// Emacs style mode select -*- C++ -*- //----------------------------------------------------------------------------- // // $Id:$ // // Copyright (C) 1993-1996 by id Software, Inc. // // This source is available for distribution and/or modification // only under the terms of the DOOM Source Code License as // published by id Software. All rights reserved. // // The source is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // FITNESS FOR A PARTICULAR PURPOSE. See the DOOM Source Code License // for more details. // // $Log:$ // // DESCRIPTION: // True color span/column drawing functions. // //----------------------------------------------------------------------------- #include #include "templates.h" #include "doomdef.h" #include "i_system.h" #include "w_wad.h" #include "r_local.h" #include "v_video.h" #include "doomstat.h" #include "st_stuff.h" #include "g_game.h" #include "g_level.h" #include "r_data/r_translate.h" #include "v_palette.h" #include "r_data/colormaps.h" #include "r_plane.h" #include "r_draw_rgba.h" #include "gi.h" #include "stats.h" #include "x86.h" #ifndef NO_SSE #include #include #endif #include extern int vlinebits; extern int mvlinebits; extern int tmvlinebits; extern "C" short spanend[MAXHEIGHT]; extern float rw_light; extern float rw_lightstep; extern int wallshade; CVAR(Bool, r_multithreaded, true, 0) CVAR(Bool, r_bilinear, true, 0) #ifndef NO_SSE // Generate SSE drawers: #define VecCommand(name) name##_SSE_Command #define VEC_SHADE_SIMPLE_INIT SSE_SHADE_SIMPLE_INIT #define VEC_SHADE_SIMPLE_INIT4 SSE_SHADE_SIMPLE_INIT4 #define VEC_SHADE_SIMPLE SSE_SHADE_SIMPLE #define VEC_SHADE_INIT SSE_SHADE_INIT #define VEC_SHADE_INIT4 SSE_SHADE_INIT4 #define VEC_SHADE SSE_SHADE #include "r_draw_rgba_sse.h" /* // Generate AVX drawers: #undef VecCommand #undef VEC_SHADE_SIMPLE_INIT #undef VEC_SHADE_SIMPLE_INIT4 #undef VEC_SHADE_SIMPLE #undef VEC_SHADE_INIT #undef VEC_SHADE_INIT4 #undef VEC_SHADE #define VecCommand(name) name##_AVX_Command #define VEC_SHADE_SIMPLE_INIT AVX_LINEAR_SHADE_SIMPLE_INIT #define VEC_SHADE_SIMPLE_INIT4 AVX_LINEAR_SHADE_SIMPLE_INIT4 #define VEC_SHADE_SIMPLE AVX_LINEAR_SHADE_SIMPLE #define VEC_SHADE_INIT AVX_LINEAR_SHADE_INIT #define VEC_SHADE_INIT4 AVX_LINEAR_SHADE_INIT4 #define VEC_SHADE AVX_LINEAR_SHADE #include "r_draw_rgba_sse.h" */ #endif ///////////////////////////////////////////////////////////////////////////// DrawerCommandQueue *DrawerCommandQueue::Instance() { static DrawerCommandQueue queue; return &queue; } DrawerCommandQueue::~DrawerCommandQueue() { StopThreads(); } void* DrawerCommandQueue::AllocMemory(size_t size) { // Make sure allocations remain 16-byte aligned size = (size + 15) / 16 * 16; auto queue = Instance(); if (queue->memorypool_pos + size > memorypool_size) return nullptr; void *data = queue->memorypool + queue->memorypool_pos; queue->memorypool_pos += size; return data; } void DrawerCommandQueue::Begin() { auto queue = Instance(); queue->Finish(); queue->threaded_render++; } void DrawerCommandQueue::End() { auto queue = Instance(); queue->Finish(); if (queue->threaded_render > 0) queue->threaded_render--; } void DrawerCommandQueue::WaitForWorkers() { Instance()->Finish(); } void DrawerCommandQueue::Finish() { auto queue = Instance(); if (queue->commands.empty()) return; // Give worker threads something to do: std::unique_lock start_lock(queue->start_mutex); queue->active_commands.swap(queue->commands); queue->run_id++; start_lock.unlock(); queue->StartThreads(); queue->start_condition.notify_all(); // Do one thread ourselves: DrawerThread thread; thread.core = 0; thread.num_cores = queue->threads.size() + 1; for (int pass = 0; pass < queue->num_passes; pass++) { thread.pass_start_y = pass * queue->rows_in_pass; thread.pass_end_y = (pass + 1) * queue->rows_in_pass; if (pass + 1 == queue->num_passes) thread.pass_end_y = MAX(thread.pass_end_y, MAXHEIGHT); size_t size = queue->active_commands.size(); for (size_t i = 0; i < size; i++) { auto &command = queue->active_commands[i]; command->Execute(&thread); } } // Wait for everyone to finish: std::unique_lock end_lock(queue->end_mutex); queue->end_condition.wait(end_lock, [&]() { return queue->finished_threads == queue->threads.size(); }); // Clean up batch: for (auto &command : queue->active_commands) command->~DrawerCommand(); queue->active_commands.clear(); queue->memorypool_pos = 0; queue->finished_threads = 0; } void DrawerCommandQueue::StartThreads() { if (!threads.empty()) return; int num_threads = std::thread::hardware_concurrency(); if (num_threads == 0) num_threads = 4; threads.resize(num_threads - 1); for (int i = 0; i < num_threads - 1; i++) { DrawerCommandQueue *queue = this; DrawerThread *thread = &threads[i]; thread->core = i + 1; thread->num_cores = num_threads; thread->thread = std::thread([=]() { int run_id = 0; while (true) { // Wait until we are signalled to run: std::unique_lock start_lock(queue->start_mutex); queue->start_condition.wait(start_lock, [&]() { return queue->run_id != run_id || queue->shutdown_flag; }); if (queue->shutdown_flag) break; run_id = queue->run_id; start_lock.unlock(); // Do the work: for (int pass = 0; pass < queue->num_passes; pass++) { thread->pass_start_y = pass * queue->rows_in_pass; thread->pass_end_y = (pass + 1) * queue->rows_in_pass; if (pass + 1 == queue->num_passes) thread->pass_end_y = MAX(thread->pass_end_y, MAXHEIGHT); size_t size = queue->active_commands.size(); for (size_t i = 0; i < size; i++) { auto &command = queue->active_commands[i]; command->Execute(thread); } } // Notify main thread that we finished: std::unique_lock end_lock(queue->end_mutex); queue->finished_threads++; end_lock.unlock(); queue->end_condition.notify_all(); } }); } } void DrawerCommandQueue::StopThreads() { std::unique_lock lock(start_mutex); shutdown_flag = true; lock.unlock(); start_condition.notify_all(); for (auto &thread : threads) thread.thread.join(); threads.clear(); lock.lock(); shutdown_flag = false; } ///////////////////////////////////////////////////////////////////////////// class DrawColumnRGBACommand : public DrawerCommand { int _count; BYTE * RESTRICT _dest; DWORD _texturefrac; DWORD _iscale; fixed_t _light; const BYTE * RESTRICT _source; int _pitch; ShadeConstants _shade_constants; BYTE * RESTRICT _colormap; public: DrawColumnRGBACommand() { _count = dc_count; _dest = dc_dest; _texturefrac = dc_texturefrac; _iscale = dc_iscale; _light = dc_light; _source = dc_source; _pitch = dc_pitch; _shade_constants = dc_shade_constants; _colormap = dc_colormap; } void Execute(DrawerThread *thread) override { int count; uint32_t* dest; fixed_t frac; fixed_t fracstep; count = thread->count_for_thread(_dest_y, _count); // Zero length, column does not exceed a pixel. if (count <= 0) return; // Framebuffer destination address. dest = thread->dest_for_thread(_dest_y, _pitch, (uint32_t*)_dest); uint32_t light = calc_light_multiplier(_light); ShadeConstants shade_constants = _shade_constants; // Determine scaling, // which is the only mapping to be done. fracstep = _iscale * thread->num_cores; frac = _texturefrac + _iscale * thread->skipped_by_thread(_dest_y); // [RH] Get local copies of these variables so that the compiler // has a better chance of optimizing this well. const BYTE *source = _source; int pitch = _pitch * thread->num_cores; BYTE *colormap = _colormap; do { *dest = shade_pal_index(colormap[source[frac >> FRACBITS]], light, shade_constants); dest += pitch; frac += fracstep; } while (--count); } }; class FillColumnRGBACommand : public DrawerCommand { int _count; BYTE * RESTRICT _dest; fixed_t _light; int _pitch; int _color; public: FillColumnRGBACommand() { _count = dc_count; _dest = dc_dest; _light = dc_light; _pitch = dc_pitch; _color = dc_color; } void Execute(DrawerThread *thread) override { int count; uint32_t* dest; count = thread->count_for_thread(_dest_y, _count); if (count <= 0) return; dest = thread->dest_for_thread(_dest_y, _pitch, (uint32_t*)_dest); uint32_t light = calc_light_multiplier(_light); { int pitch = _pitch * thread->num_cores; uint32_t color = shade_pal_index_simple(_color, light); do { *dest = color; dest += pitch; } while (--count); } } }; class FillAddColumnRGBACommand : public DrawerCommand { int _count; BYTE * RESTRICT _dest; int _pitch; uint32_t _srccolor; public: FillAddColumnRGBACommand() { _count = dc_count; _dest = dc_dest; _pitch = dc_pitch; _srccolor = dc_srccolor_bgra; } void Execute(DrawerThread *thread) override { int count; uint32_t *dest; count = thread->count_for_thread(_dest_y, _count); if (count <= 0) return; dest = thread->dest_for_thread(_dest_y, _pitch, (uint32_t*)_dest); int pitch = _pitch * thread->num_cores; uint32_t fg = _srccolor; uint32_t fg_red = (fg >> 16) & 0xff; uint32_t fg_green = (fg >> 8) & 0xff; uint32_t fg_blue = fg & 0xff; uint32_t fg_alpha = fg >> 24; fg_alpha += fg_alpha >> 7; fg_red *= fg_alpha; fg_green *= fg_alpha; fg_blue *= fg_alpha; uint32_t inv_alpha = 256 - fg_alpha; do { uint32_t bg_red = (*dest >> 16) & 0xff; uint32_t bg_green = (*dest >> 8) & 0xff; uint32_t bg_blue = (*dest) & 0xff; uint32_t red = (fg_red + bg_red * inv_alpha) / 256; uint32_t green = (fg_green + bg_green * inv_alpha) / 256; uint32_t blue = (fg_blue + bg_blue * inv_alpha) / 256; *dest = 0xff000000 | (red << 16) | (green << 8) | blue; dest += pitch; } while (--count); } }; class FillAddClampColumnRGBACommand : public DrawerCommand { int _count; BYTE * RESTRICT _dest; int _pitch; int _color; uint32_t _srccolor; fixed_t _srcalpha; fixed_t _destalpha; public: FillAddClampColumnRGBACommand() { _count = dc_count; _dest = dc_dest; _pitch = dc_pitch; _color = dc_color; _srccolor = dc_srccolor_bgra; _srcalpha = dc_srcalpha; _destalpha = dc_destalpha; } void Execute(DrawerThread *thread) override { int count; uint32_t *dest; count = thread->count_for_thread(_dest_y, _count); if (count <= 0) return; dest = thread->dest_for_thread(_dest_y, _pitch, (uint32_t*)_dest); int pitch = _pitch * thread->num_cores; uint32_t fg = _srccolor; uint32_t fg_red = (fg >> 16) & 0xff; uint32_t fg_green = (fg >> 8) & 0xff; uint32_t fg_blue = fg & 0xff; uint32_t fg_alpha = _srcalpha >> (FRACBITS - 8); uint32_t bg_alpha = _destalpha >> (FRACBITS - 8); fg_red *= fg_alpha; fg_green *= fg_alpha; fg_blue *= fg_alpha; do { uint32_t bg_red = (*dest >> 16) & 0xff; uint32_t bg_green = (*dest >> 8) & 0xff; uint32_t bg_blue = (*dest) & 0xff; uint32_t red = clamp((fg_red + bg_red * bg_alpha) / 256, 0, 255); uint32_t green = clamp((fg_green + bg_green * bg_alpha) / 256, 0, 255); uint32_t blue = clamp((fg_blue + bg_blue * bg_alpha) / 256, 0, 255); *dest = 0xff000000 | (red << 16) | (green << 8) | blue; dest += pitch; } while (--count); } }; class FillSubClampColumnRGBACommand : public DrawerCommand { int _count; BYTE * RESTRICT _dest; int _pitch; int _color; uint32_t _srccolor; fixed_t _srcalpha; fixed_t _destalpha; public: FillSubClampColumnRGBACommand() { _count = dc_count; _dest = dc_dest; _pitch = dc_pitch; _color = dc_color; _srccolor = dc_srccolor_bgra; _srcalpha = dc_srcalpha; _destalpha = dc_destalpha; } void Execute(DrawerThread *thread) override { int count; uint32_t *dest; count = thread->count_for_thread(_dest_y, _count); if (count <= 0) return; dest = thread->dest_for_thread(_dest_y, _pitch, (uint32_t*)_dest); int pitch = _pitch * thread->num_cores; uint32_t fg = _srccolor; uint32_t fg_red = (fg >> 16) & 0xff; uint32_t fg_green = (fg >> 8) & 0xff; uint32_t fg_blue = fg & 0xff; uint32_t fg_alpha = _srcalpha >> (FRACBITS - 8); uint32_t bg_alpha = _destalpha >> (FRACBITS - 8); fg_red *= fg_alpha; fg_green *= fg_alpha; fg_blue *= fg_alpha; do { uint32_t bg_red = (*dest >> 16) & 0xff; uint32_t bg_green = (*dest >> 8) & 0xff; uint32_t bg_blue = (*dest) & 0xff; uint32_t red = clamp((0x10000 - fg_red + bg_red * bg_alpha) / 256, 256, 256 + 255) - 256; uint32_t green = clamp((0x10000 - fg_green + bg_green * bg_alpha) / 256, 256, 256 + 255) - 256; uint32_t blue = clamp((0x10000 - fg_blue + bg_blue * bg_alpha) / 256, 256, 256 + 255) - 256; *dest = 0xff000000 | (red << 16) | (green << 8) | blue; dest += pitch; } while (--count); } }; class FillRevSubClampColumnRGBACommand : public DrawerCommand { int _count; BYTE * RESTRICT _dest; int _pitch; int _color; uint32_t _srccolor; fixed_t _srcalpha; fixed_t _destalpha; public: FillRevSubClampColumnRGBACommand() { _count = dc_count; _dest = dc_dest; _pitch = dc_pitch; _color = dc_color; _srccolor = dc_srccolor_bgra; _srcalpha = dc_srcalpha; _destalpha = dc_destalpha; } void Execute(DrawerThread *thread) override { int count; uint32_t *dest; count = thread->count_for_thread(_dest_y, _count); if (count <= 0) return; dest = thread->dest_for_thread(_dest_y, _pitch, (uint32_t*)_dest); int pitch = _pitch * thread->num_cores; uint32_t fg = _srccolor; uint32_t fg_red = (fg >> 16) & 0xff; uint32_t fg_green = (fg >> 8) & 0xff; uint32_t fg_blue = fg & 0xff; uint32_t fg_alpha = _srcalpha >> (FRACBITS - 8); uint32_t bg_alpha = _destalpha >> (FRACBITS - 8); fg_red *= fg_alpha; fg_green *= fg_alpha; fg_blue *= fg_alpha; do { uint32_t bg_red = (*dest >> 16) & 0xff; uint32_t bg_green = (*dest >> 8) & 0xff; uint32_t bg_blue = (*dest) & 0xff; uint32_t red = clamp((0x10000 + fg_red - bg_red * bg_alpha) / 256, 256, 256 + 255) - 256; uint32_t green = clamp((0x10000 + fg_green - bg_green * bg_alpha) / 256, 256, 256 + 255) - 256; uint32_t blue = clamp((0x10000 + fg_blue - bg_blue * bg_alpha) / 256, 256, 256 + 255) - 256; *dest = 0xff000000 | (red << 16) | (green << 8) | blue; dest += pitch; } while (--count); } }; class DrawFuzzColumnRGBACommand : public DrawerCommand { int _x; int _yl; int _yh; BYTE * RESTRICT _destorg; int _pitch; int _fuzzpos; int _fuzzviewheight; public: DrawFuzzColumnRGBACommand() { _x = dc_x; _yl = dc_yl; _yh = dc_yh; _destorg = dc_destorg; _pitch = dc_pitch; _fuzzpos = fuzzpos; _fuzzviewheight = fuzzviewheight; } void Execute(DrawerThread *thread) override { int count; uint32_t *dest; int yl = MAX(_yl, 1); int yh = MIN(_yh, _fuzzviewheight); count = thread->count_for_thread(yl, yh - yl + 1); // Zero length. if (count <= 0) return; dest = thread->dest_for_thread(yl, _pitch, ylookup[yl] + _x + (uint32_t*)_destorg); int pitch = _pitch * thread->num_cores; int fuzzstep = thread->num_cores; int fuzz = (_fuzzpos + thread->skipped_by_thread(yl)) % FUZZTABLE; yl += thread->skipped_by_thread(yl); // Handle the case where we would go out of bounds at the top: if (yl < fuzzstep) { uint32_t bg = dest[fuzzoffset[fuzz] * fuzzstep + pitch]; uint32_t bg_red = (bg >> 16) & 0xff; uint32_t bg_green = (bg >> 8) & 0xff; uint32_t bg_blue = (bg) & 0xff; uint32_t red = bg_red * 3 / 4; uint32_t green = bg_green * 3 / 4; uint32_t blue = bg_blue * 3 / 4; *dest = 0xff000000 | (red << 16) | (green << 8) | blue; dest += pitch; fuzz += fuzzstep; fuzz %= FUZZTABLE; count--; if (count == 0) return; } bool lowerbounds = (yl + count * fuzzstep > _fuzzviewheight); if (lowerbounds) count--; // Fuzz where fuzzoffset stays within bounds while (count > 0) { int available = (FUZZTABLE - fuzz); int next_wrap = available / fuzzstep; if (available % fuzzstep != 0) next_wrap++; int cnt = MIN(count, next_wrap); count -= cnt; do { uint32_t bg = dest[fuzzoffset[fuzz] * fuzzstep]; uint32_t bg_red = (bg >> 16) & 0xff; uint32_t bg_green = (bg >> 8) & 0xff; uint32_t bg_blue = (bg) & 0xff; uint32_t red = bg_red * 3 / 4; uint32_t green = bg_green * 3 / 4; uint32_t blue = bg_blue * 3 / 4; *dest = 0xff000000 | (red << 16) | (green << 8) | blue; dest += pitch; fuzz += fuzzstep; } while (--cnt); fuzz %= FUZZTABLE; } // Handle the case where we would go out of bounds at the bottom if (lowerbounds) { uint32_t bg = dest[fuzzoffset[fuzz] * fuzzstep - pitch]; uint32_t bg_red = (bg >> 16) & 0xff; uint32_t bg_green = (bg >> 8) & 0xff; uint32_t bg_blue = (bg) & 0xff; uint32_t red = bg_red * 3 / 4; uint32_t green = bg_green * 3 / 4; uint32_t blue = bg_blue * 3 / 4; *dest = 0xff000000 | (red << 16) | (green << 8) | blue; } } }; class DrawAddColumnRGBACommand : public DrawerCommand { int _count; BYTE * RESTRICT _dest; DWORD _iscale; DWORD _texturefrac; const BYTE * RESTRICT _source; int _pitch; fixed_t _light; ShadeConstants _shade_constants; fixed_t _srcalpha; fixed_t _destalpha; BYTE * RESTRICT _colormap; public: DrawAddColumnRGBACommand() { _count = dc_count; _dest = dc_dest; _iscale = dc_iscale; _texturefrac = dc_texturefrac; _source = dc_source; _pitch = dc_pitch; _light = dc_light; _shade_constants = dc_shade_constants; _srcalpha = dc_srcalpha; _destalpha = dc_destalpha; _colormap = dc_colormap; } void Execute(DrawerThread *thread) override { int count; uint32_t *dest; fixed_t frac; fixed_t fracstep; count = thread->count_for_thread(_dest_y, _count); if (count <= 0) return; dest = thread->dest_for_thread(_dest_y, _pitch, (uint32_t*)_dest); fracstep = _iscale * thread->num_cores; frac = _texturefrac + _iscale * thread->skipped_by_thread(_dest_y); { const BYTE *source = _source; int pitch = _pitch * thread->num_cores; uint32_t light = calc_light_multiplier(_light); ShadeConstants shade_constants = _shade_constants; BYTE *colormap = _colormap; uint32_t fg_alpha = _srcalpha >> (FRACBITS - 8); uint32_t bg_alpha = _destalpha >> (FRACBITS - 8); do { uint32_t fg = shade_pal_index(colormap[source[frac >> FRACBITS]], light, shade_constants); uint32_t fg_red = (fg >> 16) & 0xff; uint32_t fg_green = (fg >> 8) & 0xff; uint32_t fg_blue = fg & 0xff; uint32_t bg_red = (*dest >> 16) & 0xff; uint32_t bg_green = (*dest >> 8) & 0xff; uint32_t bg_blue = (*dest) & 0xff; uint32_t red = clamp((fg_red * fg_alpha + bg_red * bg_alpha) / 256, 0, 255); uint32_t green = clamp((fg_green * fg_alpha + bg_green * bg_alpha) / 256, 0, 255); uint32_t blue = clamp((fg_blue * fg_alpha + bg_blue * bg_alpha) / 256, 0, 255); *dest = 0xff000000 | (red << 16) | (green << 8) | blue; dest += pitch; frac += fracstep; } while (--count); } } }; class DrawTranslatedColumnRGBACommand : public DrawerCommand { int _count; fixed_t _light; ShadeConstants _shade_constants; BYTE * RESTRICT _dest; DWORD _iscale; DWORD _texturefrac; BYTE * RESTRICT _translation; const BYTE * RESTRICT _source; int _pitch; public: DrawTranslatedColumnRGBACommand() { _count = dc_count; _light = dc_light; _shade_constants = dc_shade_constants; _dest = dc_dest; _iscale = dc_iscale; _texturefrac = dc_texturefrac; _translation = dc_translation; _source = dc_source; _pitch = dc_pitch; } void Execute(DrawerThread *thread) override { int count; uint32_t* dest; fixed_t frac; fixed_t fracstep; count = thread->count_for_thread(_dest_y, _count); if (count <= 0) return; uint32_t light = calc_light_multiplier(_light); ShadeConstants shade_constants = _shade_constants; dest = thread->dest_for_thread(_dest_y, _pitch, (uint32_t*)_dest); fracstep = _iscale * thread->num_cores; frac = _texturefrac + _iscale * thread->skipped_by_thread(_dest_y); { // [RH] Local copies of