qzdoom/src/scripting/vm/jit_call.cpp
2018-10-09 05:18:44 +02:00

431 lines
13 KiB
C++

#include "jitintern.h"
void JitCompiler::EmitPARAM()
{
using namespace asmjit;
int index = NumParam++;
ParamOpcodes.Push(pc);
X86Gp stackPtr, tmp;
X86Xmm tmp2;
switch (B)
{
case REGT_NIL:
cc.mov(x86::ptr(params, index * sizeof(VMValue) + offsetof(VMValue, a)), (int64_t)0);
cc.mov(x86::byte_ptr(params, index * sizeof(VMValue) + offsetof(VMValue, Type)), (int)REGT_NIL);
break;
case REGT_INT:
cc.mov(x86::dword_ptr(params, index * sizeof(VMValue) + offsetof(VMValue, i)), regD[C]);
cc.mov(x86::byte_ptr(params, index * sizeof(VMValue) + offsetof(VMValue, Type)), (int)REGT_INT);
break;
case REGT_INT | REGT_ADDROF:
stackPtr = newTempIntPtr();
cc.mov(stackPtr, frameD);
cc.add(stackPtr, (int)(C * sizeof(int32_t)));
cc.mov(x86::ptr(params, index * sizeof(VMValue) + offsetof(VMValue, a)), stackPtr);
cc.mov(x86::byte_ptr(params, index * sizeof(VMValue) + offsetof(VMValue, Type)), (int)REGT_POINTER);
break;
case REGT_INT | REGT_KONST:
cc.mov(x86::dword_ptr(params, index * sizeof(VMValue) + offsetof(VMValue, i)), konstd[C]);
cc.mov(x86::byte_ptr(params, index * sizeof(VMValue) + offsetof(VMValue, Type)), (int)REGT_INT);
break;
case REGT_STRING:
cc.mov(x86::ptr(params, index * sizeof(VMValue) + offsetof(VMValue, sp)), regS[C]);
cc.mov(x86::byte_ptr(params, index * sizeof(VMValue) + offsetof(VMValue, Type)), (int)REGT_STRING);
break;
case REGT_STRING | REGT_ADDROF:
cc.mov(x86::ptr(params, index * sizeof(VMValue) + offsetof(VMValue, a)), regS[C]);
cc.mov(x86::byte_ptr(params, index * sizeof(VMValue) + offsetof(VMValue, Type)), (int)REGT_POINTER);
break;
case REGT_STRING | REGT_KONST:
tmp = newTempIntPtr();
cc.mov(tmp, asmjit::imm_ptr(&konsts[C]));
cc.mov(x86::ptr(params, index * sizeof(VMValue) + offsetof(VMValue, sp)), tmp);
cc.mov(x86::byte_ptr(params, index * sizeof(VMValue) + offsetof(VMValue, Type)), (int)REGT_STRING);
break;
case REGT_POINTER:
cc.mov(x86::ptr(params, index * sizeof(VMValue) + offsetof(VMValue, a)), regA[C]);
cc.mov(x86::byte_ptr(params, index * sizeof(VMValue) + offsetof(VMValue, Type)), (int)REGT_POINTER);
break;
case REGT_POINTER | REGT_ADDROF:
stackPtr = newTempIntPtr();
cc.mov(stackPtr, frameA);
cc.add(stackPtr, (int)(C * sizeof(void*)));
cc.mov(x86::ptr(params, index * sizeof(VMValue) + offsetof(VMValue, a)), stackPtr);
cc.mov(x86::byte_ptr(params, index * sizeof(VMValue) + offsetof(VMValue, Type)), (int)REGT_POINTER);
break;
case REGT_POINTER | REGT_KONST:
tmp = newTempIntPtr();
cc.mov(tmp, asmjit::imm_ptr(konsta[C].v));
cc.mov(x86::ptr(params, index * sizeof(VMValue) + offsetof(VMValue, a)), tmp);
cc.mov(x86::byte_ptr(params, index * sizeof(VMValue) + offsetof(VMValue, Type)), (int)REGT_POINTER);
break;
case REGT_FLOAT:
cc.movsd(x86::qword_ptr(params, index * sizeof(VMValue) + offsetof(VMValue, f)), regF[C]);
cc.mov(x86::byte_ptr(params, index * sizeof(VMValue) + offsetof(VMValue, Type)), (int)REGT_FLOAT);
break;
case REGT_FLOAT | REGT_MULTIREG2:
cc.movsd(x86::qword_ptr(params, index * sizeof(VMValue) + offsetof(VMValue, f)), regF[C]);
cc.mov(x86::byte_ptr(params, index * sizeof(VMValue) + offsetof(VMValue, Type)), (int)REGT_FLOAT);
index = NumParam++;
ParamOpcodes.Push(pc);
cc.movsd(x86::qword_ptr(params, index * sizeof(VMValue) + offsetof(VMValue, f)), regF[C + 1]);
cc.mov(x86::byte_ptr(params, index * sizeof(VMValue) + offsetof(VMValue, Type)), (int)REGT_FLOAT);
