/* ** nodebuild.cpp ** ** The main logic for the internal node builder. ** **--------------------------------------------------------------------------- ** Copyright 2002-2005 Randy Heit ** All rights reserved. ** ** Redistribution and use in source and binary forms, with or without ** modification, are permitted provided that the following conditions ** are met: ** ** 1. Redistributions of source code must retain the above copyright ** notice, this list of conditions and the following disclaimer. ** 2. Redistributions in binary form must reproduce the above copyright ** notice, this list of conditions and the following disclaimer in the ** documentation and/or other materials provided with the distribution. ** 3. The name of the author may not be used to endorse or promote products ** derived from this software without specific prior written permission. ** 4. When not used as part of ZDoom or a ZDoom derivative, this code will be ** covered by the terms of the GNU General Public License as published by ** the Free Software Foundation; either version 2 of the License, or (at ** your option) any later version. ** ** THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR ** IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES ** OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. ** IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, ** INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT ** NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, ** DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY ** THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT ** (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF ** THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. **--------------------------------------------------------------------------- ** */ #include #include #include #include #include #include #include "doomdata.h" #include "nodebuild.h" #include "templates.h" #include "tarray.h" #include "m_bbox.h" #include "c_console.h" #include "r_main.h" const int MaxSegs = 64; const int SplitCost = 8; const int AAPreference = 16; // Points within this distance of a line will be considered on the line. // Units are in fixed_ts. const double SIDE_EPSILON = 6.5536; // Vertices within this distance of each other vertically and horizontally // will be considered as the same vertex. const fixed_t VERTEX_EPSILON = 6; #if 0 #define D(x) x #else #define D(x) do{}while(0) #endif FNodeBuilder::FNodeBuilder (FLevel &level, TArray &polyspots, TArray &anchors, bool makeGLNodes) : Level (level), GLNodes (makeGLNodes), SegsStuffed (0) { FindUsedVertices (Level.Vertices, Level.NumVertices); MakeSegsFromSides (); FindPolyContainers (polyspots, anchors); GroupSegPlanes (); BuildTree (); } void FNodeBuilder::BuildTree () { fixed_t bbox[4]; C_InitTicker ("Building BSP", FRACUNIT); HackSeg = DWORD_MAX; CreateNode (0, bbox); CreateSubsectorsForReal (); C_InitTicker (NULL, 0); } int FNodeBuilder::CreateNode (DWORD set, fixed_t bbox[4]) { node_t node; int skip, count, selstat; DWORD splitseg; count = CountSegs (set); skip = count / MaxSegs; if ((selstat = SelectSplitter (set, node, splitseg, skip, true)) > 0 || (skip > 0 && (selstat = SelectSplitter (set, node, splitseg, 1, true)) > 0) || (selstat < 0 && (SelectSplitter (set, node, splitseg, skip, false) > 0) || (skip > 0 && SelectSplitter (set, node, splitseg, 1, false))) || CheckSubsector (set, node, splitseg, count)) { // Create a normal node DWORD set1, set2; SplitSegs (set, node, splitseg, set1, set2); D(PrintSet (1, set1)); D(Printf ("(%d,%d) delta (%d,%d) from seg %d\n", node.x>>16, node.y>>16, node.dx>>16, node.dy>>16, splitseg)); D(PrintSet (2, set2)); node.intchildren[0] = CreateNode (set1, node.bbox[0]); node.intchildren[1] = CreateNode (set2, node.bbox[1]); bbox[BOXTOP] = MAX (node.bbox[0][BOXTOP], node.bbox[1][BOXTOP]); bbox[BOXBOTTOM] = MIN (node.bbox[0][BOXBOTTOM], node.bbox[1][BOXBOTTOM]); bbox[BOXLEFT] = MIN (node.bbox[0][BOXLEFT], node.bbox[1][BOXLEFT]); bbox[BOXRIGHT] = MAX (node.bbox[0][BOXRIGHT], node.bbox[1][BOXRIGHT]); return (int)Nodes.Push (node); } else { return 0x80000000 | CreateSubsector (set, bbox); } } int FNodeBuilder::CreateSubsector (DWORD set, fixed_t bbox[4]) { int ssnum, count; bbox[BOXTOP] = bbox[BOXRIGHT] = INT_MIN; bbox[BOXBOTTOM] = bbox[BOXLEFT] = INT_MAX; D(Printf ("Subsector from set %d\n", set)); assert (set != DWORD_MAX); // We cannot actually create the subsector now because the node building // process might split a seg in this subsector (because all partner segs // must use the same pair of vertices), adding a new seg that hasn't been // created yet. After all the nodes are built, then we can create the // actual subsectors using the CreateSubsectorsForReal function below. ssnum = (int)SubsectorSets.Push (set); count = 0; while (set != DWORD_MAX) { AddSegToBBox (bbox, &Segs[set]); set = Segs[set].next; count++; } SegsStuffed += count; if ((SegsStuffed & ~127) != ((SegsStuffed - count) & ~127)) { C_SetTicker (MulScale16 (SegsStuffed, (SDWORD)Segs.Size())); } D(Printf ("bbox (%d,%d)-(%d,%d)\n", bbox[BOXLEFT]>>16, bbox[BOXBOTTOM]>>16, bbox[BOXRIGHT]>>16, bbox[BOXTOP]>>16)); return ssnum; } void FNodeBuilder::CreateSubsectorsForReal () { subsector_t sub; unsigned int i; sub.poly = NULL; sub.validcount = 0; sub.CenterX = 0; // Code in p_setup.cpp will set these for us later. sub.CenterY = 0; sub.sector = NULL; for (i = 0; i < SubsectorSets.Size(); ++i) { DWORD set = SubsectorSets[i]; sub.firstline = (DWORD)SegList.Size(); while (set != DWORD_MAX) { USegPtr ptr; ptr.SegPtr = &Segs[set]; SegList.Push (ptr); set = ptr.SegPtr->next; } sub.numlines = (DWORD)(SegList.Size() - sub.firstline); // Sort segs by linedef for special effects qsort (&SegList[sub.firstline], sub.numlines, sizeof(int), SortSegs); // Convert seg pointers into indices for (unsigned int i = sub.firstline; i < SegList.Size(); ++i) { SegList[i].SegNum = SegList[i].SegPtr - &Segs[0]; } Subsectors.Push (sub); } } int STACK_ARGS FNodeBuilder::SortSegs (const void *a, const void *b) { const FPrivSeg *x = ((const USegPtr *)a)->SegPtr; const FPrivSeg *y = ((const USegPtr *)b)->SegPtr; // Segs are grouped into three categories in this order: // // 1. Segs with different front and back sectors (or no back at all). // 2. Segs with the same front and back sectors. // 3. Minisegs. // // Within the first two sets, segs are also sorted by linedef. // // Note that when GL subsectors are written, the segs will be reordered // so that they are in clockwise order, and extra minisegs will be added // as needed to close the subsector. But the first seg used will still be // the first seg chosen here. int xtype, ytype; if (x->linedef == -1) { xtype = 2; } else if (x->frontsector == x->backsector) { xtype = 1; } else { xtype = 0; } if (y->linedef == -1) { ytype = 2; } else if (y->frontsector == y->backsector) { ytype = 1; } else { ytype = 0; } if (xtype != ytype) { return xtype - ytype; } else if (xtype < 2) { return x->linedef - y->linedef; } else { return 0; } } int FNodeBuilder::CountSegs (DWORD set) const { int count = 0; while (set != DWORD_MAX) { count++; set = Segs[set].next; } return count; } // Given a set of segs, checks to make sure they all belong to a single // sector. If so, false is returned, and they become a subsector. If not, // a splitter is