global vars to improve compiler optimizations BYTE *translation = _translation; const BYTE *source = _source; int pitch = _pitch * thread->num_cores; do { *dest = shade_pal_index(translation[source[frac >> FRACBITS]], light, shade_constants); dest += pitch; frac += fracstep; } while (--count); } } }; class DrawTlatedAddColumnRGBACommand : public DrawerCommand { int _count; fixed_t _light; ShadeConstants _shade_constants; BYTE * RESTRICT _dest; DWORD _iscale; DWORD _texturefrac; BYTE * RESTRICT _translation; const BYTE * RESTRICT _source; int _pitch; fixed_t _srcalpha; fixed_t _destalpha; public: DrawTlatedAddColumnRGBACommand() { _count = dc_count; _light = dc_light; _shade_constants = dc_shade_constants; _dest = dc_dest; _iscale = dc_iscale; _texturefrac = dc_texturefrac; _translation = dc_translation; _source = dc_source; _pitch = dc_pitch; _srcalpha = dc_srcalpha; _destalpha = dc_destalpha; } void Execute(DrawerThread *thread) override { int count; uint32_t *dest; fixed_t frac; fixed_t fracstep; count = thread->count_for_thread(_dest_y, _count); if (count <= 0) return; uint32_t light = calc_light_multiplier(_light); ShadeConstants shade_constants = _shade_constants; dest = thread->dest_for_thread(_dest_y, _pitch, (uint32_t*)_dest); fracstep = _iscale * thread->num_cores; frac = _texturefrac + _iscale * thread->skipped_by_thread(_dest_y); { BYTE *translation = _translation; const BYTE *source = _source; int pitch = _pitch * thread->num_cores; uint32_t fg_alpha = _srcalpha >> (FRACBITS - 8); uint32_t bg_alpha = _destalpha >> (FRACBITS - 8); do { uint32_t fg = shade_pal_index(translation[source[frac >> FRACBITS]], light, shade_constants); uint32_t fg_red = (fg >> 16) & 0xff; uint32_t fg_green = (fg >> 8) & 0xff; uint32_t fg_blue = fg & 0xff; uint32_t bg_red = (*dest >> 16) & 0xff; uint32_t bg_green = (*dest >> 8) & 0xff; uint32_t bg_blue = (*dest) & 0xff; uint32_t red = clamp((fg_red * fg_alpha + bg_red * bg_alpha) / 256, 0, 255); uint32_t green = clamp((fg_green * fg_alpha + bg_green * bg_alpha) / 256, 0, 255); uint32_t blue = clamp((fg_blue * fg_alpha + bg_blue * bg_alpha) / 256, 0, 255); *dest = 0xff000000 | (red << 16) | (green << 8) | blue; dest += pitch; frac += fracstep; } while (--count); } } }; class DrawShadedColumnRGBACommand : public DrawerCommand { private: int _count; BYTE * RESTRICT _dest; DWORD _iscale; DWORD _texturefrac; fixed_t _light; const BYTE * RESTRICT _source; lighttable_t * RESTRICT _colormap; int _color; int _pitch; public: DrawShadedColumnRGBACommand() { _count = dc_count; _dest = dc_dest; _iscale = dc_iscale; _texturefrac = dc_texturefrac; _light = dc_light; _source = dc_source; _colormap = dc_colormap; _color = dc_color; _pitch = dc_pitch; } void Execute(DrawerThread *thread) override { int count; uint32_t *dest; fixed_t frac, fracstep; count = thread->count_for_thread(_dest_y, _count); if (count <= 0) return; dest = thread->dest_for_thread(_dest_y, _pitch, (uint32_t*)_dest); fracstep = _iscale * thread->num_cores; frac = _texturefrac + _iscale * thread->skipped_by_thread(_dest_y); uint32_t fg = shade_pal_index_simple(_color, calc_light_multiplier(_light)); uint32_t fg_red = (fg >> 16) & 0xff; uint32_t fg_green = (fg >> 8) & 0xff; uint32_t fg_blue = fg & 0xff; { const BYTE *source = _source; BYTE *colormap = _colormap; int pitch = _pitch * thread->num_cores; do { DWORD alpha = clamp(colormap[source[frac >> FRACBITS]], 0, 64); DWORD inv_alpha = 64 - alpha; uint32_t bg_red = (*dest >> 16) & 0xff; uint32_t bg_green = (*dest >> 8) & 0xff; uint32_t bg_blue = (*dest) & 0xff; uint32_t red = (fg_red * alpha + bg_red * inv_alpha) / 64; uint32_t green = (fg_green * alpha + bg_green * inv_alpha) / 64; uint32_t blue = (fg_blue * alpha + bg_blue * inv_alpha) / 64; *dest = 0xff000000 | (red << 16) | (green << 8) | blue; dest += pitch; frac += fracstep; } while (--count); } } }; class DrawAddClampColumnRGBACommand : public DrawerCommand { int _count; BYTE * RESTRICT _dest; DWORD _iscale; DWORD _texturefrac; const BYTE * RESTRICT _source; int _pitch; fixed_t _light; ShadeConstants _shade_constants; fixed_t _srcalpha; fixed_t _destalpha; public: DrawAddClampColumnRGBACommand() { _count = dc_count; _dest = dc_dest; _iscale = dc_iscale; _texturefrac = dc_texturefrac; _source = dc_source; _pitch = dc_pitch; _light = dc_light; _shade_constants = dc_shade_constants; _srcalpha = dc_srcalpha; _destalpha = dc_destalpha; } void Execute(DrawerThread *thread) override { int count; uint32_t *dest; fixed_t frac; fixed_t fracstep; count = thread->count_for_thread(_dest_y, _count); if (count <= 0) return; dest = thread->dest_for_thread(_dest_y, _pitch, (uint32_t*)_dest); fracstep = _iscale * thread->num_cores; frac = _texturefrac + _iscale * thread->skipped_by_thread(_dest_y); { const BYTE *source = _source; int pitch = _pitch * thread->num_cores; uint32_t light = calc_light_multiplier(_light); ShadeConstants shade_constants = _shade_constants; uint32_t fg_alpha = _srcalpha >> (FRACBITS - 8); uint32_t bg_alpha = _destalpha >> (FRACBITS - 8); do { uint32_t fg = shade_pal_index(source[frac >> FRACBITS], light, shade_constants); uint32_t fg_red = (fg >> 16) & 0xff; uint32_t fg_green = (fg >> 8) & 0xff; uint32_t fg_blue = fg & 0xff; uint32_t bg_red = (*dest >> 16) & 0xff; uint32_t bg_green = (*dest >> 8) & 0xff; uint32_t bg_blue = (*dest) & 0xff; uint32_t red = clamp((fg_red * fg_alpha + bg_red * bg_alpha) / 256, 0, 255); uint32_t green = clamp((fg_green * fg_alpha + bg_green * bg_alpha) / 256, 0, 255); uint32_t blue = clamp((fg_blue * fg_alpha + bg_blue * bg_alpha) / 256, 0, 255); *dest = 0xff000000 | (red << 16) | (green << 8) | blue; dest += pitch; frac += fracstep; } while (--count); } } }; class DrawAddClampTranslatedColumnRGBACommand : public DrawerCommand { int _count; BYTE * RESTRICT _dest; DWORD _iscale; DWORD _texturefrac; BYTE * RESTRICT _translation; const BYTE * RESTRICT _source; int _pitch; fixed_t _light; ShadeConstants _shade_constants; fixed_t _srcalpha; fixed_t _destalpha; public: DrawAddClampTranslatedColumnRGBACommand() { _count = dc_count; _dest = dc_dest; _iscale = dc_iscale; _texturefrac = dc_texturefrac; _translation = dc_translation; _source = dc_source; _pitch = dc_pitch; _light = dc_light; _shade_constants = dc_shade_constants; _srcalpha = dc_srcalpha; _destalpha = dc_destalpha; } void Execute(DrawerThread *thread) override { int count; uint32_t *dest; fixed_t frac; fixed_t fracstep; count = thread->count_for_thread(_dest_y, _count); if (count <= 0) return; dest = thread->dest_for_thread(_dest_y, _pitch, (uint32_t*)_dest); fracstep = _iscale * thread->num_cores; frac = _texturefrac + _iscale * thread->skipped_by_thread(_dest_y); { BYTE *translation = _translation; const BYTE *source = _source; int pitch = _pitch * thread->num_cores; uint32_t light = calc_light_multiplier(_light); ShadeConstants shade_constants = _shade_constants; uint32_t fg_alpha = _srcalpha >> (FRACBITS - 8); uint32_t bg_alpha = _destalpha >> (FRACBITS - 8); do { uint32_t fg = shade_pal_index(translation[source[frac >> FRACBITS]], light, shade_constants); uint32_t fg_red = (fg >> 16) & 0xff; uint32_t fg_green = (fg >> 8) & 0xff; uint32_t fg_blue = fg & 0xff; uint32_t bg_red = (*dest >> 16) & 0xff; uint32_t bg_green = (*dest >> 8) & 0xff; uint32_t bg_blue = (*dest) & 0xff; uint32_t red = clamp((fg_red * fg_alpha + bg_red * bg_alpha) / 256, 0, 255); uint32_t green = clamp((fg_green * fg_alpha + bg_green * bg_alpha) / 256, 0, 255); uint32_t blue = clamp((fg_blue * fg_alpha + bg_blue * bg_alpha) / 256, 0, 255); *dest = 0xff000000 | (red << 16) | (green << 8) | blue; dest += pitch; frac += fracstep; } while (--count); } } }; class DrawSubClampColumnRGBACommand : public DrawerCommand { int _count; BYTE * RESTRICT _dest; DWORD _iscale; DWORD _texturefrac; const BYTE * RESTRICT _source; int _pitch; fixed_t _light; ShadeConstants _shade_constants; fixed_t _srcalpha; fixed_t _destalpha; public: DrawSubClampColumnRGBACommand() { _count = dc_count; _dest = dc_dest; _iscale = dc_iscale; _texturefrac = dc_texturefrac; _source = dc_source; _pitch = dc_pitch; _light = dc_light; _shade_constants = dc_shade_constants; _srcalpha = dc_srcalpha; _destalpha = dc_destalpha; } void Execute(DrawerThread *thread) override { int count; uint32_t *dest; fixed_t frac; fixed_t fracstep; count = thread->count_for_thread(_dest_y, _count); if (count <= 0) return; dest = thread->dest_for_thread(_dest_y, _pitch, (uint32_t*)_dest); fracstep = _iscale * thread->num_cores; frac = _texturefrac + _iscale * thread->skipped_by_thread(_dest_y); { const BYTE *source = _source; int pitch = _pitch * thread->num_cores; uint32_t light = calc_light_multiplier(_light); ShadeConstants shade_constants = _shade_constants; uint32_t fg_alpha = _srcalpha >> (FRACBITS - 8); uint32_t bg_alpha = _destalpha >> (FRACBITS - 8); do { uint32_t fg = shade_pal_index(source[frac >> FRACBITS], light, shade_constants); uint32_t fg_red = (fg >> 16) & 0xff; uint32_t fg_green = (fg >> 8) & 0xff; uint32_t fg_blue = fg & 0xff; uint32_t bg_red = (*dest >> 16) & 0xff; uint32_t bg_green = (*dest >> 8) & 0xff; uint32_t bg_blue = (*dest) & 0xff; uint32_t red = clamp((0x10000 - fg_red * fg_alpha + bg_red * bg_alpha) / 256, 256, 256 + 255) - 256; uint32_t green = clamp((0x10000 - fg_green * fg_alpha + bg_green * bg_alpha) / 256, 256, 256 + 255) - 256; uint32_t blue = clamp((0x10000 - fg_blue * fg_alpha + bg_blue * bg_alpha) / 256, 256, 256 + 