// //--------------------------------------------------------------------------- // // Copyright(C) 2016 Magnus Norddahl // All rights reserved. // // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU Lesser General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU Lesser General Public License for more details. // // You should have received a copy of the GNU Lesser General Public License // along with this program. If not, see http://www.gnu.org/licenses/ // //-------------------------------------------------------------------------- // /* ** gl_postprocess.cpp ** Post processing effects in the render pipeline ** */ #include "gl/system/gl_system.h" #include "gi.h" #include "m_png.h" #include "m_random.h" #include "st_stuff.h" #include "dobject.h" #include "doomstat.h" #include "g_level.h" #include "r_data/r_interpolate.h" #include "r_utility.h" #include "d_player.h" #include "p_effect.h" #include "sbar.h" #include "po_man.h" #include "r_utility.h" #include "a_hexenglobal.h" #include "p_local.h" #include "colormatcher.h" #include "gl/gl_functions.h" #include "gl/system/gl_interface.h" #include "gl/system/gl_framebuffer.h" #include "gl/system/gl_cvars.h" #include "gl/system/gl_debug.h" #include "gl/renderer/gl_lightdata.h" #include "gl/renderer/gl_renderstate.h" #include "gl/renderer/gl_renderbuffers.h" #include "gl/renderer/gl_renderer.h" #include "gl/renderer/gl_postprocessstate.h" #include "gl/data/gl_data.h" #include "gl/data/gl_vertexbuffer.h" #include "gl/shaders/gl_ambientshader.h" #include "gl/shaders/gl_bloomshader.h" #include "gl/shaders/gl_blurshader.h" #include "gl/shaders/gl_tonemapshader.h" #include "gl/shaders/gl_colormapshader.h" #include "gl/shaders/gl_lensshader.h" #include "gl/shaders/gl_presentshader.h" #include "gl/renderer/gl_2ddrawer.h" #include "gl/stereo3d/gl_stereo3d.h" //========================================================================== // // CVARs // //========================================================================== CVAR(Bool, gl_bloom, false, CVAR_ARCHIVE|CVAR_GLOBALCONFIG); CUSTOM_CVAR(Float, gl_bloom_amount, 1.4f, 0) { if (self < 0.1f) self = 0.1f; } CVAR(Float, gl_exposure_scale, 1.3f, 0) CVAR(Float, gl_exposure_min, 0.35f, 0) CVAR(Float, gl_exposure_base, 0.35f, 0) CVAR(Float, gl_exposure_speed, 0.05f, 0) CUSTOM_CVAR(Int, gl_tonemap, 0, CVAR_ARCHIVE|CVAR_GLOBALCONFIG) { if (self < 0 || self > 5) self = 0; } CUSTOM_CVAR(Int, gl_bloom_kernel_size, 7, 0) { if (self < 3 || self > 15 || self % 2 == 0) self = 7; } CVAR(Bool, gl_lens, false, CVAR_ARCHIVE | CVAR_GLOBALCONFIG) CVAR(Float, gl_lens_k, -0.12f, 0) CVAR(Float, gl_lens_kcube, 0.1f, 0) CVAR(Float, gl_lens_chromatic, 1.12f, 0) CVAR(Bool, gl_ssao, false, CVAR_ARCHIVE | CVAR_GLOBALCONFIG) CVAR(Float, gl_ssao_strength, 0.7, CVAR_ARCHIVE | CVAR_GLOBALCONFIG) CVAR(Bool, gl_ssao_debug, false, 0) CVAR(Float, gl_ssao_bias, 0.5f, 0) CVAR(Float, gl_ssao_radius, 100.0f, 0) CUSTOM_CVAR(Float, gl_ssao_blur_amount, 4.0f, 0) { if (self < 0.1f) self = 0.1f; } CUSTOM_CVAR(Int, gl_ssao_blur_samples, 5, 0) { if (self < 3 || self > 15 || self % 2 == 0) self = 9; } EXTERN_CVAR(Float, vid_brightness) EXTERN_CVAR(Float, vid_contrast) void FGLRenderer::RenderScreenQuad() { mVBO->BindVBO(); gl_RenderState.ResetVertexBuffer(); GLRenderer->mVBO->RenderArray(GL_TRIANGLE_STRIP, FFlatVertexBuffer::PRESENT_INDEX, 4); } void FGLRenderer::PostProcessScene() { mBuffers->BlitSceneToTexture(); UpdateCameraExposure(); BloomScene(); TonemapScene(); LensDistortScene(); } //----------------------------------------------------------------------------- // // Adds ambient occlusion to the scene // //----------------------------------------------------------------------------- void FGLRenderer::AmbientOccludeScene() { if (!gl_ssao || !FGLRenderBuffers::IsEnabled()) return; FGLDebug::PushGroup("AmbientOccludeScene"); FGLPostProcessState savedState; savedState.SaveTextureBinding1(); float bias = gl_ssao_bias; float aoRadius = gl_ssao_radius; const float blurAmount = gl_ssao_blur_amount; int blurSampleCount = gl_ssao_blur_samples; float aoStrength = gl_ssao_strength; bool multisample = gl_multisample > 1; //float tanHalfFovy = tan(fovy * (M_PI / 360.0f)); float tanHalfFovy = 1.0f / 1.33333302f; // 1.0f / gl_RenderState.mProjectionMatrix.get()[5]; float invFocalLenX = tanHalfFovy * (mBuffers->GetSceneWidth() / (float)mBuffers->GetSceneHeight()); float invFocalLenY = tanHalfFovy; float nDotVBias = clamp(bias, 0.0f, 1.0f); float r2 = aoRadius * aoRadius; // Calculate linear depth values glBindFramebuffer(GL_FRAMEBUFFER, mBuffers->AmbientFB0); glViewport(0, 0, mBuffers->AmbientWidth, mBuffers->AmbientHeight); mBuffers->BindSceneDepthTexture(0); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST); mLinearDepthShader->Bind(multisample); mLinearDepthShader->DepthTexture[multisample].Set(0); if (multisample) mLinearDepthShader->SampleCount[multisample].Set(gl_multisample); mLinearDepthShader->LinearizeDepthA[multisample].Set(1.0f / GetZFar() - 1.0f / GetZNear()); mLinearDepthShader->LinearizeDepthB[multisample].Set(MAX(1.0f / GetZNear(), 1.e-8f)); mLinearDepthShader->InverseDepthRangeA[multisample].Set(1.0f); mLinearDepthShader->InverseDepthRangeB[multisample].Set(0.0f); mLinearDepthShader->Scale[multisample].Set(mSceneViewport.width / (float)mScreenViewport.width, mSceneViewport.height / (float)mScreenViewport.height); mLinearDepthShader->Offset[multisample].Set(mSceneViewport.left / (float)mScreenViewport.width, mSceneViewport.top / (float)mScreenViewport.height); RenderScreenQuad(); // Apply ambient occlusion glBindFramebuffer(GL_FRAMEBUFFER, mBuffers->AmbientFB1); glBindTexture(GL_TEXTURE_2D, mBuffers->AmbientTexture0); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST); glActiveTexture(GL_TEXTURE1); glBindTexture(GL_TEXTURE_2D, mBuffers->AmbientRandomTexture); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST); glActiveTexture(GL_TEXTURE0); mSSAOShader->Bind(); mSSAOShader->DepthTexture.Set(0); mSSAOShader->RandomTexture.Set(1); mSSAOShader->UVToViewA.Set(2.0f * invFocalLenX, -2.0f * invFocalLenY); mSSAOShader->UVToViewB.Set(-invFocalLenX, invFocalLenY); mSSAOShader->InvFullResolution.Set(1.0f / mBuffers->AmbientWidth, 1.0f / mBuffers->AmbientHeight); mSSAOShader->NDotVBias.Set(nDotVBias); mSSAOShader->NegInvR2.Set(-1.0f / r2); mSSAOShader->RadiusToScreen.Set(aoRadius * 0.5 / tanHalfFovy * mBuffers->AmbientHeight); mSSAOShader->AOMultiplier.Set(1.0f / (1.0f - nDotVBias)); mSSAOShader->AOStrength.Set(aoStrength); RenderScreenQuad(); // Blur SSAO texture glBindFramebuffer(GL_FRAMEBUFFER, mBuffers->AmbientFB0); glBindTexture(GL_TEXTURE_2D, mBuffers->AmbientTexture1); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST); mDepthBlurShader->Bind(false); mDepthBlurShader->BlurSharpness[false].Set(blurAmount); mDepthBlurShader->InvFullResolution[false].Set(1.0f / mBuffers->AmbientWidth, 1.0f / mBuffers->AmbientHeight); RenderScreenQuad(); glBindFramebuffer(GL_FRAMEBUFFER, mBuffers->AmbientFB1); glBindTexture(GL_TEXTURE_2D, mBuffers->AmbientTexture0); mDepthBlurShader->Bind(true); mDepthBlurShader->BlurSharpness[true].Set(blurAmount); mDepthBlurShader->InvFullResolution[true].Set(1.0f / mBuffers->AmbientWidth, 1.0f / mBuffers->AmbientHeight); mDepthBlurShader->PowExponent[true].Set(1.8f); RenderScreenQuad(); // Add SSAO back to scene texture: mBuffers->BindSceneFB(); glViewport(mSceneViewport.left, mSceneViewport.top, mSceneViewport.width, mSceneViewport.height); glEnable(GL_BLEND); glBlendEquation(GL_FUNC_ADD); if (gl_ssao_debug) glBlendFunc(GL_ONE, GL_ZERO); else glBlendFunc(GL_ZERO, GL_SRC_COLOR); glActiveTexture(GL_TEXTURE0); glBindTexture(GL_TEXTURE_2D, mBuffers->AmbientTexture1); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR); mSSAOCombineShader->Bind(); mSSAOCombineShader->AODepthTexture.Set(0); RenderScreenQuad(); FGLDebug::PopGroup(); } //----------------------------------------------------------------------------- // // Extracts light average from the scene and updates the camera exposure texture // //----------------------------------------------------------------------------- void FGLRenderer::UpdateCameraExposure() { if (!gl_bloom && gl_tonemap == 0) return; FGLDebug::PushGroup("UpdateCameraExposure"); FGLPostProcessState savedState; savedState.SaveTextureBinding1(); // Extract light level from scene texture: const auto &level0 = mBuffers->ExposureLevels[0]; glBindFramebuffer(GL_FRAMEBUFFER, level0.Framebuffer); glViewport(0, 0, level0.Width, level0.Height); mBuffers->BindCurrentTexture(0); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR); mExposureExtractShader->Bind(); mExposureExtractShader->SceneTexture.Set(0); mExposureExtractShader->Scale.Set(mSceneViewport.width / (float)mScreenViewport.width, mSceneViewport.height / (float)mScreenViewport.height); mExposureExtractShader->Offset.Set(mSceneViewport.left / (float)mScreenViewport.width, mSceneViewport.top / (float)mScreenViewport.height); RenderScreenQuad(); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST); // Find the average value: for (int i = 0; i + 1 < mBuffers->ExposureLevels.Size(); i++) { const auto &level = mBuffers->ExposureLevels[i]; const auto &next = mBuffers->ExposureLevels[i + 1]; glBindFramebuffer(GL_FRAMEBUFFER, next.Framebuffer); glViewport(0, 0, next.Width, next.Height); glBindTexture(GL_TEXTURE_2D, level.Texture); mExposureAverageShader->Bind(); mExposureAverageShader->ExposureTexture.Set(0); RenderScreenQuad(); } // Combine average value with current camera exposure: glBindFramebuffer(GL_FRAMEBUFFER, mBuffers->ExposureFB); glViewport(0, 0, 1, 1); if (!mBuffers->FirstExposureFrame) { glEnable(GL_BLEND); glBlendEquation(GL_FUNC_ADD); glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA); } else { mBuffers->FirstExposureFrame = false; } glActiveTexture(GL_TEXTURE0); glBindTexture(GL_TEXTURE_2D, mBuffers->ExposureLevels.Last().Texture); mExposureCombineShader->Bind(); mExposureCombineShader->ExposureTexture.Set(0); mExposureCombineShader->ExposureBase.Set(gl_exposure_base); mExposureCombineShader->ExposureMin.Set(gl_exposure_min); mExposureCombineShader->ExposureScale.Set(gl_exposure_scale); mExposureCombineShader->ExposureSpeed.Set(gl_exposure_speed); RenderScreenQuad(); glViewport(mScreenViewport.left, mScreenViewport.top, mScreenViewport.width, mScreenViewport.height); FGLDebug::PopGroup(); } //----------------------------------------------------------------------------- // // Adds bloom contribution to scene texture // //----------------------------------------------------------------------------- void FGLRenderer::BloomScene() { // Only bloom things if enabled and no special fixed light mode is active if (!gl_bloom || gl_fixedcolormap != CM_DEFAULT || gl_ssao_debug) return; FGLDebug::PushGroup("BloomScene"); FGLPostProcessState savedState; savedState.SaveTextureBinding1(); const float blurAmount = gl_bloom_amount; int sampleCount = gl_bloom_kernel_size; const auto &level0 = mBuffers->BloomLevels[0]; // Extract blooming pixels from scene texture: glBindFramebuffer(GL_FRAMEBUFFER, level0.VFramebuffer); glViewport(0, 