layout(location = 0) in vec4 vTexCoord; layout(location = 1) in vec4 vColor; layout(location = 2) in vec4 pixelpos; layout(location = 3) in vec3 glowdist; layout(location = 4) in vec3 gradientdist; layout(location = 5) in vec4 vWorldNormal; layout(location = 6) in vec4 vEyeNormal; #ifdef NO_CLIPDISTANCE_SUPPORT layout(location = 7) in vec4 ClipDistanceA; layout(location = 8) in vec4 ClipDistanceB; #endif layout(location=0) out vec4 FragColor; #ifdef GBUFFER_PASS layout(location=1) out vec4 FragFog; layout(location=2) out vec4 FragNormal; #endif struct Material { vec4 Base; vec4 Bright; vec4 Glow; vec3 Normal; vec3 Specular; float Glossiness; float SpecularLevel; float Metallic; float Roughness; float AO; }; vec4 Process(vec4 color); vec4 ProcessTexel(); Material ProcessMaterial(); // note that this is deprecated. Use SetupMaterial! void SetupMaterial(inout Material mat); vec4 ProcessLight(Material mat, vec4 color); vec3 ProcessMaterialLight(Material material, vec3 color); vec2 GetTexCoord(); // These get Or'ed into uTextureMode because it only uses its 3 lowermost bits. const int TEXF_Brightmap = 0x10000; const int TEXF_Detailmap = 0x20000; const int TEXF_Glowmap = 0x40000; //=========================================================================== // // Color to grayscale // //=========================================================================== float grayscale(vec4 color) { return dot(color.rgb, vec3(0.3, 0.56, 0.14)); } //=========================================================================== // // Desaturate a color // //=========================================================================== vec4 dodesaturate(vec4 texel, float factor) { if (factor != 0.0) { float gray = grayscale(texel); return mix (texel, vec4(gray,gray,gray,texel.a), factor); } else { return texel; } } //=========================================================================== // // Desaturate a color // //=========================================================================== vec4 desaturate(vec4 texel) { return dodesaturate(texel, uDesaturationFactor); } //=========================================================================== // // Texture tinting code originally from JFDuke but with a few more options // //=========================================================================== const int Tex_Blend_Alpha = 1; const int Tex_Blend_Screen = 2; const int Tex_Blend_Overlay = 3; const int Tex_Blend_Hardlight = 4; vec4 ApplyTextureManipulation(vec4 texel, int blendflags) { // Step 1: desaturate according to the material's desaturation factor. texel = dodesaturate(texel, uTextureModulateColor.a); // Step 2: Invert if requested if ((blendflags & 8) != 0) { texel.rgb = vec3(1.0 - texel.r, 1.0 - texel.g, 1.0 - texel.b); } // Step 3: Apply additive color texel.rgb += uTextureAddColor.rgb; // Step 4: Colorization, including gradient if set. texel.rgb *= uTextureModulateColor.rgb; // Before applying the blend the value needs to be clamped to [0..1] range. texel.rgb = clamp(texel.rgb, 0.0, 1.0); // Step 5: Apply a blend. This may just be a translucent overlay or one of the blend modes present in current Build engines. if ((blendflags & 7) != 0) { vec3 tcol = texel.rgb * 255.0; // * 255.0 to make it easier to reuse the integer math. vec4 tint = uTextureBlendColor * 255.0; switch (blendflags & 7) { default: tcol.b = tcol.b * (1.0 - uTextureBlendColor.a) + tint.b * uTextureBlendColor.a; tcol.g = tcol.g * (1.0 - uTextureBlendColor.a) + tint.g * uTextureBlendColor.a; tcol.r = tcol.r * (1.0 - uTextureBlendColor.a) + tint.r * uTextureBlendColor.a; break; // The following 3 are taken 1:1 from the Build engine case Tex_Blend_Screen: tcol.b = 255.0 - (((255.0 - tcol.b) * (255.0 - tint.r)) / 256.0); tcol.g = 255.0 - (((255.0 - tcol.g) * (255.0 - tint.g)) / 256.0); tcol.r = 255.0 - (((255.0 - tcol.r) * (255.0 - tint.b)) / 256.0); break; case Tex_Blend_Overlay: tcol.b = tcol.b < 128.0? (tcol.b * tint.b) / 128.0 : 255.0 - (((255.0 - tcol.b) * (255.0 - tint.b)) / 128.0); tcol.g = tcol.g < 128.0? (tcol.g * tint.g) / 128.0 : 255.0 - (((255.0 - tcol.g) * (255.0 - tint.g)) / 128.0); tcol.r = tcol.r < 128.0? (tcol.r * tint.r) / 128.0 : 255.0 - (((255.0 - tcol.r) * (255.0 - tint.r)) / 128.0); break; case Tex_Blend_Hardlight: tcol.b = tint.b < 128.0 ? (tcol.b * tint.b) / 128.0 : 255.0 - (((255.0 - tcol.b) * (255.0 - tint.b)) / 128.0); tcol.g = tint.g < 128.0 ? (tcol.g * tint.g) / 128.0 : 255.0 - (((255.0 - tcol.g) * (255.0 - tint.g)) / 128.0); tcol.r = tint.r < 128.0 ? (tcol.r * tint.r) / 128.0 : 255.0 - (((255.0 - tcol.r) * (255.0 - tint.r)) / 128.0); break; } texel.rgb = tcol / 255.0; } return texel; } //=========================================================================== // // This function is common for all (non-special-effect) fragment shaders // //=========================================================================== vec4 getTexel(vec2 st) { vec4 texel = texture(tex, st); // // Apply texture modes // switch (uTextureMode & 0xffff) { case 1: // TM_STENCIL texel.rgb = vec3(1.0,1.0,1.0); break; case 2: // TM_OPAQUE texel.a = 1.0; break; case 3: // TM_INVERSE texel = vec4(1.0-texel.r, 1.0-texel.b, 1.0-texel.g, texel.a); break; case 4: // TM_ALPHATEXTURE { float gray = grayscale(texel); texel = vec4(1.0, 1.0, 1.0, gray*texel.a); break; } case 5: // TM_CLAMPY if (st.t < 0.0 || st.t > 1.0) { texel.a = 0.0; } break; case 6: // TM_OPAQUEINVERSE texel = vec4(1.0-texel.r, 1.0-texel.b, 1.0-texel.g, 1.0); break; case 7: //TM_FOGLAYER return texel; } // Apply the texture modification colors. int blendflags = int(uTextureAddColor.a); // this alpha is unused otherwise if (blendflags != 0) { // only apply the texture manipulation if it contains something. texel = ApplyTextureManipulation(texel, blendflags); } // Apply the Doom64 style material colors on top of everything from the texture modification settings. // This may be a bit redundant in terms of features but the data comes from different sources so this is unavoidable. texel.rgb += uAddColor.rgb; if (uObjectColor2.a == 0.0) texel *= uObjectColor; else texel *= mix(uObjectColor, uObjectColor2, gradientdist.z); // Last but not least apply the desaturation from the sector's light. return desaturate(texel); } //=========================================================================== // // Vanilla Doom wall colormap equation // //=========================================================================== float R_WallColormap(float lightnum, float z, vec3 normal) { // R_ScaleFromGlobalAngle calculation float projection = 160.0; // projection depends on SCREENBLOCKS!! 160 is the fullscreen value vec2 line_v1 = pixelpos.xz; // in vanilla this is the first curline vertex vec2 line_normal = normal.xz; float texscale = projection * clamp(dot(normalize(uCameraPos.xz - line_v1), line_normal), 0.0, 1.0) / z; float lightz = clamp(16.0 * texscale, 0.0, 47.0); // scalelight[lightnum][lightz] lookup float startmap = (15.0 - lightnum) * 4.0; return startmap - lightz * 0.5; } //=========================================================================== // // Vanilla Doom plane colormap equation // //=========================================================================== float R_PlaneColormap(float lightnum, float z) { float lightz = clamp(z / 16.0f, 0.0, 127.0); // zlight[lightnum][lightz] lookup float startmap = (15.0 - lightnum) * 4.0; float scale = 160.0 / (lightz + 1.0); return startmap - scale * 0.5; } //=========================================================================== // // zdoom colormap equation // //=========================================================================== float R_ZDoomColormap(float light, float z) { float L = light * 255.0; float vis = min(uGlobVis / z, 24.0 / 32.0); float shade = 2.0 - (L + 12.0) / 128.0; float lightscale = shade - vis; return lightscale * 31.0; } float R_DoomColormap(float light, float z) { if ((uPalLightLevels >> 16) == 16) // gl_lightmode 16 { float lightnum = clamp(light * 15.0, 0.0, 15.0); if (dot(vWorldNormal.xyz, vWorldNormal.xyz) > 0.5) { vec3 normal = normalize(vWorldNormal.xyz); return