255) - 256; *dest = 0xff000000 | (red << 16) | (green << 8) | blue; dest += pitch; frac += fracstep; } while (--count); } } }; class DrawSubClampTranslatedColumnRGBACommand : public DrawerCommand { int _count; BYTE * RESTRICT _dest; DWORD _iscale; DWORD _texturefrac; const BYTE * RESTRICT _source; int _pitch; fixed_t _light; ShadeConstants _shade_constants; fixed_t _srcalpha; fixed_t _destalpha; BYTE * RESTRICT _translation; public: DrawSubClampTranslatedColumnRGBACommand() { _count = dc_count; _dest = dc_dest; _iscale = dc_iscale; _texturefrac = dc_texturefrac; _source = dc_source; _pitch = dc_pitch; _light = dc_light; _shade_constants = dc_shade_constants; _srcalpha = dc_srcalpha; _destalpha = dc_destalpha; _translation = dc_translation; } void Execute(DrawerThread *thread) override { int count; uint32_t *dest; fixed_t frac; fixed_t fracstep; count = thread->count_for_thread(_dest_y, _count); if (count <= 0) return; dest = thread->dest_for_thread(_dest_y, _pitch, (uint32_t*)_dest); fracstep = _iscale * thread->num_cores; frac = _texturefrac + _iscale * thread->skipped_by_thread(_dest_y); { BYTE *translation = _translation; const BYTE *source = _source; int pitch = _pitch * thread->num_cores; uint32_t light = calc_light_multiplier(_light); ShadeConstants shade_constants = _shade_constants; uint32_t fg_alpha = _srcalpha >> (FRACBITS - 8); uint32_t bg_alpha = _destalpha >> (FRACBITS - 8); do { uint32_t fg = shade_pal_index(translation[source[frac >> FRACBITS]], light, shade_constants); uint32_t fg_red = (fg >> 16) & 0xff; uint32_t fg_green = (fg >> 8) & 0xff; uint32_t fg_blue = fg & 0xff; uint32_t bg_red = (*dest >> 16) & 0xff; uint32_t bg_green = (*dest >> 8) & 0xff; uint32_t bg_blue = (*dest) & 0xff; uint32_t red = clamp((0x10000 - fg_red * fg_alpha + bg_red * bg_alpha) / 256, 256, 256 + 255) - 256; uint32_t green = clamp((0x10000 - fg_green * fg_alpha + bg_green * bg_alpha) / 256, 256, 256 + 255) - 256; uint32_t blue = clamp((0x10000 - fg_blue * fg_alpha + bg_blue * bg_alpha) / 256, 256, 256 + 255) - 256; *dest = 0xff000000 | (red << 16) | (green << 8) | blue; dest += pitch; frac += fracstep; } while (--count); } } }; class DrawRevSubClampColumnRGBACommand : public DrawerCommand { int _count; BYTE * RESTRICT _dest; DWORD _iscale; DWORD _texturefrac; const BYTE * RESTRICT _source; int _pitch; fixed_t _light; ShadeConstants _shade_constants; fixed_t _srcalpha; fixed_t _destalpha; public: DrawRevSubClampColumnRGBACommand() { _count = dc_count; _dest = dc_dest; _iscale = dc_iscale; _texturefrac = dc_texturefrac; _source = dc_source; _pitch = dc_pitch; _light = dc_light; _shade_constants = dc_shade_constants; _srcalpha = dc_srcalpha; _destalpha = dc_destalpha; } void Execute(DrawerThread *thread) override { int count; uint32_t *dest; fixed_t frac; fixed_t fracstep; count = thread->count_for_thread(_dest_y, _count); if (count <= 0) return; dest = thread->dest_for_thread(_dest_y, _pitch, (uint32_t*)_dest); fracstep = _iscale * thread->num_cores; frac = _texturefrac + _iscale * thread->skipped_by_thread(_dest_y); { const BYTE *source = _source; int pitch = _pitch * thread->num_cores; uint32_t light = calc_light_multiplier(_light); ShadeConstants shade_constants = _shade_constants; uint32_t fg_alpha = _srcalpha >> (FRACBITS - 8); uint32_t bg_alpha = _destalpha >> (FRACBITS - 8); do { uint32_t fg = shade_pal_index(source[frac >> FRACBITS], light, shade_constants); uint32_t fg_red = (fg >> 16) & 0xff; uint32_t fg_green = (fg >> 8) & 0xff; uint32_t fg_blue = fg & 0xff; uint32_t bg_red = (*dest >> 16) & 0xff; uint32_t bg_green = (*dest >> 8) & 0xff; uint32_t bg_blue = (*dest) & 0xff; uint32_t red = clamp((0x10000 + fg_red * fg_alpha - bg_red * bg_alpha) / 256, 256, 256 + 255) - 256; uint32_t green = clamp((0x10000 + fg_green * fg_alpha - bg_green * bg_alpha) / 256, 256, 256 + 255) - 256; uint32_t blue = clamp((0x10000 + fg_blue * fg_alpha - bg_blue * bg_alpha) / 256, 256, 256 + 255) - 256; *dest = 0xff000000 | (red << 16) | (green << 8) | blue; dest += pitch; frac += fracstep; } while (--count); } } }; class DrawRevSubClampTranslatedColumnRGBACommand : public DrawerCommand { int _count; BYTE * RESTRICT _dest; DWORD _iscale; DWORD _texturefrac; const BYTE * RESTRICT _source; int _pitch; fixed_t _light; ShadeConstants _shade_constants; fixed_t _srcalpha; fixed_t _destalpha; BYTE * RESTRICT _translation; public: DrawRevSubClampTranslatedColumnRGBACommand() { _count = dc_count; _dest = dc_dest; _iscale = dc_iscale; _texturefrac = dc_texturefrac; _source = dc_source; _pitch = dc_pitch; _light = dc_light; _shade_constants = dc_shade_constants; _srcalpha = dc_srcalpha; _destalpha = dc_destalpha; _translation = dc_translation; } void Execute(DrawerThread *thread) override { int count; uint32_t *dest; fixed_t frac; fixed_t fracstep; count = thread->count_for_thread(_dest_y, _count); if (count <= 0) return; dest = thread->dest_for_thread(_dest_y, _pitch, (uint32_t*)_dest); fracstep = _iscale * thread->num_cores; frac = _texturefrac + _iscale * thread->skipped_by_thread(_dest_y); { BYTE * RESTRICT translation = _translation; const BYTE * RESTRICT source = _source; int pitch = _pitch * thread->num_cores; uint32_t light = calc_light_multiplier(_light); ShadeConstants shade_constants = _shade_constants; uint32_t fg_alpha = _srcalpha >> (FRACBITS - 8); uint32_t bg_alpha = _destalpha >> (FRACBITS - 8); do { uint32_t fg = shade_pal_index(translation[source[frac >> FRACBITS]], light, shade_constants); uint32_t fg_red = (fg >> 16) & 0xff; uint32_t fg_green = (fg >> 8) & 0xff; uint32_t fg_blue = fg & 0xff; uint32_t bg_red = (*dest >> 16) & 0xff; uint32_t bg_green = (*dest >> 8) & 0xff; uint32_t bg_blue = (*dest) & 0xff; uint32_t red = clamp((0x10000 + fg_red * fg_alpha - bg_red * bg_alpha) / 256, 256, 256 + 255) - 256; uint32_t green = clamp((0x10000 + fg_green * fg_alpha - bg_green * bg_alpha) / 256, 256, 256 + 255) - 256; uint32_t blue = clamp((0x10000 + fg_blue * fg_alpha - bg_blue * bg_alpha) / 256, 256, 256 + 255) - 256; *dest = 0xff000000 | (red << 16) | (green << 8) | blue; dest += pitch; frac += fracstep; } while (--count); } } }; class DrawSpanRGBACommand : public DrawerCommand { const uint32_t * RESTRICT _source; fixed_t _xfrac; fixed_t _yfrac; fixed_t _xstep; fixed_t _ystep; int _x1; int _x2; int _y; int _xbits; int _ybits; BYTE * RESTRICT _destorg; fixed_t _light; ShadeConstants _shade_constants; public: DrawSpanRGBACommand() { _source = (const uint32_t*)ds_source; _xfrac = ds_xfrac; _yfrac = ds_yfrac; _xstep = ds_xstep; _ystep = ds_ystep; _x1 = ds_x1; _x2 = ds_x2; _y = ds_y; _xbits = ds_xbits; _ybits = ds_ybits; _destorg = dc_destorg; _light = ds_light; _shade_constants = ds_shade_constants; } void Execute(DrawerThread *thread) override { if (thread->line_skipped_by_thread(_y)) return; dsfixed_t xfrac; dsfixed_t yfrac; dsfixed_t xstep; dsfixed_t ystep; uint32_t* dest; const uint32_t* source = _source; int count; int spot; xfrac = _xfrac; yfrac = _yfrac; dest = ylookup[_y] + _x1 + (uint32_t*)_destorg; count = _x2 - _x1 + 1; xstep = _xstep; ystep = _ystep; uint32_t light = calc_light_multiplier(_light); ShadeConstants shade_constants = _shade_constants; fixed_t xmagnitude = abs((fixed_t)xstep) >> (32 - _xbits - FRACBITS); fixed_t ymagnitude = abs((fixed_t)ystep) >> (32 - _ybits - FRACBITS); fixed_t magnitude = xmagnitude + ymagnitude; bool magnifying = !r_bilinear || magnitude >> (FRACBITS - 1) == 0; if (magnifying) { if (_xbits == 6 && _ybits == 6) { // 64x64 is the most common case by far, so special case it. do { // Current texture index in u,v. spot = ((xfrac >> (32 - 6 - 6))&(63 * 64)) + (yfrac >> (32 - 6)); // Lookup pixel from flat texture tile *dest++ = shade_bgra(source[spot], light, shade_constants); // Next step in u,v. xfrac += xstep; yfrac += ystep; } while (--count); } else { BYTE yshift = 32 - _ybits; BYTE xshift = yshift - _xbits; int xmask = ((1 << _xbits) - 1) << _ybits; do { // Current texture index in u,v. spot = ((xfrac >> xshift) & xmask) + (yfrac >> yshift); // Lookup pixel from flat texture tile *dest++ = shade_bgra(source[spot], light, shade_constants); // Next step in u,v. xfrac += xstep; yfrac += ystep; } while (--count); } } else { if (_xbits == 6 && _ybits == 6) { // 64x64 is the most common case by far, so special case it. do { *dest++ = shade_bgra(sample_bilinear(source, xfrac, yfrac, 26, 26), light, shade_constants); xfrac += xstep; yfrac += ystep; } while (--count); } else { do { *dest++ = shade_bgra(sample_bilinear(source, xfrac, yfrac, 32 - _xbits, 32 - _ybits), light, shade_constants); xfrac += xstep; yfrac += ystep; } while (--count); } } } }; class DrawSpanMaskedRGBACommand : public DrawerCommand { const uint32_t * RESTRICT _source; fixed_t _light; ShadeConstants _shade_constants; fixed_t _xfrac; fixed_t _yfrac; BYTE * RESTRICT _destorg; int _x1; int _x2; int _y1; int _y; fixed_t _xstep; fixed_t _ystep; int _xbits; int _ybits; public: DrawSpanMaskedRGBACommand() { _source = (const uint32_t*)ds_source; _light = ds_light; _shade_constants = ds_shade_constants; _xfrac = ds_xfrac; _yfrac = ds_yfrac; _destorg = dc_destorg; _x1 = ds_x1; _x2 = ds_x2; _y = ds_y; _xstep = ds_xstep; _ystep = ds_ystep; _xbits = ds_xbits; _ybits = ds_ybits; } void Execute(DrawerThread *thread) override { if (thread->line_skipped_by_thread(_y)) return; dsfixed_t xfrac; dsfixed_t yfrac; dsfixed_t xstep; dsfixed_t ystep; uint32_t* dest; const uint32_t* source = _source; int