t2 < stop)
{
int y = t2++;
DrawerCommandQueue::QueueCommand<DrawFogBoundaryLineRGBACommand>(y, xr, spanend[y]);
}
stop = MAX(b1, t2);
while (b2 > stop)
{
int y = --b2;
DrawerCommandQueue::QueueCommand<DrawFogBoundaryLineRGBACommand>(y, xr, spanend[y]);
}
}
else
{
t2 = MAX(t2, MIN(t1, b2));
b2 = MIN(b2, MAX(b1, t2));
}
stop = MIN(t2, b1);
while (t1 < stop)
{
spanend[t1++] = x;
}
stop = MAX(b2, t2);
while (b1 > stop)
{
spanend[--b1] = x;
}
}
t2 = uclip[x];
b2 = dclip[x];
}
if (t2 < b2 && rcolormap != 0)
{
R_DrawFogBoundarySection_rgba(t2, b2, x1);
}
}