synthesized, and true is returned to continue processing // down this branch of the tree. bool FNodeBuilder::CheckSubsector (DWORD set, node_t &node, DWORD &splitseg, int setsize) { sector_t *sec; DWORD seg; sec = NULL; seg = set; do { D(Printf (" - seg %d(%d,%d)-(%d,%d) line %d front %d back %d\n", seg, Vertices[Segs[seg].v1].x>>16, Vertices[Segs[seg].v1].y>>16, Vertices[Segs[seg].v2].x>>16, Vertices[Segs[seg].v2].y>>16, Segs[seg].linedef, Segs[seg].frontsector, Segs[seg].backsector)); if (Segs[seg].linedef != -1 && Segs[seg].frontsector != sec // Segs with the same front and back sectors are allowed to reside // in a subsector with segs from a different sector, because the // only effect they can have on the display is to place masked // mid textures in the scene. Since minisegs only mark subsector // boundaries, their sector information is unimportant. // // Update: Lines with the same front and back sectors *can* affect // the display if their subsector does not match their front sector. /*&& Segs[seg].frontsector != Segs[seg].backsector*/) { if (sec == NULL) { sec = Segs[seg].frontsector; } else { break; } } seg = Segs[seg].next; } while (seg != DWORD_MAX); if (seg == DWORD_MAX) { // It's a valid subsector return false; } D(Printf("Need to synthesize a splitter for set %d on seg %d\n", set, seg)); splitseg = DWORD_MAX; // This is a very simple and cheap "fix" for subsectors with segs // from multiple sectors, and it seems ZenNode does something // similar. It is the only technique I could find that makes the // "transparent water" in nb_bmtrk.wad work properly. // // The seg is marked to indicate that it should be forced to the // back of the splitter. Because these segs already form a convex // set, all the other segs will be in front of the splitter. Since // the splitter is formed from this seg, the back of the splitter // will have a one-dimensional subsector. SplitSegs() will add two // new minisegs to close it: one seg replaces this one on the front // of the splitter, and the other is its partner on the back. // // Old code that will actually create valid two-dimensional sectors // is included below for reference but is not likely to be used again. SetNodeFromSeg (node, &Segs[seg]); HackSeg = seg; if (!Segs[seg].planefront) { node.x += node.dx; node.y += node.dy; node.dx = -node.dx; node.dy = -node.dy; } return Heuristic (node, set, false) != 0; #if 0 // If there are only two segs in the set, and they form two sides // of a triangle, the splitter should pass through their shared // point and the (imaginary) third side of the triangle if (setsize == 2) { FPrivVert *v1, *v2, *v3; if (Vertices[Segs[set].v2] == Vertices[Segs[seg].v1]) { v1 = &Vertices[Segs[set].v1]; v2 = &Vertices[Segs[seg].v2]; v3 = &Vertices[Segs[set].v2]; } else if (Vertices[Segs[set].v1] == Vertices[Segs[seg].v2]) { v1 = &Vertices[Segs[seg].v1]; v2 = &Vertices[Segs[set].v2]; v3 = &Vertices[Segs[seg].v2]; } else { v1 = v2 = v3 = NULL; } if (v1 != NULL) { node.x = v3->x; node.y = v3->y; node.dx = v1->x + (v2->x-v1->x)/2 - node.x; node.dy = v1->y + (v2->y-v1->y)/2 - node.y; return Heuristic (node, set, false) != 0; } } bool nosplit = true; int firsthit = seg; do { seg = firsthit; do { if (Segs[seg].linedef != -1 && Segs[seg].frontsector != sec && Segs[seg].frontsector == Segs[seg].backsector) { node.x = Vertices[Segs[set].v1].x; node.y = Vertices[Segs[set].v1].y; node.dx = Vertices[Segs[seg].v2].x - node.x; node.dy = Vertices[Segs[seg].v2].y - node.y; if (Heuristic (node, set, nosplit) != 0) { return true; } node.dx = Vertices[Segs[seg].v1].x - node.x; node.dy = Vertices[Segs[seg].v1].y - node.y; if (Heuristic (node, set, nosplit) != 