break;
case REGT_FLOAT | REGT_MULTIREG3:
cc.movsd(x86::qword_ptr(params, index * sizeof(VMValue) + offsetof(VMValue, f)), regF[C]);
cc.mov(x86::byte_ptr(params, index * sizeof(VMValue) + offsetof(VMValue, Type)), (int)REGT_FLOAT);
index = NumParam++;
ParamOpcodes.Push(pc);
cc.movsd(x86::qword_ptr(params, index * sizeof(VMValue) + offsetof(VMValue, f)), regF[C + 1]);
cc.mov(x86::byte_ptr(params, index * sizeof(VMValue) + offsetof(VMValue, Type)), (int)REGT_FLOAT);
index = NumParam++;
ParamOpcodes.Push(pc);
cc.movsd(x86::qword_ptr(params, index * sizeof(VMValue) + offsetof(VMValue, f)), regF[C + 2]);
cc.mov(x86::byte_ptr(params, index * sizeof(VMValue) + offsetof(VMValue, Type)), (int)REGT_FLOAT);
break;
case REGT_FLOAT | REGT_ADDROF:
stackPtr = newTempIntPtr();
cc.mov(stackPtr, frameF);
cc.add(stackPtr, (int)(C * sizeof(double)));
cc.mov(x86::ptr(params, index * sizeof(VMValue) + offsetof(VMValue, a)), stackPtr);
cc.mov(x86::byte_ptr(params, index * sizeof(VMValue) + offsetof(VMValue, Type)), (int)REGT_POINTER);
break;
case REGT_FLOAT | REGT_KONST:
tmp = newTempIntPtr();
tmp2 = newTempXmmSd();
cc.mov(tmp, asmjit::imm_ptr(konstf + C));
cc.movsd(tmp2, asmjit::x86::qword_ptr(tmp));
cc.movsd(x86::qword_ptr(params, index * sizeof(VMValue) + offsetof(VMValue, f)), tmp2);
cc.mov(x86::byte_ptr(params, index * sizeof(VMValue) + offsetof(VMValue, Type)), (int)REGT_FLOAT);
break;
default:
I_FatalError("Unknown REGT value passed to EmitPARAM\n");
break;
}
}
void JitCompiler::EmitPARAMI()
{
int index = NumParam++;
ParamOpcodes.Push(pc);
cc.mov(asmjit::x86::dword_ptr(params, index * sizeof(VMValue) + offsetof(VMValue, i)), (int)ABCs);
cc.mov(asmjit::x86::byte_ptr(params, index * sizeof(VMValue) + offsetof(VMValue, Type)), (int)REGT_INT);
}
void JitCompiler::EmitRESULT()
{
// This instruction is just a placeholder to indicate where a return
// value should be stored. It does nothing on its own and should not
// be executed.
}
void JitCompiler::EmitCALL()
{
EmitDoCall(regA[A]);
}
void JitCompiler::EmitCALL_K()
{
auto ptr = newTempIntPtr();
cc.mov(ptr, asmjit::imm_ptr(konsta[A].o));
EmitDoCall(ptr);
}
void JitCompiler::EmitTAIL()
{
EmitDoTail(regA[A]);
}
void JitCompiler::EmitTAIL_K()
{
auto ptr = newTempIntPtr();
cc.mov(ptr, asmjit::imm_ptr(konsta[A].o));
EmitDoTail(ptr);
}
void JitCompiler::EmitDoCall(asmjit::X86Gp ptr)
{
using namespace asmjit;
if (NumParam < B)
I_FatalError("OP_CALL parameter count does not match the number of preceding OP_PARAM instructions");
StoreInOuts(B);
FillReturns(pc + 1, C);
X86Gp paramsptr;
if (B != NumParam)
{
paramsptr = newTempIntPtr();
cc.lea(paramsptr, x86::ptr(params, (int)((NumParam - B) * sizeof(VMValue))));
}
else
{
paramsptr = params;
}
auto result = newResultInt32();
auto call = CreateCall<int, VMFunction*, int, int, VMValue*, VMReturn*, JitExceptionInfo*>(&JitCompiler::DoCall);
call->setRet(0, result);
call->setArg(0, ptr);
call->setArg(1, Imm(B));
call->setArg(2, Imm(C));
call->setArg(3, paramsptr);
call->setArg(4, callReturns);
call->setArg(5, exceptInfo);
EmitCheckForException();
LoadInOuts(B);
LoadReturns(pc + 1, C);
NumParam -= B;
ParamOpcodes.Resize(ParamOpcodes.Size() - B);
}
void JitCompiler::EmitDoTail(asmjit::X86Gp ptr)
{
// Whereas the CALL instruction uses its third operand to specify how many return values
// it expects, TAIL ignores its third operand and uses whatever was passed to this Exec call.