count; int spot; uint32_t light = calc_light_multiplier(_light); ShadeConstants shade_constants = _shade_constants; xfrac = _xfrac; yfrac = _yfrac; dest = ylookup[_y] + _x1 + (uint32_t*)_destorg; count = _x2 - _x1 + 1; xstep = _xstep; ystep = _ystep; fixed_t xmagnitude = abs((fixed_t)xstep) >> (32 - _xbits - FRACBITS); fixed_t ymagnitude = abs((fixed_t)ystep) >> (32 - _ybits - FRACBITS); fixed_t magnitude = xmagnitude + ymagnitude; bool magnifying = !r_bilinear || magnitude >> (FRACBITS - 1) == 0; if (magnifying) { if (_xbits == 6 && _ybits == 6) { // 64x64 is the most common case by far, so special case it. do { uint32_t texdata; spot = ((xfrac >> (32 - 6 - 6))&(63 * 64)) + (yfrac >> (32 - 6)); texdata = source[spot]; *dest = alpha_blend(shade_bgra(texdata, light, shade_constants), *dest); dest++; xfrac += xstep; yfrac += ystep; } while (--count); } else { BYTE yshift = 32 - _ybits; BYTE xshift = yshift - _xbits; int xmask = ((1 << _xbits) - 1) << _ybits; do { uint32_t texdata; spot = ((xfrac >> xshift) & xmask) + (yfrac >> yshift); texdata = source[spot]; *dest = alpha_blend(shade_bgra(texdata, light, shade_constants), *dest); dest++; xfrac += xstep; yfrac += ystep; } while (--count); } } else { if (_xbits == 6 && _ybits == 6) { // 64x64 is the most common case by far, so special case it. do { *dest++ = alpha_blend(shade_bgra(sample_bilinear(source, xfrac, yfrac, 26, 26), light, shade_constants), *dest); xfrac += xstep; yfrac += ystep; } while (--count); } else { BYTE yshift = 32 - _ybits; BYTE xshift = yshift - _xbits; int xmask = ((1 << _xbits) - 1) << _ybits; do { *dest++ = alpha_blend(shade_bgra(sample_bilinear(source, xfrac, yfrac, 32 - _xbits, 32 - _ybits), light, shade_constants), *dest); xfrac += xstep; yfrac += ystep; } while (--count); } } } }; class DrawSpanTranslucentRGBACommand : public DrawerCommand { const uint32_t * RESTRICT _source; fixed_t _light; ShadeConstants _shade_constants; fixed_t _xfrac; fixed_t _yfrac; BYTE * RESTRICT _destorg; int _x1; int _x2; int _y1; int _y; fixed_t _xstep; fixed_t _ystep; int _xbits; int _ybits; fixed_t _srcalpha; fixed_t _destalpha; public: DrawSpanTranslucentRGBACommand() { _source = (const uint32_t *)ds_source; _light = ds_light; _shade_constants = ds_shade_constants; _xfrac = ds_xfrac; _yfrac = ds_yfrac; _destorg = dc_destorg; _x1 = ds_x1; _x2 = ds_x2; _y = ds_y; _xstep = ds_xstep; _ystep = ds_ystep; _xbits = ds_xbits; _ybits = ds_ybits; _srcalpha = dc_srcalpha; _destalpha = dc_destalpha; } void Execute(DrawerThread *thread) override { if (thread->line_skipped_by_thread(_y)) return; dsfixed_t xfrac; dsfixed_t yfrac; dsfixed_t xstep; dsfixed_t ystep; uint32_t* dest; const uint32_t* source = _source; int count; int spot; xfrac = _xfrac; yfrac = _yfrac; dest = ylookup[_y] + _x1 + (uint32_t*)_destorg; count = _x2 - _x1 + 1; xstep = _xstep; ystep = _ystep; uint32_t light = calc_light_multiplier(_light); ShadeConstants shade_constants = _shade_constants; uint32_t fg_alpha = _srcalpha >> (FRACBITS - 8); uint32_t bg_alpha = _destalpha >> (FRACBITS - 8); if (_xbits == 6 && _ybits == 6) { // 64x64 is the most common case by far, so special case it. do { spot = ((xfrac >> (32 - 6 - 6))&(63 * 64)) + (yfrac >> (32 - 6)); uint32_t fg = shade_bgra(source[spot], light, shade_constants); uint32_t fg_red = (fg >> 16) & 0xff; uint32_t fg_green = (fg >> 8) & 0xff; uint32_t fg_blue = (fg) & 0xff; uint32_t bg_red = (*dest >> 16) & 0xff; uint32_t bg_green = (*dest >> 8) & 0xff; uint32_t bg_blue = (*dest) & 0xff; uint32_t red = (fg_red * fg_alpha + bg_red * bg_alpha) / 256; uint32_t green = (fg_green * fg_alpha + bg_green * bg_alpha) / 256; uint32_t blue = (fg_blue * fg_alpha + bg_blue * bg_alpha) / 256; *dest++ = 0xff000000 | (red << 16) | (green << 8) | blue; xfrac += xstep; yfrac += ystep; } while (--count); } else { BYTE yshift = 32 - _ybits; BYTE xshift = yshift - _xbits; int xmask = ((1 << _xbits) - 1) << _ybits; do { spot = ((xfrac >> xshift) & xmask) + (yfrac >> yshift); uint32_t fg = shade_bgra(source[spot], light, shade_constants); uint32_t fg_red = (fg >> 16) & 0xff; uint32_t fg_green = (fg >> 8) & 0xff; uint32_t fg_blue = (fg) & 0xff; uint32_t bg_red = (*dest >> 16) & 0xff; uint32_t bg_green = (*dest >> 8) & 0xff; uint32_t bg_blue = (*dest) & 0xff; uint32_t red = (fg_red * fg_alpha + bg_red * bg_alpha) / 256; uint32_t green = (fg_green * fg_alpha + bg_green * bg_alpha) / 256; uint32_t blue = (fg_blue * fg_alpha + bg_blue * bg_alpha) / 256; *dest++ = 0xff000000 | (red << 16) | (green << 8) | blue; xfrac += xstep; yfrac += ystep; } while (--count); } } }; class DrawSpanMaskedTranslucentRGBACommand : public DrawerCommand { const uint32_t * RESTRICT _source; fixed_t _light; ShadeConstants _shade_constants; fixed_t _xfrac; fixed_t _yfrac; BYTE * RESTRICT _destorg; int _x1; int _x2; int _y1; int _y; fixed_t _xstep; fixed_t _ystep; int _xbits; int _ybits; fixed_t _srcalpha; fixed_t _destalpha; public: DrawSpanMaskedTranslucentRGBACommand() { _source = (const uint32_t*)ds_source; _light = ds_light; _shade_constants = ds_shade_constants; _xfrac = ds_xfrac; _yfrac = ds_yfrac; _destorg = dc_destorg; _x1 = ds_x1; _x2 = ds_x2; _y = ds_y; _xstep = ds_xstep; _ystep = ds_ystep; _xbits = ds_xbits; _ybits = ds_ybits; _srcalpha = dc_srcalpha; _destalpha = dc_destalpha; } void Execute(DrawerThread *thread) override { if (thread->line_skipped_by_thread(_y)) return; dsfixed_t xfrac; dsfixed_t yfrac; dsfixed_t xstep; dsfixed_t ystep; uint32_t* dest; const uint32_t* source = _source; int count; int spot; uint32_t light = calc_light_multiplier(_light); ShadeConstants shade_constants = _shade_constants; uint32_t fg_alpha = _srcalpha >> (FRACBITS - 8); uint32_t bg_alpha = _destalpha >> (FRACBITS - 8); xfrac = _xfrac; yfrac = _yfrac; dest = ylookup[_y] + _x1 + (uint32_t*)_destorg; count = _x2 - _x1 + 1; xstep = _xstep; ystep = _ystep; if (_xbits == 6 && _ybits == 6) { // 64x64 is the most common case by far, so special case it. do { uint32_t texdata; spot = ((xfrac >> (32 - 6 - 6))&(63 * 64)) + (yfrac >> (32 - 6)); texdata = source[spot]; if (texdata != 0) { uint32_t fg = shade_bgra(texdata, light, shade_constants); uint32_t fg_red = (fg >> 16) & 0xff; uint32_t fg_green = (fg >> 8) & 0xff; uint32_t fg_blue = (fg) & 0xff; uint32_t bg_red = (*dest >> 16) & 0xff; uint32_t bg_green = (*dest >> 8) & 0xff; uint32_t bg_blue = (*dest) & 0xff; uint32_t red = (fg_red * fg_alpha + bg_red * bg_alpha) / 256; uint32_t green = (fg_green * fg_alpha + bg_green * bg_alpha) / 256; uint32_t blue = (fg_blue * fg_alpha + bg_blue * bg_alpha) / 256; *dest = 0xff000000 | (red << 16) | (green << 8) | blue; } dest++; xfrac += xstep; yfrac += ystep; } while (--count); } else { BYTE yshift = 32 - _ybits; BYTE xshift = yshift - _xbits; int xmask = ((1 << _xbits) - 1) << _ybits; do { uint32_t texdata; spot = ((xfrac >> xshift) & xmask) + (yfrac >> yshift); texdata = source[spot]; if (texdata != 0) { uint32_t fg = shade_bgra(texdata, light, shade_constants); uint32_t fg_red = (fg >> 16) & 0xff; uint32_t fg_green = (fg >> 8) & 0xff; uint32_t fg_blue = (fg) & 0xff; uint32_t bg_red = (*dest >> 16) & 0xff; uint32_t bg_green = (*dest >> 8) & 0xff; uint32_t bg_blue = (*dest) & 0xff; uint32_t red = (fg_red * fg_alpha + bg_red * bg_alpha) / 256; uint32_t green = (fg_green * fg_alpha + bg_green * bg_alpha) / 256; uint32_t blue = (fg_blue * fg_alpha + bg_blue * bg_alpha) / 256; *dest = 0xff000000 | (red << 16) | (green << 8) | blue; } dest++; xfrac += xstep; yfrac += ystep; } while (--count); } } }; class DrawSpanAddClampRGBACommand : public DrawerCommand { const uint32_t * RESTRICT _source; fixed_t _light; ShadeConstants _shade_constants; fixed_t _xfrac; fixed_t _yfrac; BYTE * RESTRICT _destorg; int _x1; int _x2; int _y1; int _y; fixed_t _xstep; fixed_t _ystep; int _xbits; int _ybits; fixed_t _srcalpha; fixed_t _destalpha; public: DrawSpanAddClampRGBACommand() { _source = (const uint32_t*)ds_source; _light = ds_light; _shade_constants = ds_shade_constants; _xfrac = ds_xfrac; _yfrac = ds_yfrac; _destorg = dc_destorg; _x1 = ds_x1; _x2 = ds_x2; _y = ds_y; _xstep = ds_xstep; _ystep = ds_ystep; _xbits = ds_xbits; _ybits = ds_ybits; _srcalpha = dc_srcalpha; _destalpha = dc_destalpha; } void Execute(DrawerThread *thread) override { if (thread->line_skipped_by_thread(_y)) return; dsfixed_t xfrac; dsfixed_t yfrac; dsfixed_t xstep; dsfixed_t ystep; uint32_t* dest; const uint32_t* source = _source; int count; int spot; uint32_t light = calc_light_multiplier(_light); ShadeConstants shade_constants = _shade_constants; uint32_t fg_alpha = _srcalpha >> (FRACBITS - 8); uint32_t bg_alpha = _destalpha >> (FRACBITS - 8); xfrac = _xfrac; yfrac = _yfrac; dest = ylookup[_y] + _x1 + (uint32_t*)_destorg; count = _x2 - _x1 + 1; xstep = _xstep; ystep = _ystep; if (_xbits == 6 && _ybits == 6) { // 64x64 is the most common case by far, so special case it. do { spot = ((xfrac >> (32 - 6 - 6))&(63 * 64)) + (yfrac >> (32 - 6)); uint32_t fg = shade_bgra(source[spot], light, shade_constants); uint32_t fg_red = (fg >> 16) & 0xff; uint32_t fg_green = (fg >> 8) & 0xff; uint32_t fg_blue = (fg) & 0xff; uint32_t bg_red = (*dest >> 16) & 0xff; uint32_t bg_green = (*dest >> 8) & 0xff; uint32_t bg_blue = (*dest) & 0xff; uint32_t red = clamp((fg_red * fg_alpha + bg_red * bg_alpha) / 256, 0, 255); uint32_t green = clamp((fg_green * fg_alpha + bg_green * bg_alpha) / 256, 0, 255); uint32_t blue = clamp((fg_blue * fg_alpha + bg_blue * bg_alpha) / 256, 0, 255); *dest++ = 0xff000000 | (red << 16) | (green << 8) | blue; xfrac += xstep; yfrac += ystep; } while (--count); } else { BYTE yshift = 32 - _ybits; BYTE xshift = yshift - _xbits; int xmask = ((1 << _xbits) - 1) << _ybits; do { spot = ((xfrac >> xshift) & xmask) + (yfrac >> yshift); uint32_t fg = shade_bgra(source[spot], light, shade_constants); uint32_t fg_red = (fg >> 16) & 0xff; uint32_t fg_green = (fg >> 8) & 0xff; uint32_t fg_blue = (fg) & 0xff; uint32_t bg_red = (*dest >> 16) & 0xff; uint32_t bg_green = (*dest >> 8) & 0xff; uint32_t bg_blue = (*dest) & 0xff; uint32_t red = clamp((fg_red * fg_alpha + bg_red * bg_alpha) / 256, 0, 255); uint32_t green = clamp((fg_green * fg_alpha + bg_green * bg_alpha) / 256, 0, 255); uint32_t blue = clamp((fg_blue * fg_alpha + bg_blue * bg_alpha) / 256, 0, 255); *dest++ = 0xff000000 | (red << 16) | (green << 8) | blue; xfrac += xstep; yfrac += ystep; } while (--count); } } }; class DrawSpanMaskedAddClampRGBACommand : public DrawerCommand { const uint32_t * RESTRICT _source; fixed_t _light; ShadeConstants _shade_constants; fixed_t _xfrac; fixed_t _yfrac; BYTE * RESTRICT _destorg; int _x1; int _x2; int _y1; int _y; fixed_t _xstep; fixed_t _ystep; int _xbits; int _ybits; fixed_t _srcalpha; fixed_t _destalpha; public: DrawSpanMaskedAddClampRGBACommand() { _source = (const uint32_t*)ds_source; _light = ds_light; _shade_constants = ds_shade_constants; _xfrac = ds_xfrac; _yfrac = ds_yfrac; _destorg = dc_destorg; _x1 = ds_x1; _x2 = ds_x2; _y = ds_y; _xstep = ds_xstep; _ystep = ds_ystep; _xbits = ds_xbits; _ybits = ds_ybits; _srcalpha = dc_srcalpha; _destalpha = dc_destalpha; } void Execute(DrawerThread *thread) override { if (thread->line_skipped_by_thread(_y)) return; dsfixed_t xfrac; dsfixed_t yfrac; dsfixed_t xstep; dsfixed_t ystep; uint32_t* dest; const uint32_t* source = _source; int count; int spot; uint32_t light = calc_light_multiplier(_light); ShadeConstants shade_constants = _shade_constants; uint32_t fg_alpha = _srcalpha >> (FRACBITS - 8); uint32_t bg_alpha = _destalpha >> (FRACBITS - 8); xfrac = _xfrac; yfrac = _yfrac; dest = ylookup[_y] + _x1 + (uint32_t*)_destorg; count = _x2 - _x1 + 1; xstep = _xstep; ystep = _ystep; if (_xbits == 6 && _ybits == 6) { // 64x64 is the most common case by far, so special case it. do { uint32_t texdata; spot = ((xfrac >> (32 - 6 - 6))&(63 * 64)) + (yfrac >> (32 - 6)); texdata = source[spot]; if (texdata != 0) { uint32_t fg = shade_bgra(texdata, light, shade_constants); uint32_t fg_red = (fg >> 16) & 0xff; uint32_t fg_green = (fg >> 8) & 0xff; uint32_t fg_blue = (fg) & 0xff; uint32_t bg_red = (*dest >> 16) & 0xff; uint32_t bg_green = (*dest >> 8) & 0xff; uint32_t bg_blue = (*dest) & 0xff; uint32_t red = (fg_red * fg_alpha + bg_red * bg_alpha) / 256; uint32_t green = (fg_green * fg_alpha + bg_green * bg_alpha) / 256; uint32_t blue = (fg_blue * fg_alpha + bg_blue * bg_alpha) / 256; *dest = 0xff000000 | (red << 16) | (green << 8) | blue; } dest++; xfrac += xstep; yfrac += ystep; } while (--count); } else { BYTE yshift = 32 - _ybits; BYTE xshift = yshift - _xbits; int xmask = ((1 << _xbits) - 1) << _ybits; do { uint32_t texdata; spot = ((xfrac >> xshift) & xmask) + (yfrac >> yshift); texdata = source[spot]; if (texdata != 0) { uint32_t fg = shade_bgra(texdata, light, shade_constants); uint32_t fg_red = (fg >> 16) & 0xff; uint32_t fg_green = (fg >> 8) & 0xff; uint32_t fg_blue = (fg) & 0xff; uint32_t bg_red = (*dest >> 16) & 0xff; uint32_t bg_green = (*dest >> 8) & 0xff; uint32_t bg_blue = (*dest) & 0xff; uint32_t red = (fg_red * fg_alpha + bg_red * bg_alpha) / 256; uint32_t green = (fg_green * fg_alpha + bg_green * bg_alpha) / 256; uint32_t blue = (fg_blue * fg_alpha + bg_blue * bg_alpha) / 256; *dest = 0xff000000 | (red << 16) | (green << 8) | blue; } dest++; xfrac += xstep; yfrac += ystep; } while (--count); } } }; class FillSpanRGBACommand : public DrawerCommand { int _x1; int _x2; int _y; BYTE * RESTRICT _destorg; fixed_t _light; int _color; public: FillSpanRGBACommand() { _x1 = ds_x1; _x2 = ds_x2; _y = ds_y; _destorg = dc_destorg; _light = ds_light; _color = ds_color; } void Execute(DrawerThread *thread) override { if (thread->line_skipped_by_thread(_y)) return; uint32_t *dest = ylookup[_y] + _x1 + (uint32_t*)_destorg; int count = (_x2 - _x1 + 1); uint32_t light = calc_light_multiplier(_light); uint32_t color = shade_pal_index_simple(_color, light); for (int i = 0; i < count; i++) dest[i] = color; } }; class Vlinec1RGBACommand : public DrawerCommand { DWORD _iscale; DWORD _texturefrac; int _count; const BYTE * RESTRICT _source; const BYTE * RESTRICT _source2; uint32_t _texturefracx; BYTE * RESTRICT _dest; int vlinebits; int _pitch; fixed_t _light; ShadeConstants _shade_constants; public: Vlinec1RGBACommand() { _iscale = dc_iscale; _texturefrac = dc_texturefrac; _count = dc_count; _source = dc_source; _source2 = dc_source2; _texturefracx = dc_texturefracx; _dest = dc_dest; vlinebits = ::vlinebits; _pitch = dc_pitch; _light = dc_light; _shade_constants = dc_shade_constants; } void Execute(DrawerThread *thread) override { int count = thread->count_for_thread(_dest_y, _count); if (count <= 0) return; DWORD fracstep = _iscale * thread->num_cores; DWORD frac = _texturefrac + _iscale * thread->skipped_by_thread(_dest_y); const uint32 *source = (const uint32 *)_source; const uint32 *source2 = (const uint32 *)_source2; uint32_t texturefracx = _texturefracx; uint32_t *dest = thread->dest_for_thread(_dest_y, _pitch, (uint32_t*)_dest); int bits = vlinebits; int pitch = _pitch * thread->num_cores; uint32_t light = calc_light_multiplier(_light); ShadeConstants shade_constants = _shade_constants; if (_source2 == nullptr) { do { *dest = shade_bgra(source[frac >> bits], light, shade_constants); frac += fracstep; dest += pitch; } while (--count); } else { do { *dest = shade_bgra(sample_bilinear(source, source2, texturefracx, frac, bits), light, shade_constants); frac += fracstep; dest += pitch; } while (--count); } } }; class Vlinec4RGBACommand : public DrawerCommand { BYTE * RESTRICT _dest; int _count; int _pitch; ShadeConstants _shade_constants; int vlinebits; fixed_t palookuplight[4]; DWORD vplce[4]; DWORD vince[4]; const uint32_t * RESTRICT bufplce[4]; const uint32_t * RESTRICT bufplce2[4]; uint32_t buftexturefracx[4]; public: Vlinec4RGBACommand() { _dest = dc_dest; _count = dc_count; _pitch = dc_pitch; _shade_constants = dc_shade_constants; vlinebits = ::vlinebits; for (int i = 0; i < 4; i++) { palookuplight[i] = ::palookuplight[i]; vplce[i] = ::vplce[i]; vince[i] = ::vince[i]; bufplce[i] = (const uint32_t *)::bufplce[i]; bufplce2[i] = (const uint32_t *)::bufplce2[i]; buftexturefracx[i] = ::buftexturefracx[i]; } } void Execute(DrawerThread *thread) override { int count = thread->count_for_thread(_dest_y, _count); if (count <= 0) return; uint32_t *dest = thread->dest_for_thread(_dest_y, _pitch, (uint32_t*)_dest); int pitch = _pitch * thread->num_cores; int bits = vlinebits; DWORD place; uint32_t light0 = calc_light_multiplier(palookuplight[0]); uint32_t light1 = calc_light_multiplier(palookuplight[1]); uint32_t light2 = calc_light_multiplier(palookuplight[2]); uint32_t light3 = calc_light_multiplier(palookuplight[3]); ShadeConstants shade_constants = _shade_constants; DWORD local_vplce[4] = { vplce[0], vplce[1], vplce[2], vplce[3] }; DWORD local_vince[4] = { vince[0], vince[1], vince[2], vince[3] }; int skipped = thread->skipped_by_thread(_dest_y); for (int i = 0; i < 4; i++) { local_vplce[i] += local_vince[i] * skipped; local_vince[i] *= thread->num_cores; } if (bufplce2[0] == nullptr) { do { dest[0] = shade_bgra(bufplce[0][(place = local_vplce[0]) >> bits], light0, shade_constants); local_vplce[0] = place + local_vince[0]; dest[1] = shade_bgra(bufplce[1][(place = local_vplce[1]) >> bits], light1, shade_constants); local_vplce[1] = place + local_vince[1]; dest[2] = shade_bgra(bufplce[2][(place = local_vplce[2]) >> bits], light2, shade_constants); local_vplce[2] = place + local_vince[2]; dest[3] = shade_bgra(bufplce[3][(place = local_vplce[3]) >> bits], light3, shade_constants); local_vplce[3] = place + local_vince[3]; dest += pitch; } while (--count); } else { do { dest[0] = shade_bgra(sample_bilinear(bufplce[0], bufplce2[0], buftexturefracx[0], place = local_vplce[0], bits), light0, shade_constants); local_vplce[0] = place + local_vince[0]; dest[1] = shade_bgra(sample_bilinear(bufplce[1], bufplce2[1], buftexturefracx[1], place = local_vplce[1], bits), light1, shade_constants); local_vplce[1] = place + local_vince[1]; dest[2] = shade_bgra(sample_bilinear(bufplce[2], bufplce2[2], buftexturefracx[2], place = local_vplce[2], bits), light2, shade_constants); local_vplce[2] = place + local_vince[2]; dest[3] = shade_bgra(sample_bilinear(bufplce[3], bufplce2[3], buftexturefracx[3], place = local_vplce[3], bits), light3, shade_constants); local_vplce[3] = place + local_vince[3]; dest += pitch; } while (--count); } } }; class Mvlinec1RGBACommand : public DrawerCommand { DWORD _iscale; DWORD _texturefrac; int _count; const BYTE * RESTRICT _source; const BYTE * RESTRICT _source2; uint32_t _texturefracx; BYTE * RESTRICT _dest; int mvlinebits; int _pitch; fixed_t _light; ShadeConstants _shade_constants; public: Mvlinec1RGBACommand() { _iscale = dc_iscale; _texturefrac = dc_texturefrac; _count = dc_count; _source = dc_source; _source2 = dc_source2; _texturefracx = dc_texturefracx; _dest = dc_dest; mvlinebits = ::mvlinebits; _pitch = dc_pitch; _light = dc_light; _shade_constants = dc_shade_constants; } void Execute(DrawerThread *thread) override { int count = thread->count_for_thread(_dest_y, _count); if (count <= 0) return; DWORD fracstep = _iscale * thread->num_cores; DWORD frac = _texturefrac + _iscale * thread->skipped_by_thread(_dest_y); const uint32 *source = (const uint32 *)_source; const uint32 *source2 = (const uint32 *)_source2; uint32_t texturefracx = _texturefracx; uint32_t *dest = thread->dest_for_thread(_dest_y, _pitch, (uint32_t*)_dest); int bits = mvlinebits; int pitch = _pitch * thread->num_cores; uint32_t light = calc_light_multiplier(_light); ShadeConstants shade_constants = _shade_constants; if (_source2 == nullptr) { do { uint32_t pix = source[frac >> bits]; *dest = alpha_blend(shade_bgra(pix, light, shade_constants), *dest); frac += fracstep; dest += pitch; } while (--count); } else { do { *dest = alpha_blend(shade_bgra(sample_bilinear(source, source2, texturefracx, frac, bits), light, shade_constants), *dest); frac += fracstep; dest += pitch; } while (--count); } } }; class Mvlinec4RGBACommand : public DrawerCommand { BYTE * RESTRICT _dest; int _count; int _pitch; ShadeConstants _shade_constants; int mvlinebits; fixed_t palookuplight[4]; DWORD vplce[4]; DWORD vince[4]; const uint32 * RESTRICT bufplce[4]; const uint32 * RESTRICT bufplce2[4]; uint32_t buftexturefracx[4]; public: Mvlinec4RGBACommand() { _dest = dc_dest; _count = dc_count; _pitch = dc_pitch; _shade_constants = dc_shade_constants; mvlinebits = ::mvlinebits; for (int i = 0; i < 4; i++) { palookuplight[i] = ::palookuplight[i]; vplce[i] = ::vplce[i]; vince[i] = ::vince[i]; bufplce[i] = (const uint32 *)::bufplce[i]; bufplce2[i] = (const uint32_t *)::bufplce2[i]; buftexturefracx[i] = ::buftexturefracx[i]; } } void Execute(DrawerThread *thread) override { int count = thread->count_for_thread(_dest_y, _count); if (count <= 0) return; uint32_t *dest = thread->dest_for_thread(_dest_y, _pitch, (uint32_t*)_dest); int pitch = _pitch * thread->num_cores; int bits = mvlinebits; DWORD place; uint32_t light0 = calc_light_multiplier(palookuplight[0]); uint32_t light1 = calc_light_multiplier(palookuplight[1]); uint32_t light2 = calc_light_multiplier(palookuplight[2]); uint32_t light3 = calc_light_multiplier(palookuplight[3]); ShadeConstants shade_constants = _shade_constants; DWORD local_vplce[4] = { vplce[0], vplce[1], vplce[2], vplce[3] }; DWORD local_vince[4] = { vince[0], vince[1], vince[2], vince[3] }; int skipped = thread->skipped_by_thread(_dest_y); for (int i = 0; i < 4; i++) { local_vplce[i] += local_vince[i] * skipped; local_vince[i] *= thread->num_cores; } if (bufplce2[0] == nullptr) { do { uint32_t pix; pix = bufplce[0][(place = local_vplce[0]) >> bits]; dest[0] = alpha_blend(shade_bgra(pix, light0, shade_constants), dest[0]); local_vplce[0] = place + local_vince[0]; pix = bufplce[1][(place = local_vplce[1]) >> bits]; dest[1] = alpha_blend(shade_bgra(pix, light1, shade_constants), dest[1]); local_vplce[1] = place + local_vince[1]; pix = bufplce[2][(place = local_vplce[2]) >> bits]; dest[2] = alpha_blend(shade_bgra(pix, light2, shade_constants), dest[2]); local_vplce[2] = place + local_vince[2]; pix = bufplce[3][(place = local_vplce[3]) >> bits]; dest[3] = alpha_blend(shade_bgra(pix, light3, shade_constants), dest[3]); local_vplce[3] = place + local_vince[3]; dest += pitch; } while (--count); } else { do { dest[0] = alpha_blend(shade_bgra(sample_bilinear(bufplce[0], bufplce2[0], buftexturefracx[0], place = local_vplce[0], bits), light0, shade_constants), dest[0]); local_vplce[0] = place + local_vince[0]; dest[1] = alpha_blend(shade_bgra(sample_bilinear(bufplce[1], bufplce2[1], buftexturefracx[1], place = local_vplce[1], bits), light1, shade_constants), dest[1]); local_vplce[1] = place + local_vince[1]; dest[2] = alpha_blend(shade_bgra(sample_bilinear(bufplce[2], bufplce2[2], buftexturefracx[2], place = local_vplce[2], bits), light2, shade_constants), dest[2]); local_vplce[2] = place + local_vince[2]; dest[3] = alpha_blend(shade_bgra(sample_bilinear(bufplce[3], bufplce2[3], buftexturefracx[3], place = local_vplce[3], bits), light3, shade_constants), dest[3]); local_vplce[3] = place + local_vince[3]; dest += pitch; } while (--count); } } }; class Tmvline1AddRGBACommand : public DrawerCommand { DWORD _iscale; DWORD _texturefrac; int _count; const BYTE * RESTRICT _source; BYTE * RESTRICT _dest; int tmvlinebits; int _pitch; fixed_t _light; ShadeConstants _shade_constants; fixed_t _srcalpha; fixed_t _destalpha; public: Tmvline1AddRGBACommand() { _iscale = dc_iscale; _texturefrac = dc_texturefrac; _count = dc_count; _source = dc_source; _dest = dc_dest; tmvlinebits = ::tmvlinebits; _pitch = dc_pitch; _light = dc_light; _shade_constants = dc_shade_constants; _srcalpha = dc_srcalpha; _destalpha = dc_destalpha; } void Execute(DrawerThread *thread) override { int count = thread->count_for_thread(_dest_y, _count); if (count <= 0) return; DWORD fracstep = _iscale * thread->num_cores; DWORD frac = _texturefrac + _iscale * thread->skipped_by_thread(_dest_y); const uint32 *source = (const uint32 *)_source; uint32_t *dest = thread->dest_for_thread(_dest_y, _pitch, (uint32_t*)_dest); int bits = tmvlinebits; int pitch = _pitch * thread->num_cores; uint32_t light = calc_light_multiplier(_light); ShadeConstants shade_constants = _shade_constants; uint32_t src_alpha = _srcalpha >> (FRACBITS - 8); uint32_t dest_alpha = _destalpha >> (FRACBITS - 8); do { uint32_t pix = source[frac >> bits]; uint32_t fg_alpha = src_alpha; uint32_t bg_alpha = calc_blend_bgalpha(pix, dest_alpha); uint32_t fg = shade_bgra(pix, light, shade_constants); uint32_t fg_red = (fg >> 16) & 0xff; uint32_t fg_green = (fg >> 8) & 0xff; uint32_t fg_blue = fg & 0xff; uint32_t bg_red = (*dest >> 16) & 0xff; uint32_t bg_green = (*dest >> 8) & 0xff; uint32_t bg_blue = (*dest) & 0xff; uint32_t red = clamp((fg_red * fg_alpha + bg_red * bg_alpha) / 256, 0, 255); uint32_t green = clamp((fg_green * fg_alpha + bg_green * bg_alpha) / 256, 0, 255); uint32_t blue = clamp((fg_blue * fg_alpha + bg_blue * bg_alpha) / 256, 0, 255); *dest = 0xff000000 | (red << 16) | (green << 8) | blue; frac += fracstep; dest += pitch; } while (--count); } }; class Tmvline4AddRGBACommand : public DrawerCommand { BYTE * RESTRICT _dest; int _count; int _pitch; ShadeConstants _shade_constants; fixed_t _srcalpha; fixed_t _destalpha; int tmvlinebits; fixed_t palookuplight[4]; DWORD vplce[4]; DWORD vince[4]; const uint32 * RESTRICT bufplce[4]; public: Tmvline4AddRGBACommand() { _dest = dc_dest; _count = dc_count; _pitch = dc_pitch; _shade_constants = dc_shade_constants; _srcalpha = dc_srcalpha; _destalpha = dc_destalpha; tmvlinebits = ::tmvlinebits; for (int i = 0; i < 4; i++) { palookuplight[i] = ::palookuplight[i]; vplce[i] = ::vplce[i]; vince[i] = ::vince[i]; bufplce[i] = (const uint32 *)::bufplce[i]; } } void Execute(DrawerThread *thread) override { int count = thread->count_for_thread(_dest_y, _count); if (count <= 0) return; uint32_t *dest = thread->dest_for_thread(_dest_y, _pitch, (uint32_t*)_dest); int pitch = _pitch * thread->num_cores; int bits = tmvlinebits; uint32_t light[4]; light[0] = calc_light_multiplier(palookuplight[0]); light[1] = calc_light_multiplier(palookuplight[1]); light[2] = calc_light_multiplier(palookuplight[2]); light[3] = calc_light_multiplier(palookuplight[3]); ShadeConstants shade_constants = _shade_constants; uint32_t src_alpha = _srcalpha >> (FRACBITS - 8); uint32_t dest_alpha = _destalpha >> (FRACBITS - 8); DWORD local_vplce[4] = { vplce[0], vplce[1], vplce[2], vplce[3] }; DWORD local_vince[4] = { vince[0], vince[1], vince[2], vince[3] }; int skipped = thread->skipped_by_thread(_dest_y); for (int i = 0; i < 4; i++) { local_vplce[i] += local_vince[i] * skipped; local_vince[i] *= thread->num_cores; } do { for (int i = 0; i < 4; ++i) { uint32_t pix = bufplce[i][local_vplce[i] >> bits]; uint32_t fg_alpha = src_alpha; uint32_t bg_alpha = calc_blend_bgalpha(pix, dest_alpha); uint32_t fg = shade_bgra(pix, light[i], shade_constants); uint32_t fg_red = (fg >> 16) & 0xff; uint32_t fg_green = (fg >> 8) & 0xff; uint32_t fg_blue = fg & 0xff; uint32_t bg_red = (*dest >> 16) & 0xff; uint32_t bg_green = (*dest >> 8) & 0xff; uint32_t bg_blue = (*dest) & 0xff; uint32_t red = clamp((fg_red * fg_alpha + bg_red * bg_alpha) / 256, 0, 255); uint32_t green = clamp((fg_green * fg_alpha + bg_green * bg_alpha) / 256, 0, 255); uint32_t blue = clamp((fg_blue * fg_alpha + bg_blue * bg_alpha) / 256, 0, 255); dest[i] = 0xff000000 | (red << 16) | (green << 8) | blue; local_vplce[i] += local_vince[i]; } dest += pitch; } while (--count); } }; class Tmvline1AddClampRGBACommand : public DrawerCommand { DWORD _iscale; DWORD _texturefrac; int _count; const BYTE * RESTRICT _source; BYTE * RESTRICT _dest; int tmvlinebits; int _pitch; fixed_t _light; ShadeConstants _shade_constants; fixed_t _srcalpha; fixed_t _destalpha; public: Tmvline1AddClampRGBACommand() { _iscale = dc_iscale; _texturefrac = dc_texturefrac; _count = dc_count; _source = dc_source; _dest = dc_dest; tmvlinebits = ::tmvlinebits; _pitch = dc_pitch; _light = dc_light; _shade_constants = dc_shade_constants; _srcalpha = dc_srcalpha; _destalpha = dc_destalpha; } void Execute(DrawerThread *thread) override { int count = thread->count_for_thread(_dest_y, _count); if (count <= 