0) { return true; } } seg = Segs[seg].next; } while (seg != DWORD_MAX); } while ((nosplit ^= 1) == 0); // Give up. return false; #endif } // Splitters are chosen to coincide with segs in the given set. To reduce the // number of segs that need to be considered as splitters, segs are grouped into // according to the planes that they lie on. Because one seg on the plane is just // as good as any other seg on the plane at defining a split, only one seg from // each unique plane needs to be considered as a splitter. A result of 0 means // this set is a convex region. A result of -1 means that there were possible // splitters, but they all split segs we want to keep intact. int FNodeBuilder::SelectSplitter (DWORD set, node_t &node, DWORD &splitseg, int step, bool nosplit) { int stepleft; int bestvalue; DWORD bestseg; DWORD seg; bool nosplitters = false; bestvalue = 0; bestseg = DWORD_MAX; seg = set; stepleft = 0; memset (&PlaneChecked[0], 0, PlaneChecked.Size()); while (seg != DWORD_MAX) { FPrivSeg *pseg = &Segs[seg]; if (--stepleft <= 0) { int l = pseg->planenum >> 3; int r = 1 << (pseg->planenum & 7); if (l < 0 || (PlaneChecked[l] & r) == 0) { if (l >= 0) { PlaneChecked[l] |= r; } stepleft = step; SetNodeFromSeg (node, pseg); int value = Heuristic (node, set, nosplit); D(Printf ("Seg %5d (%5d,%5d)-(%5d,%5d) scores %d\n", seg, node.x>>16, node.y>>16, (node.x+node.dx)>>16, (node.y+node.dy)>>16, value)); if (value > bestvalue) { bestvalue = value; bestseg = seg; } else if (value < 0) { nosplitters = true; } } else { pseg = pseg; } } seg = pseg->next; } if (bestseg == DWORD_MAX) { // No lines split any others into two sets, so this is a convex region. D(Printf ("set %d, step %d, nosplit %d has no good splitter (%d)\n", set, step, nosplit, nosplitters)); return nosplitters ? -1 : 0; } D(Printf ("split seg %lu in set %d, score %d, step %d, nosplit %d\n", bestseg, set, bestvalue, step, nosplit)); splitseg = bestseg; SetNodeFromSeg (node, &Segs[bestseg]); return 1; } // Given a splitter (node), returns a score based on how "good" the resulting // split in a set of segs is. Higher scores are better. -1 means this splitter // splits something it shouldn't and will only be returned if honorNoSplit is // true. A score of 0 means that the splitter does not split any of the segs // in the set. int FNodeBuilder::Heuristic (node_t &node, DWORD set, bool honorNoSplit) { int score = 0; int segsInSet = 0; int counts[2] = { 0, 0 }; int realSegs[2] = { 0, 0 }; int specialSegs[2] = { 0, 0 }; DWORD i = set; int sidev1, sidev2; int side; bool splitter = false; unsigned int max, m2, p, q; Touched.Clear (); Colinear.Clear (); while (i != DWORD_MAX) { const FPrivSeg *test = &Segs[i]; if (HackSeg == i) { side = 1; } else { side = ClassifyLine (node, test, sidev1, sidev2); } switch (side) { case 0: // Seg is on only one side of the partition case 1: // If we don't split this line, but it abuts the splitter, also reject it. // The "right" thing to do in this case is to only reject it if there is // another nosplit seg from the same sector at this vertex. Note that a line // that lies exactly on top of the splitter is okay. if (test->loopnum && honorNoSplit && (sidev1 == 0 || sidev2 == 0)) { if ((sidev1 | sidev2) != 0) { max = Touched.Size(); for (p = 0; p < max; ++p) { if (Touched[p] == test->loopnum) { break; } } if (p == max) { Touched.Push (test->loopnum); } } else { max = Colinear.Size(); for (p = 0; p < max; ++p) { if (Colinear[p] == test->loopnum) { break; } } if (p == max) { Colinear.Push (test->loopnum); } } } counts[side]++; if (test->linedef != -1) { realSegs[side]++; if (test->frontsector == test->backsector) { specialSegs[side]++; } // Add