// Note: this is not a true tail call, but then again, it isn't in the vmexec implementation either..
using namespace asmjit;
if (NumParam < B)
I_FatalError("OP_TAIL parameter count does not match the number of preceding OP_PARAM instructions");
StoreInOuts(B); // Is REGT_ADDROF even allowed for (true) tail calls?
X86Gp paramsptr;
if (B != NumParam)
{
paramsptr = newTempIntPtr();
cc.lea(paramsptr, x86::ptr(params, (int)((NumParam - B) * sizeof(VMValue))));
}
else
{
paramsptr = params;
}
auto result = newResultInt32();
auto call = CreateCall<int, VMFunction*, int, int, VMValue*, VMReturn*, JitExceptionInfo*>(&JitCompiler::DoCall);
call->setRet(0, result);
call->setArg(0, ptr);
call->setArg(1, Imm(B));
call->setArg(2, numret);
call->setArg(3, paramsptr);
call->setArg(4, ret);
call->setArg(5, exceptInfo);
EmitPopFrame();
cc.ret(result);
NumParam -= B;
ParamOpcodes.Resize(ParamOpcodes.Size() - B);
}
void JitCompiler::StoreInOuts(int b)
{
using namespace asmjit;
for (unsigned int i = ParamOpcodes.Size() - b; i < ParamOpcodes.Size(); i++)
{
asmjit::X86Gp stackPtr;
auto c = ParamOpcodes[i]->c;
switch (ParamOpcodes[i]->b)
{
case REGT_INT | REGT_ADDROF:
stackPtr = newTempIntPtr();
cc.mov(stackPtr, frameD);
cc.add(stackPtr, (int)(c * sizeof(int32_t)));
cc.mov(x86::dword_ptr(stackPtr), regD[c]);
break;
case REGT_STRING | REGT_ADDROF:
// We don't have to do anything in this case. String values are never moved to virtual registers.
break;
case REGT_POINTER | REGT_ADDROF:
stackPtr = newTempIntPtr();
cc.mov(stackPtr, frameA);
cc.add(stackPtr, (int)(c * sizeof(void*)));
cc.mov(x86::ptr(stackPtr), regA[c]);
break;
case REGT_FLOAT | REGT_ADDROF:
stackPtr = newTempIntPtr();
cc.mov(stackPtr, frameF);
cc.add(stackPtr, (int)(c * sizeof(double)));
cc.movsd(x86::qword_ptr(stackPtr), regF[c]);
// When passing the address to a float we don't know if the receiving function will treat it as float, vec2 or vec3.
if ((unsigned int)c + 1 < regF.Size())
{
cc.add(stackPtr, (int)sizeof(double));
cc.movsd(x86::qword_ptr(stackPtr), regF[c + 1]);
}
if ((unsigned int)c + 2 < regF.Size())
{
cc.add(stackPtr, (int)sizeof(double));
cc.movsd(x86::qword_ptr(stackPtr), regF[c + 2]);
}
break;
default:
break;
}
}
}
void JitCompiler::LoadInOuts(int b)
{
for (unsigned int i = ParamOpcodes.Size() - b; i < ParamOpcodes.Size(); i++)
{
const VMOP &param = *ParamOpcodes[i];
if (param.op == OP_PARAM && (param.b & REGT_ADDROF))
{
LoadCallResult(param, true);
}
}
}
void JitCompiler::LoadReturns(const VMOP *retval, int numret)
{
for (int i = 0; i < numret; ++i)
{
if (retval[i].op != OP_RESULT)
I_FatalError("Expected OP_RESULT to follow OP_CALL\n");
LoadCallResult(retval[i], false);
}
}
void JitCompiler::LoadCallResult(const VMOP &opdata, bool addrof)
{
int type = opdata.b;
int regnum = opdata.c;
switch (type & REGT_TYPE)
{
case REGT_INT:
cc.mov(regD[regnum], asmjit::x86::dword_ptr(frameD, regnum * sizeof(int32_t)));
break;
case REGT_FLOAT:
cc.movsd(regF[regnum], asmjit::x86::qword_ptr(frameF, regnum * sizeof(double)));
if (addrof)
{
// When passing the address to a float we don't know if the receiving function will treat it as float, vec2 or vec3.