0, level0.Width, level0.Height); mBuffers->BindCurrentTexture(0); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR); glActiveTexture(GL_TEXTURE1); glBindTexture(GL_TEXTURE_2D, mBuffers->ExposureTexture); glActiveTexture(GL_TEXTURE0); mBloomExtractShader->Bind(); mBloomExtractShader->SceneTexture.Set(0); mBloomExtractShader->ExposureTexture.Set(1); mBloomExtractShader->Scale.Set(mSceneViewport.width / (float)mScreenViewport.width, mSceneViewport.height / (float)mScreenViewport.height); mBloomExtractShader->Offset.Set(mSceneViewport.left / (float)mScreenViewport.width, mSceneViewport.top / (float)mScreenViewport.height); RenderScreenQuad(); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST); // Blur and downscale: for (int i = 0; i < FGLRenderBuffers::NumBloomLevels - 1; i++) { const auto &level = mBuffers->BloomLevels[i]; const auto &next = mBuffers->BloomLevels[i + 1]; mBlurShader->BlurHorizontal(this, blurAmount, sampleCount, level.VTexture, level.HFramebuffer, level.Width, level.Height); mBlurShader->BlurVertical(this, blurAmount, sampleCount, level.HTexture, next.VFramebuffer, next.Width, next.Height); } // Blur and upscale: for (int i = FGLRenderBuffers::NumBloomLevels - 1; i > 0; i--) { const auto &level = mBuffers->BloomLevels[i]; const auto &next = mBuffers->BloomLevels[i - 1]; mBlurShader->BlurHorizontal(this, blurAmount, sampleCount, level.VTexture, level.HFramebuffer, level.Width, level.Height); mBlurShader->BlurVertical(this, blurAmount, sampleCount, level.HTexture, level.VFramebuffer, level.Width, level.Height); // Linear upscale: glBindFramebuffer(GL_FRAMEBUFFER, next.VFramebuffer); glViewport(0, 0, next.Width, next.Height); glActiveTexture(GL_TEXTURE0); glBindTexture(GL_TEXTURE_2D, level.VTexture); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR); mBloomCombineShader->Bind(); mBloomCombineShader->BloomTexture.Set(0); RenderScreenQuad(); } mBlurShader->BlurHorizontal(this, blurAmount, sampleCount, level0.VTexture, level0.HFramebuffer, level0.Width, level0.Height); mBlurShader->BlurVertical(this, blurAmount, sampleCount, level0.HTexture, level0.VFramebuffer, level0.Width, level0.Height); // Add bloom back to scene texture: mBuffers->BindCurrentFB(); glViewport(mSceneViewport.left, mSceneViewport.top, mSceneViewport.width, mSceneViewport.height); glEnable(GL_BLEND); glBlendEquation(GL_FUNC_ADD); glBlendFunc(GL_ONE, GL_ONE); glActiveTexture(GL_TEXTURE0); glBindTexture(GL_TEXTURE_2D, level0.VTexture); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR); mBloomCombineShader->Bind(); mBloomCombineShader->BloomTexture.Set(0); RenderScreenQuad(); glViewport(mScreenViewport.left, mScreenViewport.top, mScreenViewport.width, mScreenViewport.height); FGLDebug::PopGroup(); } //----------------------------------------------------------------------------- // // Tonemap scene texture and place the result in the HUD/2D texture // //----------------------------------------------------------------------------- void FGLRenderer::TonemapScene() { if (gl_tonemap == 0) return; FGLDebug::PushGroup("TonemapScene"); FGLPostProcessState savedState; mBuffers->BindNextFB(); mBuffers->BindCurrentTexture(0); mTonemapShader->Bind(); mTonemapShader->SceneTexture.Set(0); if (mTonemapShader->IsPaletteMode()) { mTonemapShader->PaletteLUT.Set(1); BindTonemapPalette(1); } else { savedState.SaveTextureBinding1(); glActiveTexture(GL_TEXTURE1); glBindTexture(GL_TEXTURE_2D, mBuffers->ExposureTexture); glActiveTexture(GL_TEXTURE0); mTonemapShader->ExposureTexture.Set(1); } RenderScreenQuad(); mBuffers->NextTexture(); FGLDebug::PopGroup(); } void FGLRenderer::BindTonemapPalette(int texunit) { if (mTonemapPalette) { mTonemapPalette->Bind(texunit, 0, false); } else { TArray lut; lut.Resize(512 * 512 * 4); for (int r = 0; r < 64; r++) { for (int g = 0; g < 64; g++) { for (int b = 0; b < 64; b++) { PalEntry color = GPalette.BaseColors[(BYTE)PTM_BestColor((uint32 *)GPalette.BaseColors, (r << 2) | (r >> 4), (g << 2) | (g >> 4), (b << 2) | (b >> 4), 0, 256)]; int index = ((r * 64 + g) * 64 + b) * 4; lut[index] = color.r; lut[index + 1] = color.g; lut[index + 2] = color.b; lut[index + 3] = 255; } } } mTonemapPalette = new FHardwareTexture(512, 512, true); mTonemapPalette->CreateTexture(&lut[0], 512, 512, texunit, false, 0, "mTonemapPalette"); glActiveTexture(GL_TEXTURE0 + texunit); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE); glActiveTexture(GL_TEXTURE0); } } void FGLRenderer::ClearTonemapPalette() { delete mTonemapPalette; mTonemapPalette = nullptr; } //----------------------------------------------------------------------------- // // Colormap scene texture and place the result in the HUD/2D texture // //----------------------------------------------------------------------------- void FGLRenderer::ColormapScene() { if (gl_fixedcolormap < CM_FIRSTSPECIALCOLORMAP || gl_fixedcolormap >= CM_MAXCOLORMAP) return; FGLDebug::PushGroup("ColormapScene"); FGLPostProcessState savedState; mBuffers->BindNextFB(); mBuffers->BindCurrentTexture(0); mColormapShader->Bind(); FSpecialColormap *scm = &SpecialColormaps[gl_fixedcolormap - CM_FIRSTSPECIALCOLORMAP]; float m[] = { scm->ColorizeEnd[0] - scm->ColorizeStart[0], scm->ColorizeEnd[1] - scm->ColorizeStart[1], scm->ColorizeEnd[2] - scm->ColorizeStart[2], 0.f }; mColormapShader->MapStart.Set(scm->ColorizeStart[0], scm->ColorizeStart[1], scm->ColorizeStart[2], 0.f); mColormapShader->MapRange.Set(m); RenderScreenQuad(); mBuffers->NextTexture(); FGLDebug::PopGroup(); } //----------------------------------------------------------------------------- // // Apply lens distortion and place the result in the HUD/2D texture // //----------------------------------------------------------------------------- void FGLRenderer::LensDistortScene() { if (gl_lens == 0) return; FGLDebug::PushGroup("LensDistortScene"); float k[4] = { gl_lens_k, gl_lens_k * gl_lens_chromatic, gl_lens_k * gl_lens_chromatic * gl_lens_chromatic, 0.0f }; float kcube[4] = { gl_lens_kcube, gl_lens_kcube * gl_lens_chromatic, gl_lens_kcube * gl_lens_chromatic * gl_lens_chromatic, 0.0f }; float aspect = mSceneViewport.width / mSceneViewport.height; // Scale factor to keep sampling within the input texture float r2 = aspect * aspect * 0.25 + 0.25f; float sqrt_r2 = sqrt(r2); float f0 = 1.0f + MAX(r2 * (k[0] + kcube[0] * sqrt_r2), 0.0f); float f2 = 1.0f + MAX(r2 * (k[2] + kcube[2] * sqrt_r2), 0.0f); float f = MAX(f0, f2); float scale = 1.0f / f; FGLPostProcessState savedState; mBuffers->BindNextFB(); mBuffers->BindCurrentTexture(0); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR); mLensShader->Bind(); mLensShader->InputTexture.Set(0); mLensShader->AspectRatio.Set(aspect); mLensShader->Scale.Set(scale); mLensShader->LensDistortionCoefficient.Set(k); mLensShader->CubicDistortionValue.Set(kcube); RenderScreenQuad(); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST); mBuffers->NextTexture(); FGLDebug::PopGroup(); } //----------------------------------------------------------------------------- // // Copies the rendered screen to its final destination // //----------------------------------------------------------------------------- void FGLRenderer::Flush() { const s3d::Stereo3DMode& stereo3dMode = s3d::Stereo3DMode::getCurrentMode(); if (stereo3dMode.IsMono() || !FGLRenderBuffers::IsEnabled()) { CopyToBackbuffer(nullptr, true); } else { // Render 2D to eye textures for (int eye_ix = 0; eye_ix < stereo3dMode.eye_count(); ++eye_ix) { FGLDebug::PushGroup("Eye2D"); mBuffers->BindEyeFB(eye_ix); glViewport(mScreenViewport.left, mScreenViewport.top, mScreenViewport.width, mScreenViewport.height); glScissor(mScreenViewport.left, mScreenViewport.top, mScreenViewport.width, mScreenViewport.height); m2DDrawer->Draw(); FGLDebug::PopGroup(); } m2DDrawer->Clear(); FGLPostProcessState