qzdoom/src/swrenderer/plane/r_flatplane.cpp
2017-01-26 09:49:07 +01:00

375 lines
9.6 KiB
C++

//
// Copyright (C) 1993-1996 by id Software, Inc.
//
// This source is available for distribution and/or modification
// only under the terms of the DOOM Source Code License as
// published by id Software. All rights reserved.
//
// The source is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// FITNESS FOR A PARTICULAR PURPOSE. See the DOOM Source Code License
// for more details.
//
#include <stdlib.h>
#include <float.h>
#include "templates.h"
#include "i_system.h"
#include "w_wad.h"
#include "doomdef.h"
#include "doomstat.h"
#include "r_sky.h"
#include "stats.h"
#include "v_video.h"
#include "a_sharedglobal.h"
#include "c_console.h"
#include "cmdlib.h"
#include "d_net.h"
#include "g_level.h"
#include "swrenderer/scene/r_opaque_pass.h"
#include "r_flatplane.h"
#include "swrenderer/scene/r_3dfloors.h"
#include "v_palette.h"
#include "r_data/colormaps.h"
#include "swrenderer/drawers/r_draw_rgba.h"
#include "gl/dynlights/gl_dynlight.h"
#include "swrenderer/segments/r_clipsegment.h"
#include "swrenderer/segments/r_drawsegment.h"
#include "swrenderer/scene/r_portal.h"
#include "swrenderer/scene/r_scene.h"
#include "swrenderer/scene/r_viewport.h"
#include "swrenderer/scene/r_light.h"
#include "swrenderer/plane/r_visibleplane.h"
#include "swrenderer/r_memory.h"
namespace swrenderer
{
void RenderFlatPlane::Render(VisiblePlane *pl, double _xscale, double _yscale, fixed_t alpha, bool additive, bool masked, FDynamicColormap *colormap)
{
using namespace drawerargs;
if (alpha <= 0)
{
return;
}
double planeang = (pl->xform.Angle + pl->xform.baseAngle).Radians();
double xstep, ystep, leftxfrac, leftyfrac, rightxfrac, rightyfrac;
double x;
xscale = xs_ToFixed(32 - ds_xbits, _xscale);
yscale = xs_ToFixed(32 - ds_ybits, _yscale);
if (planeang != 0)
{
double cosine = cos(planeang), sine = sin(planeang);
pviewx = FLOAT2FIXED(pl->xform.xOffs + ViewPos.X * cosine - ViewPos.Y * sine);
pviewy = FLOAT2FIXED(pl->xform.yOffs - ViewPos.X * sine - ViewPos.Y * cosine);
}
else
{
pviewx = FLOAT2FIXED(pl->xform.xOffs + ViewPos.X);
pviewy = FLOAT2FIXED(pl->xform.yOffs - ViewPos.Y);
}
pviewx = FixedMul(xscale, pviewx);
pviewy = FixedMul(yscale, pviewy);
// left to right mapping
planeang += (ViewAngle - 90).Radians();
// Scale will be unit scale at FocalLengthX (normally SCREENWIDTH/2) distance
xstep = cos(planeang) / FocalLengthX;
ystep = -sin(planeang) / FocalLengthX;
// [RH] flip for mirrors
RenderPortal *renderportal = RenderPortal::Instance();
if (renderportal->MirrorFlags & RF_XFLIP)
{
xstep = -xstep;
ystep = -ystep;
}
planeang += M_PI / 2;
double cosine = cos(planeang), sine = -sin(planeang);
x = pl->right - centerx - 0.5;
rightxfrac = _xscale * (cosine + x * xstep);
rightyfrac = _yscale * (sine + x * ystep);
x = pl->left - centerx - 0.5;
leftxfrac = _xscale * (cosine + x * xstep);
leftyfrac = _yscale * (sine + x * ystep);
basexfrac = rightxfrac;
baseyfrac = rightyfrac;