mix(R_WallColormap(lightnum, z, normal), R_PlaneColormap(lightnum, z), abs(normal.y)); } else // vWorldNormal is not set on sprites { return R_PlaneColormap(lightnum, z); } } else { return R_ZDoomColormap(light, z); } } //=========================================================================== // // Doom software lighting equation // //=========================================================================== float R_DoomLightingEquation(float light) { // z is the depth in view space, positive going into the screen float z; if (((uPalLightLevels >> 8) & 0xff) == 2) { z = distance(pixelpos.xyz, uCameraPos.xyz); } else { z = pixelpos.w; } if ((uPalLightLevels >> 16) == 5) // gl_lightmode 5: Build software lighting emulation. { // This is a lot more primitive than Doom's lighting... float numShades = float(uPalLightLevels & 255); float curshade = (1.0 - light) * (numShades - 1.0); float visibility = max(uGlobVis * uLightFactor * z, 0.0); float shade = clamp((curshade + visibility), 0.0, numShades - 1.0); return clamp(shade * uLightDist, 0.0, 1.0); } float colormap = R_DoomColormap(light, z); if ((uPalLightLevels & 0xff) != 0) colormap = floor(colormap) + 0.5; // Result is the normalized colormap index (0 bright .. 1 dark) return clamp(colormap, 0.0, 31.0) / 32.0; } //=========================================================================== // // Check if light is in shadow according to its 1D shadow map // //=========================================================================== #ifdef SUPPORTS_SHADOWMAPS float shadowDirToU(vec2 dir) { if (abs(dir.y) > abs(dir.x)) { float x = dir.x / dir.y * 0.125; if (dir.y >= 0.0) return 0.125 + x; else return (0.50 + 0.125) + x; } else { float y = dir.y / dir.x * 0.125; if (dir.x >= 0.0) return (0.25 + 0.125) - y; else return (0.75 + 0.125) - y; } } vec2 shadowUToDir(float u) { u *= 4.0; vec2 raydir; switch (int(u)) { case 0: raydir = vec2(u * 2.0 - 1.0, 1.0); break; case 1: raydir = vec2(1.0, 1.0 - (u - 1.0) * 2.0); break; case 2: raydir = vec2(1.0 - (u - 2.0) * 2.0, -1.0); break; case 3: raydir = vec2(-1.0, (u - 3.0) * 2.0 - 1.0); break; } return raydir; } float sampleShadowmap(vec3 planePoint, float v) { float bias = 1.0; float negD = dot(vWorldNormal.xyz, planePoint); vec3 ray = planePoint; vec2 isize = textureSize(ShadowMap, 0); float scale = float(isize.x) * 0.25; // Snap to shadow map texel grid if (abs(ray.z) > abs(ray.x)) { ray.y = ray.y / abs(ray.z); ray.x = ray.x / abs(ray.z); ray.x = (floor((ray.x + 1.0) * 0.5 * scale) + 0.5) / scale * 2.0 - 1.0; ray.z = sign(ray.z); } else { ray.y = ray.y / abs(ray.x); ray.z = ray.z / abs(ray.x); ray.z = (floor((ray.z + 1.0) * 0.5 * scale) + 0.5) / scale * 2.0 - 1.0; ray.x = sign(ray.x); } float t = negD / dot(vWorldNormal.xyz, ray) - bias; vec2 dir = ray.xz * t; float u = shadowDirToU(dir); float dist2 = dot(dir, dir); return step(dist2, texture(ShadowMap, vec2(u, v)).x); } float sampleShadowmapPCF(vec3 planePoint, float v) { float bias = 1.0; float negD = dot(vWorldNormal.xyz, planePoint); vec3 ray = planePoint; if (abs(ray.z) > abs(ray.x)) ray.y = ray.y / abs(ray.z); else ray.y = ray.y / abs(ray.x); vec2 isize = textureSize(ShadowMap, 0); float scale = float(isize.x); float texelPos = floor(shadowDirToU(ray.xz) * scale); float sum = 0.0; float step_count = uShadowmapFilter; texelPos -= step_count + 0.5; for (float x = -step_count; x <= step_count; x++) { float u = fract(texelPos / scale); vec2 dir = shadowUToDir(u); ray.x = dir.x; ray.z = dir.y; float t = negD / dot(vWorldNormal.xyz, ray) - bias; dir = ray.xz * t; float dist2 = dot(dir, dir); sum += step(dist2, texture(ShadowMap, vec2(u, v)).x); texelPos++; } return sum / (uShadowmapFilter * 2.0 + 1.0); } float shadowmapAttenuation(vec4 lightpos, float shadowIndex) { if (shadowIndex >= 1024.0) return 1.0; // No shadowmap available for this light vec3 planePoint = pixelpos.xyz - lightpos.xyz; planePoint += 0.01; // nudge light position slightly as Doom maps tend to have their lights perfectly aligned with planes if (dot(planePoint.xz, planePoint.xz) < 1.0) return 1.0; // Light is too close float