savedState; FGLDebug::PushGroup("PresentEyes"); stereo3dMode.Present(); FGLDebug::PopGroup(); } } //----------------------------------------------------------------------------- // // Gamma correct while copying to frame buffer // //----------------------------------------------------------------------------- void FGLRenderer::CopyToBackbuffer(const GL_IRECT *bounds, bool applyGamma) { m2DDrawer->Draw(); // draw all pending 2D stuff before copying the buffer m2DDrawer->Clear(); FGLDebug::PushGroup("CopyToBackbuffer"); if (FGLRenderBuffers::IsEnabled()) { FGLPostProcessState savedState; mBuffers->BindOutputFB(); GL_IRECT box; if (bounds) { box = *bounds; } else { ClearBorders(); box = mOutputLetterbox; } mBuffers->BindCurrentTexture(0); DrawPresentTexture(box, applyGamma); } else if (!bounds) { FGLPostProcessState savedState; ClearBorders(); } FGLDebug::PopGroup(); } void FGLRenderer::DrawPresentTexture(const GL_IRECT &box, bool applyGamma) { glViewport(box.left, box.top, box.width, box.height); glActiveTexture(GL_TEXTURE0); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST); mPresentShader->Bind(); mPresentShader->InputTexture.Set(0); if (!applyGamma || framebuffer->IsHWGammaActive()) { mPresentShader->InvGamma.Set(1.0f); mPresentShader->Contrast.Set(1.0f); mPresentShader->Brightness.Set(0.0f); } else { mPresentShader->InvGamma.Set(1.0f / clamp(Gamma, 0.1f, 4.f)); mPresentShader->Contrast.Set(clamp(vid_contrast, 0.1f, 3.f)); mPresentShader->Brightness.Set(clamp(vid_brightness, -0.8f, 0.8f)); } mPresentShader->Scale.Set(mScreenViewport.width / (float)mBuffers->GetWidth(), mScreenViewport.height / (float)mBuffers->GetHeight()); RenderScreenQuad(); } //----------------------------------------------------------------------------- // // Fills the black bars around the screen letterbox // //----------------------------------------------------------------------------- void FGLRenderer::ClearBorders() { const auto &box = mOutputLetterbox; int clientWidth = framebuffer->GetClientWidth(); int clientHeight = framebuffer->GetClientHeight(); if (clientWidth == 0 || clientHeight == 0) return; glViewport(0, 0, clientWidth, clientHeight); glClearColor(0.0f, 0.0f, 0.0f, 1.0f); glEnable(GL_SCISSOR_TEST); if (box.top > 0) { glScissor(0, 0, clientWidth, box.top); glClear(GL_COLOR_BUFFER_BIT); } if (clientHeight - box.top - box.height > 0) { glScissor(0, box.top + box.height, clientWidth, clientHeight - box.top - box.height); glClear(GL_COLOR_BUFFER_BIT); } if (box.left > 0) { glScissor(0, box.top, box.left, box.height); glClear(GL_COLOR_BUFFER_BIT); } if (clientWidth - box.left - box.width > 0) { glScissor(box.left + box.width, box.top, clientWidth - box.left - box.width, box.height); glClear(GL_COLOR_BUFFER_BIT); } glDisable(GL_SCISSOR_TEST); } // [SP] Re-implemented BestColor for more precision rather than speed. This function is only ever called once until the game palette is changed. int FGLRenderer::PTM_BestColor (const uint32 *pal_in, int r, int g, int b, int first, int num) { const PalEntry *pal = (const PalEntry *)pal_in; static double powtable[256]; static bool firstTime = true; double fbestdist, fdist; int bestcolor; if (firstTime) { firstTime = false; for (int x = 0; x < 256; x++) powtable[x] = pow((double)x/255,1.2); } for (int color = first; color < num; color++) { double x = powtable[abs(r-pal[color].r)]; double y = powtable[abs(g-pal[color].g)]; double z = powtable[abs(b-pal[color].b)]; fdist = x + y + z; if (color == first || fdist < fbestdist) { if (fdist == 0) return color; fbestdist = fdist; bestcolor = color; } } return bestcolor; }