xstepscale = (rightxfrac - leftxfrac) / (pl->right - pl->left);
ystepscale = (rightyfrac - leftyfrac) / (pl->right - pl->left);
planeheight = fabs(pl->height.Zat0() - ViewPos.Z);
basecolormap = colormap;
GlobVis = LightVisibility::Instance()->FlatPlaneGlobVis() / planeheight;
ds_light = 0;
if (fixedlightlev >= 0)
{
R_SetDSColorMapLight(basecolormap, 0, FIXEDLIGHT2SHADE(fixedlightlev));
plane_shade = false;
}
else if (fixedcolormap)
{
R_SetDSColorMapLight(fixedcolormap, 0, 0);
plane_shade = false;
}
else
{
plane_shade = true;
planeshade = LIGHT2SHADE(pl->lightlevel);
}
if (spanfunc != &SWPixelFormatDrawers::FillSpan)
{
if (masked)
{
if (alpha < OPAQUE || additive)
{
if (!additive)
{
spanfunc = &SWPixelFormatDrawers::DrawSpanMaskedTranslucent;
dc_srcblend = Col2RGB8[alpha >> 10];
dc_destblend = Col2RGB8[(OPAQUE - alpha) >> 10];
dc_srcalpha = alpha;
dc_destalpha = OPAQUE - alpha;
}
else
{
spanfunc = &SWPixelFormatDrawers::DrawSpanMaskedAddClamp;
dc_srcblend = Col2RGB8_LessPrecision[alpha >> 10];
dc_destblend = Col2RGB8_LessPrecision[FRACUNIT >> 10];
dc_srcalpha = alpha;
dc_destalpha = FRACUNIT;
}
}
else
{
spanfunc = &SWPixelFormatDrawers::DrawSpanMasked;
}
}
else
{
if (alpha < OPAQUE || additive)
{
if (!additive)
{
spanfunc = &SWPixelFormatDrawers::DrawSpanTranslucent;
dc_srcblend = Col2RGB8[alpha >> 10];
dc_destblend = Col2RGB8[(OPAQUE - alpha) >> 10];
dc_srcalpha = alpha;
dc_destalpha = OPAQUE - alpha;
}
else
{
spanfunc = &SWPixelFormatDrawers::DrawSpanAddClamp;
dc_srcblend = Col2RGB8_LessPrecision[alpha >> 10];
dc_destblend = Col2RGB8_LessPrecision[FRACUNIT >> 10];
dc_srcalpha = alpha;
dc_destalpha = FRACUNIT;
}
}
else
{
spanfunc = &SWPixelFormatDrawers::DrawSpan;
}
}
}
light_list = pl->lights;
RenderLines(pl);
}
void RenderFlatPlane::RenderLine(int y, int x1, int x2)
{
using namespace drawerargs;
double distance;
#ifdef RANGECHECK
if (x2 < x1 || x1<0 || x2 >= viewwidth || (unsigned)y >= (unsigned)viewheight)
{
I_FatalError("R_MapPlane: %i, %i at %i", x1, x2, y);
}
#endif
// [RH] Notice that I dumped the caching scheme used by Doom.
// It did not offer any appreciable speedup.
distance = planeheight * yslope[y];
if (ds_xbits != 0)
{
ds_xstep = xs_ToFixed(32 - ds_xbits, distance * xstepscale);
ds_xfrac = xs_ToFixed(32 - ds_xbits, distance * basexfrac) + pviewx;
}
else
{
ds_xstep = 0;
ds_xfrac = 0;
}
if (ds_ybits != 0)
{
ds_ystep = xs_ToFixed(32 - ds_ybits, distance * ystepscale);
ds_yfrac = xs_ToFixed(32 - ds_ybits, distance * baseyfrac) + pviewy;
}
else
{
ds_ystep = 0;
ds_yfrac = 0;
}
if (r_swtruecolor)
{
double distance2 = planeheight * yslope[(y + 1 < viewheight) ? y + 1 : y - 1];
double xmagnitude = fabs(ystepscale * (distance2 - distance) * FocalLengthX);
double ymagnitude = fabs(xstepscale * (distance2 - distance) * FocalLengthX);
double magnitude = MAX(ymagnitude, xmagnitude);
double min_lod = -1000.0;
ds_lod = MAX(log2(magnitude) + r_lod_bias, min_lod);
}
if (plane_shade)
{
// Determine lighting based on the span's distance from the viewer.