some weight to the score for unsplit lines score += SplitCost; } else { // Minisegs don't count quite as much for nosplitting score += SplitCost / 4; } break; default: // Seg is cut by the partition // If we are not allowed to split this seg, reject this splitter if (test->loopnum) { if (honorNoSplit) { D(Printf ("Splits seg %d\n", i)); return -1; } else { splitter = true; } } counts[0]++; counts[1]++; if (test->linedef != -1) { realSegs[0]++; realSegs[1]++; if (test->frontsector == test->backsector) { specialSegs[0]++; specialSegs[1]++; } } break; } segsInSet++; i = test->next; } // If this line is outside all the others, return a special score if (counts[0] == 0 || counts[1] == 0) { return 0; } // A splitter must have at least one real seg on each side. // Otherwise, a subsector could be left without any way to easily // determine which sector it lies inside. if (realSegs[0] == 0 || realSegs[1] == 0) { D(Printf ("Leaves a side with only mini segs\n")); return -1; } // Try to avoid splits that leave only "special" segs, so that the generated // subsectors have a better chance of choosing the correct sector. This situation // is not neccesarily bad, just undesirable. if (honorNoSplit && (specialSegs[0] == realSegs[0] || specialSegs[1] == realSegs[1])) { D(Printf ("Leaves a side with only special segs\n")); return -1; } // If this splitter intersects any vertices of segs that should not be split, // check if it is also colinear with another seg from the same sector. If it // is, the splitter is okay. If not, it should be rejected. Why? Assuming that // polyobject containers are convex (which they should be), a splitter that // is colinear with one of the sector's segs and crosses the vertex of another // seg of that sector must be crossing the container's corner and does not // actually split the container. max = Touched.Size (); m2 = Colinear.Size (); // If honorNoSplit is false, then both these lists will be empty. // If the splitter touches some vertices without being colinear to any, we // can skip further checks and reject this right away. if (m2 == 0 && max > 0) { return -1; } for (p = 0; p < max; ++p) { int look = Touched[p]; for (q = 0; q < m2; ++q) { if (look == Colinear[q]) { break; } } if (q == m2) { // Not a good one return -1; } } // Doom maps are primarily axis-aligned lines, so it's usually a good // idea to prefer axis-aligned splitters over diagonal ones. Doom originally // had special-casing for orthogonal lines, so they performed better. ZDoom // does not care about the line's direction, so this is merely a choice to // try and improve the final tree. if ((node.dx == 0) || (node.dy == 0)) { // If we have to split a seg we would prefer to keep unsplit, give // extra precedence to orthogonal lines so that the polyobjects // outside the entrance to MAP06 in Hexen MAP02 display properly. if (splitter) { score += segsInSet*8; } else { score += segsInSet/AAPreference; } } score += (counts[0] + counts[1]) - abs(counts[0] - counts[1]); return score; } int FNodeBuilder::ClassifyLine (node_t &node, const FPrivSeg *seg, int &sidev1, int &sidev2) { const FPrivVert *v1 = &Vertices[seg->v1]; const FPrivVert *v2 = &Vertices[seg->v2]; sidev1 = PointOnSide (v1->x, v1->y, node.x, node.y, node.dx, node.dy); sidev2 = PointOnSide (v2->x, v2->y, node.x, node.y, node.dx, node.dy); if ((sidev1 | sidev2) == 0) { // seg is coplanar with the splitter, so use its orientation to determine // which child it ends up in. If it faces the same direction as the splitter, // it goes in front. Otherwise, it goes in back. if (node.dx != 0) { if ((node.dx > 0 && v2->x > v1->x) || (node.dx < 0 && v2->x < v1->x)) { return 0; } else { return 1; } } else { if ((node.dy > 0 && v2->y > v1->y) || (node.dy < 0 && v2->y < v1->y)) { return 0; } else { return 1; } } } else if (sidev1 <= 0 && sidev2 <= 0) { return 0; } else if (sidev1 >= 0 && sidev2 >= 0) { return 1; } return -1; } void FNodeBuilder::SplitSegs (DWORD set, node_t &node, DWORD splitseg, DWORD &outset0, DWORD &outset1) { outset0 = DWORD_MAX; outset1 = DWORD_MAX; Events.DeleteAll (); SplitSharers.Clear (); while (set != DWORD_MAX) { bool hack; FPrivSeg *seg = &Segs[set]; int next = seg->next; int sidev1, sidev2, side; if (HackSeg == set) { HackSeg = DWORD_MAX; side = 1; sidev1 = sidev2 = 0; hack = true; } else { side = ClassifyLine (node, seg, sidev1, sidev2); hack = false; } switch (side) { case 0: // seg is entirely in front seg->next = outset0; outset0 = set; break; case 1: // seg is entirely in back seg->next = outset1; outset1 = set; break; default: // seg needs to be split double frac; FPrivVert newvert; unsigned int vertnum; int seg2; unsigned int i; if (seg->loopnum) { Printf (" Split seg %lu (%ld,%ld)-(%ld,%ld) of sector %d in loop %d\n", set, Vertices[seg->v1].x>>16, Vertices[seg->v1].y>>16, Vertices[seg->v2].x>>16, Vertices[seg->v2].y>>16, seg->frontsector - sectors, seg->loopnum); } frac = InterceptVector (node, *seg); newvert.x = Vertices[seg->v1].x; newvert.y = Vertices[seg->v1].y; newvert.x += fixed_t(frac * double(Vertices[seg->v2].x - newvert.x)); newvert.y += fixed_t(frac * double(Vertices[seg->v2].y - newvert.y)); for (i = 0; i < Vertices.Size(); ++i) { if (abs(Vertices[i].x - newvert.x) < VERTEX_EPSILON && abs(Vertices[i].y - newvert.y) < VERTEX_EPSILON) { break; } } if (i < Vertices.Size()) { vertnum = i; } else { newvert.segs = DWORD_MAX; newvert.segs2 = DWORD_MAX; vertnum = Vertices.Push (newvert); } seg2 = SplitSeg (set, vertnum, sidev1); Segs[seg2].next = outset0; outset0 = seg2; Segs[set].next = outset1; outset1 = set; // Also split the seg on the back side if (Segs[set].partner != DWORD_MAX) { int partner1 = Segs[set].partner; int partner2 = SplitSeg (partner1, vertnum, sidev2); // The newly created seg stays in the same set as the // back seg because it has not been considered for splitting // yet. If it had been, then the front seg would have already // been split, and we would not be in this default case. // Moreover, the back seg may not even be in the set being // split, so we must not move its pieces into the out sets. Segs[partner1].next = partner2; Segs[partner2].partner = seg2; Segs[seg2].partner = partner2; } if (GLNodes) { AddIntersection (node, vertnum); } break; } if (side >= 0 && GLNodes) { if (sidev1 == 0) { double dist1 = AddIntersection (node, seg->v1); if (sidev2 == 0) { double dist2 = AddIntersection (node, seg->v2); FSplitSharer share = { dist1, set, dist2 > dist1 }; SplitSharers.Push (share); } } else if (sidev2 == 0) { AddIntersection (node, seg->v2); } } if (hack && GLNodes) { DWORD newback, newfront; newback = AddMiniseg (seg->v2, seg->v1, DWORD_MAX, set, splitseg); newfront = AddMiniseg (Segs[set].v1, Segs[set].v2, newback, set, splitseg); Segs[newback].frontsector = Segs[newback].backsector = Segs[newfront].frontsector = Segs[newfront].backsector = Segs[set].frontsector; Segs[newback].next = outset1; outset1 = newback; Segs[newfront].next = outset0; outset0 = newfront; } set = next; } FixSplitSharers (node); if (GLNodes) { AddMinisegs (node, splitseg, outset0, outset1); } } void FNodeBuilder::SetNodeFromSeg (node_t &node, const FPrivSeg *pseg) const { if (pseg->planenum >= 0) { FSimpleLine *pline = &Planes[pseg->planenum]; node.x = pline->x; node.y = pline->y; node.dx = pline->dx; node.dy = pline->dy; } else { node.x = Vertices[pseg->v1].x; node.y = Vertices[pseg->v1].y; node.dx = Vertices[pseg->v2].x - node.x; node.dy = Vertices[pseg->v2].y - node.y; } } DWORD FNodeBuilder::SplitSeg (DWORD segnum, int splitvert, int v1InFront) { double dx, dy; FPrivSeg newseg; int newnum = (int)Segs.Size(); newseg = Segs[segnum]; dx = double(Vertices[splitvert].x - Vertices[newseg.v1].x); dy = double(Vertices[splitvert].y - Vertices[newseg.v1].y); if (v1InFront > 0) { newseg.v1 = splitvert; Segs[segnum].v2 = splitvert; RemoveSegFromVert2 (segnum, newseg.v2); newseg.nextforvert = Vertices[splitvert].segs; Vertices[splitvert].segs = newnum; newseg.nextforvert2 = Vertices[newseg.v2].segs2; Vertices[newseg.v2].segs2 = newnum; Segs[segnum].nextforvert2 = Vertices[splitvert].segs2; Vertices[splitvert].segs2 = segnum; } else { Segs[segnum].v1 = splitvert; newseg.v2 = splitvert; RemoveSegFromVert1 (segnum, newseg.v1); newseg.nextforvert = Vertices[newseg.v1].segs; Vertices[newseg.v1].segs = newnum; newseg.nextforvert2 = Vertices[splitvert].segs2; Vertices[splitvert].segs2 = newnum; Segs[segnum].nextforvert = Vertices[splitvert].segs; Vertices[splitvert].segs = segnum; } Segs.Push (newseg); D(Printf ("Split seg %d to get seg %d\n", segnum, newnum)); return newnum; } void FNodeBuilder::RemoveSegFromVert1 (DWORD segnum, int vertnum) { FPrivVert *v = &Vertices[vertnum]; if (v->segs == segnum) { v->segs = Segs[segnum].nextforvert; } else { DWORD prev, curr; prev = 0; curr = v->segs; while (curr != DWORD_MAX && curr != segnum) { prev = curr; curr = Segs[curr].nextforvert; } if (curr == segnum) { Segs[prev].nextforvert = Segs[curr].nextforvert; } } } void FNodeBuilder::RemoveSegFromVert2 (DWORD segnum, int vertnum) { FPrivVert *v = &Vertices[vertnum]; if (v->segs2 == segnum) { v->segs2 = Segs[segnum].nextforvert2; } else { DWORD prev, curr; prev = 0; curr = v->segs2; while (curr != DWORD_MAX && curr != segnum) { prev = curr; curr = Segs[curr].nextforvert2; } if (curr == segnum) { Segs[prev].nextforvert2 = Segs[curr].nextforvert2; } } } double FNodeBuilder::InterceptVector (const node_t &splitter, const FPrivSeg &seg) { double v2x = (double)Vertices[seg.v1].x; double v2y = (double)Vertices[seg.v1].y; double v2dx = (double)Vertices[seg.v2].x - v2x; double v2dy = (double)Vertices[seg.v2].y - v2y; double v1dx = (double)splitter.dx; double v1dy = (double)splitter.dy; double den = v1dy*v2dx - v1dx*v2dy; if (den == 0.0) return 0; // parallel double v1x = (double)splitter.x; double v1y = (double)splitter.y; double num = (v1x - v2x)*v1dy + (v2y - v1y)*v1dx; double frac = num / den; return frac; } int FNodeBuilder::PointOnSide (int x, int y, int x1, int y1, int dx, int dy) { // For most cases, a simple dot product is enough. double d_dx = double(dx); double d_dy = double(dy); double d_x = double(x); double d_y = double(y); double d_x1 = double(x1); double d_y1 = double(y1); double s_num = (d_y1-d_y)*d_dx - (d_x1-d_x)*d_dy; if (fabs(s_num) < 17179869184.0) // 4<<32 { // Either the point is very near the line, or the segment defining // the line is very short: Do a more expensive test to determine // just how far from the line the point is. double l = sqrt(d_dx*d_dx+d_dy*d_dy); double dist = fabs(s_num)/l; if (dist < SIDE_EPSILON) { return 0; } } return s_num > 0.0 ? -1 : 1; } void FNodeBuilder::PrintSet (int l, DWORD set) { Printf ("set %d:\n", l); for (; set != DWORD_MAX; set = Segs[set].next) { Printf ("\t%lu(%d):%d(%ld,%ld)-%d(%ld,%ld) ", set, Segs[set].frontsector-sectors, Segs[set].v1, Vertices[Segs[set].v1].x>>16, Vertices[Segs[set].v1].y>>16, Segs[set].v2, Vertices[Segs[set].v2].x>>16, Vertices[Segs[set].v2].y>>16); } Printf ("*\n"); }