v = (shadowIndex + 0.5) / 1024.0; if (uShadowmapFilter <= 0) { return sampleShadowmap(planePoint, v); } else { return sampleShadowmapPCF(planePoint, v); } } float shadowAttenuation(vec4 lightpos, float lightcolorA) { float shadowIndex = abs(lightcolorA) - 1.0; return shadowmapAttenuation(lightpos, shadowIndex); } #else float shadowAttenuation(vec4 lightpos, float lightcolorA) { return 1.0; } #endif float spotLightAttenuation(vec4 lightpos, vec3 spotdir, float lightCosInnerAngle, float lightCosOuterAngle) { vec3 lightDirection = normalize(lightpos.xyz - pixelpos.xyz); float cosDir = dot(lightDirection, spotdir); return smoothstep(lightCosOuterAngle, lightCosInnerAngle, cosDir); } //=========================================================================== // // Adjust normal vector according to the normal map // //=========================================================================== #if defined(NORMALMAP) mat3 cotangent_frame(vec3 n, vec3 p, vec2 uv) { // get edge vectors of the pixel triangle vec3 dp1 = dFdx(p); vec3 dp2 = dFdy(p); vec2 duv1 = dFdx(uv); vec2 duv2 = dFdy(uv); // solve the linear system vec3 dp2perp = cross(n, dp2); // cross(dp2, n); vec3 dp1perp = cross(dp1, n); // cross(n, dp1); vec3 t = dp2perp * duv1.x + dp1perp * duv2.x; vec3 b = dp2perp * duv1.y + dp1perp * duv2.y; // construct a scale-invariant frame float invmax = inversesqrt(max(dot(t,t), dot(b,b))); return mat3(t * invmax, b * invmax, n); } vec3 ApplyNormalMap(vec2 texcoord) { #define WITH_NORMALMAP_UNSIGNED #define WITH_NORMALMAP_GREEN_UP //#define WITH_NORMALMAP_2CHANNEL vec3 interpolatedNormal = normalize(vWorldNormal.xyz); vec3 map = texture(normaltexture, texcoord).xyz; #if defined(WITH_NORMALMAP_UNSIGNED) map = map * 255./127. - 128./127.; // Math so "odd" because 0.5 cannot be precisely described in an unsigned format #endif #if defined(WITH_NORMALMAP_2CHANNEL) map.z = sqrt(1 - dot(map.xy, map.xy)); #endif #if defined(WITH_NORMALMAP_GREEN_UP) map.y = -map.y; #endif mat3 tbn = cotangent_frame(interpolatedNormal, pixelpos.xyz, vTexCoord.st); vec3 bumpedNormal = normalize(tbn * map); return bumpedNormal; } #else vec3 ApplyNormalMap(vec2 texcoord) { return normalize(vWorldNormal.xyz); } #endif //=========================================================================== // // Sets the common material properties. // //=========================================================================== void SetMaterialProps(inout Material material, vec2 texCoord) { #ifdef NPOT_EMULATION if (uNpotEmulation.y != 0.0) { float period = floor(texCoord.t / uNpotEmulation.y); texCoord.s += uNpotEmulation.x * floor(mod(texCoord.t, uNpotEmulation.y)); texCoord.t = period + mod(texCoord.t, uNpotEmulation.y); } #endif material.Base = getTexel(texCoord.st); material.Normal = ApplyNormalMap(texCoord.st); // OpenGL doesn't care, but Vulkan pukes all over the place if these texture samplings are included in no-texture shaders, even though never called. #ifndef NO_LAYERS if ((uTextureMode & TEXF_Brightmap) != 0) material.Bright = desaturate(texture(brighttexture, texCoord.st)); if ((uTextureMode & TEXF_Detailmap) != 0) { vec4 Detail = texture(detailtexture, texCoord.st * uDetailParms.xy) * uDetailParms.z; material.Base *= Detail; } if ((uTextureMode & TEXF_Glowmap) != 0) material.Glow = desaturate(texture(glowtexture, texCoord.st)); #endif } //=========================================================================== // // Calculate light // // It is important to note that the light color is not desaturated // due to ZDoom's implementation weirdness. Everything that's added // on top of it, e.g. dynamic lights and glows are, though, because // the objects emitting these lights are also. // // This is making this a bit more complicated than it needs to // because we can't just desaturate the final fragment color. // //=========================================================================== vec4 getLightColor(Material material, float fogdist, float fogfactor) { vec4 color = vColor; if (uLightLevel >= 0.0) { float newlightlevel = 1.0 - R_DoomLightingEquation(uLightLevel); color.rgb *= newlightlevel; } else if (uFogEnabled > 0) { // brightening around the player for light mode 2 if (fogdist < uLightDist) { color.rgb *= uLightFactor - (fogdist / uLightDist) * (uLightFactor - 1.0); } // // apply light diminishing through fog equation // color.rgb = mix(vec3(0.0, 0.0, 0.0), color.rgb, fogfactor); } // // handle glowing walls // if (uGlowTopColor.a > 0.0 && glowdist.x < uGlowTopColor.a) { color.rgb += desaturate(uGlowTopColor * (1.0 - glowdist.x / uGlowTopColor.a)).rgb; } if (uGlowBottomColor.a > 0.0 && glowdist.y < uGlowBottomColor.a) { color.rgb += desaturate(uGlowBottomColor * (1.0 - glowdist.y / uGlowBottomColor.a)).rgb; } color = min(color, 1.0); // these cannot be safely applied by the legacy format where the implementation cannot guarantee that the values are set. #if !defined LEGACY_USER_SHADER && !defined NO_LAYERS // // apply glow // color.rgb = mix(color.rgb, material.Glow.rgb, material.Glow.a); // // apply brightmaps // color.rgb = min(color.rgb + material.Bright.rgb, 1.0); #endif // // apply other light manipulation by custom shaders, default is a NOP. // color = ProcessLight(material, color); // // apply dynamic lights // return vec4(ProcessMaterialLight(material, color.rgb), material.Base.a * vColor.a); } //=========================================================================== // // Applies colored fog // //=========================================================================== vec4 applyFog(vec4 frag, float fogfactor) { return vec4(mix(uFogColor.rgb, frag.rgb, fogfactor), frag.a); } //=========================================================================== // // The color of the fragment if it is fully occluded by ambient lighting // //=========================================================================== vec3 AmbientOcclusionColor() { float fogdist; float fogfactor; // // calculate fog factor // if (uFogEnabled == -1) { fogdist = max(16.0, pixelpos.w); } else { fogdist = max(16.0, distance(pixelpos.xyz, uCameraPos.xyz)); } fogfactor = exp2 (uFogDensity * fogdist); return mix(uFogColor.rgb, vec3(0.0), fogfactor); } //=========================================================================== // // Main shader routine // //=========================================================================== void main() { #ifdef NO_CLIPDISTANCE_SUPPORT if (ClipDistanceA.x < 0 || ClipDistanceA.y < 0 || ClipDistanceA.z < 0 || ClipDistanceA.w < 0 || ClipDistanceB.x < 0) discard; #endif #ifndef LEGACY_USER_SHADER Material material; material.Base = vec4(0.0); material.Bright = vec4(0.0); material.Glow = vec4(0.0); material.Normal = vec3(0.0); material.Specular = vec3(0.0); material.Glossiness = 0.0; material.SpecularLevel = 0.0; material.Metallic = 0.0; material.Roughness = 0.0; material.AO = 0.0; SetupMaterial(material); #else Material material = ProcessMaterial(); #endif vec4 frag = material.Base; #ifndef NO_ALPHATEST if (frag.a <= uAlphaThreshold) discard; #endif if (uFogEnabled != -3) // check for special 2D 'fog' mode. { float fogdist = 0.0; float fogfactor = 0.0; // // calculate fog factor // if (uFogEnabled != 0) { if (uFogEnabled == 1 || uFogEnabled == -1) { fogdist = max(16.0, pixelpos.w); } else { fogdist = max(16.0, distance(pixelpos.xyz, uCameraPos.xyz)); } fogfactor = exp2 (uFogDensity * fogdist); } if ((uTextureMode & 0xffff) != 7) { frag = getLightColor(material, fogdist, fogfactor); // // colored fog // if (uFogEnabled < 0) { frag = applyFog(frag, fogfactor); } } else { frag = vec4(uFogColor.rgb, (1.0 - fogfactor) * frag.a * 0.75 * vColor.a); } } else // simple 2D (uses the fog color to add a color overlay) { if ((uTextureMode & 0xffff) == 7) { float gray = grayscale(frag); vec4 cm = (uObjectColor + gray * (uAddColor - uObjectColor)) * 2; frag = vec4(clamp(cm.rgb, 0.0, 1.0), frag.a); } frag = frag * ProcessLight(material, vColor); frag.rgb = frag.rgb + uFogColor.rgb; } FragColor = frag; #ifdef GBUFFER_PASS FragFog = vec4(AmbientOcclusionColor(), 1.0); FragNormal = vec4(vEyeNormal.xyz * 0.5 + 0.5, 1.0); #endif }