if ((unsigned int)regnum + 1 < regF.Size())
cc.movsd(regF[regnum + 1], asmjit::x86::qword_ptr(frameF, (regnum + 1) * sizeof(double)));
if ((unsigned int)regnum + 2 < regF.Size())
cc.movsd(regF[regnum + 2], asmjit::x86::qword_ptr(frameF, (regnum + 2) * sizeof(double)));
}
else if (type & REGT_MULTIREG2)
{
cc.movsd(regF[regnum + 1], asmjit::x86::qword_ptr(frameF, (regnum + 1) * sizeof(double)));
}
else if (type & REGT_MULTIREG3)
{
cc.movsd(regF[regnum + 1], asmjit::x86::qword_ptr(frameF, (regnum + 1) * sizeof(double)));
cc.movsd(regF[regnum + 2], asmjit::x86::qword_ptr(frameF, (regnum + 2) * sizeof(double)));
}
break;
case REGT_STRING:
// We don't have to do anything in this case. String values are never moved to virtual registers.
break;
case REGT_POINTER:
cc.mov(regA[regnum], asmjit::x86::ptr(frameA, regnum * sizeof(void*)));
break;
default:
I_FatalError("Unknown OP_RESULT/OP_PARAM type encountered in LoadCallResult\n");
break;
}
}
void JitCompiler::FillReturns(const VMOP *retval, int numret)
{
using namespace asmjit;
for (int i = 0; i < numret; ++i)
{
if (retval[i].op != OP_RESULT)
{
I_FatalError("Expected OP_RESULT to follow OP_CALL\n");
}
int type = retval[i].b;
int regnum = retval[i].c;
if (type & REGT_KONST)
{
I_FatalError("OP_RESULT with REGT_KONST is not allowed\n");
}
auto regPtr = newTempIntPtr();
switch (type & REGT_TYPE)
{
case REGT_INT:
cc.mov(regPtr, frameD);
cc.add(regPtr, (int)(regnum * sizeof(int32_t)));
break;
case REGT_FLOAT:
cc.mov(regPtr, frameF);
cc.add(regPtr, (int)(regnum * sizeof(double)));
break;
case REGT_STRING:
cc.mov(regPtr, frameS);
cc.add(regPtr, (int)(regnum * sizeof(FString)));
break;
case REGT_POINTER:
cc.mov(regPtr, frameA);
cc.add(regPtr, (int)(regnum * sizeof(void*)));
break;
default:
I_FatalError("Unknown OP_RESULT type encountered in FillReturns\n");
break;
}
cc.mov(x86::ptr(callReturns, i * sizeof(VMReturn) + offsetof(VMReturn, Location)), regPtr);
cc.mov(x86::byte_ptr(callReturns, i * sizeof(VMReturn) + offsetof(VMReturn, RegType)), type);
}
}
int JitCompiler::DoCall(VMFunction *call, int b, int c, VMValue *param, VMReturn *returns, JitExceptionInfo *exceptinfo)
{
try
{
int numret;
if (call->VarFlags & VARF_Native)
{
try
{
VMCycles[0].Unclock();
numret = static_cast<VMNativeFunction *>(call)->NativeCall(param, call->DefaultArgs, b, returns, c);
VMCycles[0].Clock();
}
catch (CVMAbortException &err)
{
err.MaybePrintMessage();
err.stacktrace.AppendFormat("Called from %s\n", call->PrintableName.GetChars());
throw;
}
}
else
{
VMCalls[0]++;
auto sfunc = static_cast<VMScriptFunction *>(call);
numret = sfunc->ScriptCall(sfunc, param, b, returns, c);
}
return numret;
}
catch (...)
{
exceptinfo->reason = X_OTHER;
exceptinfo->cppException = std::current_exception();
return 0;
}
}