R_SetDSColorMapLight(basecolormap, (float)(GlobVis * fabs(CenterY - y)), planeshade);
}
if (r_dynlights)
{
// Find row position in view space
float zspan = (float)(planeheight / (fabs(y + 0.5 - CenterY) / InvZtoScale));
dc_viewpos.X = (float)((x1 + 0.5 - CenterX) / CenterX * zspan);
dc_viewpos.Y = zspan;
dc_viewpos.Z = (float)((CenterY - y - 0.5) / InvZtoScale * zspan);
dc_viewpos_step.X = (float)(zspan / CenterX);
static TriLight lightbuffer[64 * 1024];
static int nextlightindex = 0;
// Plane normal
dc_normal.X = 0.0f;
dc_normal.Y = 0.0f;
dc_normal.Z = (y >= CenterY) ? 1.0f : -1.0f;
// Setup lights for row
dc_num_lights = 0;
dc_lights = lightbuffer + nextlightindex;
VisiblePlaneLight *cur_node = light_list;
while (cur_node && nextlightindex < 64 * 1024)
{
double lightX = cur_node->lightsource->X() - ViewPos.X;
double lightY = cur_node->lightsource->Y() - ViewPos.Y;
double lightZ = cur_node->lightsource->Z() - ViewPos.Z;
float lx = (float)(lightX * ViewSin - lightY * ViewCos);
float ly = (float)(lightX * ViewTanCos + lightY * ViewTanSin) - dc_viewpos.Y;
float lz = (float)lightZ - dc_viewpos.Z;
// Precalculate the constant part of the dot here so the drawer doesn't have to.
bool is_point_light = (cur_node->lightsource->flags4 & MF4_ATTENUATE) != 0;
float lconstant = ly * ly + lz * lz;
float nlconstant = is_point_light ? lz * dc_normal.Z : 0.0f;
// Include light only if it touches this row
float radius = cur_node->lightsource->GetRadius();
if (radius * radius >= lconstant && nlconstant >= 0.0f)
{
uint32_t red = cur_node->lightsource->GetRed();
uint32_t green = cur_node->lightsource->GetGreen();
uint32_t blue = cur_node->lightsource->GetBlue();
nextlightindex++;
auto &light = dc_lights[dc_num_lights++];
light.x = lx;
light.y = lconstant;
light.z = nlconstant;
light.radius = 256.0f / radius;
light.color = (red << 16) | (green << 8) | blue;
}
cur_node = cur_node->next;
}
if (nextlightindex == 64 * 1024)
nextlightindex = 0;
}
else
{
dc_num_lights = 0;
}
ds_y = y;
ds_x1 = x1;
ds_x2 = x2;
(R_Drawers()->*spanfunc)();
}
void RenderFlatPlane::StepColumn()
{
basexfrac -= xstepscale;
baseyfrac -= ystepscale;
}
void RenderFlatPlane::SetupSlope()
{
int e, i;
i = 0;
e = viewheight;
float focus = float(FocalLengthY);
float den;
float cy = float(CenterY);
if (i < centery)
{
den = cy - i - 0.5f;
if (e <= centery)
{
do {
yslope[i] = focus / den;
den -= 1;
} while (++i < e);
}
else
{
do {
yslope[i] = focus / den;
den -= 1;
} while (++i < centery);
den = i - cy + 0.5f;
do {
yslope[i] = focus / den;
den += 1;
} while (++i < e);
}
}
else
{
den = i - cy + 0.5f;
do {
yslope[i] = focus / den;
den += 1;
} while (++i < e);
}
}
float RenderFlatPlane::yslope[MAXHEIGHT];
/////////////////////////////////////////////////////////////////////////
void RenderColoredPlane::Render(VisiblePlane *pl)
{
RenderLines(pl);
}
void RenderColoredPlane::RenderLine(int y, int x1, int x2)
{
R_Drawers()->DrawColoredSpan(y, x1, x2);
}
}