0) return; DWORD fracstep = _iscale * thread->num_cores; DWORD frac = _texturefrac + _iscale * thread->skipped_by_thread(_dest_y); const uint32 *source = (const uint32 *)_source; uint32_t *dest = thread->dest_for_thread(_dest_y, _pitch, (uint32_t*)_dest); int bits = tmvlinebits; int pitch = _pitch * thread->num_cores; uint32_t light = calc_light_multiplier(_light); ShadeConstants shade_constants = _shade_constants; uint32_t src_alpha = _srcalpha >> (FRACBITS - 8); uint32_t dest_alpha = _destalpha >> (FRACBITS - 8); do { uint32_t pix = source[frac >> bits]; uint32_t fg_alpha = src_alpha; uint32_t bg_alpha = calc_blend_bgalpha(pix, dest_alpha); uint32_t fg = shade_bgra(pix, light, shade_constants); uint32_t fg_red = (fg >> 16) & 0xff; uint32_t fg_green = (fg >> 8) & 0xff; uint32_t fg_blue = fg & 0xff; uint32_t bg_red = (*dest >> 16) & 0xff; uint32_t bg_green = (*dest >> 8) & 0xff; uint32_t bg_blue = (*dest) & 0xff; uint32_t red = clamp((fg_red * fg_alpha + bg_red * bg_alpha) / 256, 0, 255); uint32_t green = clamp((fg_green * fg_alpha + bg_green * bg_alpha) / 256, 0, 255); uint32_t blue = clamp((fg_blue * fg_alpha + bg_blue * bg_alpha) / 256, 0, 255); *dest = 0xff000000 | (red << 16) | (green << 8) | blue; frac += fracstep; dest += pitch; } while (--count); } }; class Tmvline4AddClampRGBACommand : public DrawerCommand { BYTE * RESTRICT _dest; int _count; int _pitch; ShadeConstants _shade_constants; fixed_t _srcalpha; fixed_t _destalpha; int tmvlinebits; fixed_t palookuplight[4]; DWORD vplce[4]; DWORD vince[4]; const uint32 *RESTRICT bufplce[4]; public: Tmvline4AddClampRGBACommand() { _dest = dc_dest; _count = dc_count; _pitch = dc_pitch; _shade_constants = dc_shade_constants; _srcalpha = dc_srcalpha; _destalpha = dc_destalpha; tmvlinebits = ::tmvlinebits; for (int i = 0; i < 4; i++) { palookuplight[i] = ::palookuplight[i]; vplce[i] = ::vplce[i]; vince[i] = ::vince[i]; bufplce[i] = (const uint32 *)::bufplce[i]; } } void Execute(DrawerThread *thread) override { int count = thread->count_for_thread(_dest_y, _count); if (count <= 0) return; uint32_t *dest = thread->dest_for_thread(_dest_y, _pitch, (uint32_t*)_dest); int pitch = _pitch * thread->num_cores; int bits = tmvlinebits; uint32_t light[4]; light[0] = calc_light_multiplier(palookuplight[0]); light[1] = calc_light_multiplier(palookuplight[1]); light[2] = calc_light_multiplier(palookuplight[2]); light[3] = calc_light_multiplier(palookuplight[3]); ShadeConstants shade_constants = _shade_constants; uint32_t src_alpha = _srcalpha >> (FRACBITS - 8); uint32_t dest_alpha = _destalpha >> (FRACBITS - 8); DWORD local_vplce[4] = { vplce[0], vplce[1], vplce[2], vplce[3] }; DWORD local_vince[4] = { vince[0], vince[1], vince[2], vince[3] }; int skipped = thread->skipped_by_thread(_dest_y); for (int i = 0; i < 4; i++) { local_vplce[i] += local_vince[i] * skipped; local_vince[i] *= thread->num_cores; } do { for (int i = 0; i < 4; ++i) { uint32_t pix = bufplce[i][local_vplce[i] >> bits]; uint32_t fg_alpha = src_alpha; uint32_t bg_alpha = calc_blend_bgalpha(pix, dest_alpha); uint32_t fg = shade_bgra(pix, light[i], shade_constants); uint32_t fg_red = (fg >> 16) & 0xff; uint32_t fg_green = (fg >> 8) & 0xff; uint32_t fg_blue = fg & 0xff; uint32_t bg_red = (dest[i] >> 16) & 0xff; uint32_t bg_green = (dest[i] >> 8) & 0xff; uint32_t bg_blue = (dest[i]) & 0xff; uint32_t red = clamp((fg_red * fg_alpha + bg_red * bg_alpha) / 256, 0, 255); uint32_t green = clamp((fg_green * fg_alpha + bg_green * bg_alpha) / 256, 0, 255); uint32_t blue = clamp((fg_blue * fg_alpha + bg_blue * bg_alpha) / 256, 0, 255); dest[i] = 0xff000000 | (red << 16) | (green << 8) | blue; local_vplce[i] += local_vince[i]; } dest += pitch; } while (--count); } }; class Tmvline1SubClampRGBACommand : public DrawerCommand { DWORD _iscale; DWORD _texturefrac; int _count; const BYTE * RESTRICT _source; BYTE * RESTRICT _dest; int tmvlinebits; int _pitch; fixed_t _light; ShadeConstants _shade_constants; fixed_t _srcalpha; fixed_t _destalpha; public: Tmvline1SubClampRGBACommand() { _iscale = dc_iscale; _texturefrac = dc_texturefrac; _count = dc_count; _source = dc_source; _dest = dc_dest; tmvlinebits = ::tmvlinebits; _pitch = dc_pitch; _light = dc_light; _shade_constants = dc_shade_constants; _srcalpha = dc_srcalpha; _destalpha = dc_destalpha; } void Execute(DrawerThread *thread) override { int count = thread->count_for_thread(_dest_y, _count); if (count <= 0) return; DWORD fracstep = _iscale * thread->num_cores; DWORD frac = _texturefrac + _iscale * thread->skipped_by_thread(_dest_y); const uint32 *source = (const uint32 *)_source; uint32_t *dest = thread->dest_for_thread(_dest_y, _pitch, (uint32_t*)_dest); int bits = tmvlinebits; int pitch = _pitch * thread->num_cores; uint32_t light = calc_light_multiplier(_light); ShadeConstants shade_constants = _shade_constants; uint32_t src_alpha = _srcalpha >> (FRACBITS - 8); uint32_t dest_alpha = _destalpha >> (FRACBITS - 8); do { uint32_t pix = source[frac >> bits]; uint32_t fg_alpha = src_alpha; uint32_t bg_alpha = calc_blend_bgalpha(pix, dest_alpha); uint32_t fg = shade_bgra(pix, light, shade_constants); uint32_t fg_red = (fg >> 16) & 0xff; uint32_t fg_green = (fg >> 8) & 0xff; uint32_t fg_blue = fg & 0xff; uint32_t bg_red = (*dest >> 16) & 0xff; uint32_t bg_green = (*dest >> 8) & 0xff; uint32_t bg_blue = (*dest) & 0xff; uint32_t red = clamp((0x10000 - fg_red * fg_alpha + bg_red * bg_alpha) / 256, 256, 256 + 255) - 256; uint32_t green = clamp((0x10000 - fg_green * fg_alpha + bg_green * bg_alpha) / 256, 256, 256 + 255) - 256; uint32_t blue = clamp((0x10000 - fg_blue * fg_alpha + bg_blue * bg_alpha) / 256, 256, 256 + 255) - 256; *dest = 0xff000000 | (red << 16) | (green << 8) | blue; frac += fracstep; dest += pitch; } while (--count); } }; class Tmvline4SubClampRGBACommand : public DrawerCommand { BYTE * RESTRICT _dest; int _count; int _pitch; ShadeConstants _shade_constants; fixed_t _srcalpha; fixed_t _destalpha; int tmvlinebits; fixed_t palookuplight[4]; DWORD vplce[4]; DWORD vince[4]; const uint32 *RESTRICT bufplce[4]; public: Tmvline4SubClampRGBACommand() { _dest = dc_dest; _count = dc_count; _pitch = dc_pitch; _shade_constants = dc_shade_constants; _srcalpha = dc_srcalpha; _destalpha = dc_destalpha; tmvlinebits = ::tmvlinebits; for (int i = 0; i < 4; i++) { palookuplight[i] = ::palookuplight[i]; vplce[i] = ::vplce[i]; vince[i] = ::vince[i]; bufplce[i] = (const uint32 *)::bufplce[i]; } } void Execute(DrawerThread *thread) override { int count = thread->count_for_thread(_dest_y, _count); if (count <= 0) return; uint32_t *dest = thread->dest_for_thread(_dest_y, _pitch, (uint32_t*)_dest); int pitch = _pitch * thread->num_cores; int bits = tmvlinebits; uint32_t light[4]; light[0] = calc_light_multiplier(palookuplight[0]); light[1] = calc_light_multiplier(palookuplight[1]); light[2] = calc_light_multiplier(palookuplight[2]); light[3] = calc_light_multiplier(palookuplight[3]); ShadeConstants shade_constants = _shade_constants; uint32_t src_alpha = _srcalpha >> (FRACBITS - 8); uint32_t dest_alpha = _destalpha >> (FRACBITS - 8); DWORD local_vplce[4] = { vplce[0], vplce[1], vplce[2], vplce[3] }; DWORD local_vince[4] = { vince[0], vince[1], vince[2], vince[3] }; int skipped = thread->skipped_by_thread(_dest_y); for (int i = 0; i < 4; i++) { local_vplce[i] += local_vince[i] * skipped; local_vince[i] *= thread->num_cores; } do { for (int i = 0; i < 4; ++i) { uint32_t pix = bufplce[i][local_vplce[i] >> bits]; uint32_t fg_alpha = src_alpha; uint32_t bg_alpha = calc_blend_bgalpha(pix, dest_alpha); uint32_t fg = shade_bgra(pix, light[i], shade_constants); uint32_t fg_red = (fg >> 16) & 0xff; uint32_t fg_green = (fg >> 8) & 0xff; uint32_t fg_blue = fg & 0xff; uint32_t bg_red = (dest[i] >> 16) & 0xff; uint32_t bg_green = (dest[i] >> 8) & 0xff; uint32_t bg_blue = (dest[i]) & 0xff; uint32_t red = clamp((0x10000 - fg_red * fg_alpha + bg_red * bg_alpha) / 256, 256, 256 + 255) - 256; uint32_t green = clamp((0x10000 - fg_green * fg_alpha + bg_green * bg_alpha) / 256, 256, 256 + 255) - 256; uint32_t blue = clamp((0x10000 - fg_blue * fg_alpha + bg_blue * bg_alpha) / 256, 256, 256 + 255) - 256; dest[i] = 0xff000000 | (red << 16) | (green << 8) | blue; local_vplce[i] += local_vince[i]; } dest += pitch; } while (--count); } }; class Tmvline1RevSubClampRGBACommand : public DrawerCommand { DWORD _iscale; DWORD _texturefrac; int _count; const BYTE * RESTRICT _source; BYTE * RESTRICT _dest; int tmvlinebits; int _pitch; fixed_t _light; ShadeConstants _shade_constants; fixed_t _srcalpha; fixed_t _destalpha; public: Tmvline1RevSubClampRGBACommand() { _iscale = dc_iscale; _texturefrac = dc_texturefrac; _count = dc_count; _source = dc_source; _dest = dc_dest; tmvlinebits = ::tmvlinebits; _pitch = dc_pitch; _light = dc_light; _shade_constants = dc_shade_constants; _srcalpha = dc_srcalpha; _destalpha = dc_destalpha; } void Execute(DrawerThread *thread) override { int count = thread->count_for_thread(_dest_y, _count); if (count <= 0) return; DWORD fracstep = _iscale * thread->num_cores; DWORD frac = _texturefrac + _iscale * thread->skipped_by_thread(_dest_y); const uint32 *source = (const uint32 *)_source; uint32_t *dest = thread->dest_for_thread(_dest_y, _pitch, (uint32_t*)_dest); int bits = tmvlinebits; int pitch = _pitch * thread->num_cores; uint32_t light = calc_light_multiplier(_light); ShadeConstants shade_constants = _shade_constants; uint32_t src_alpha = _srcalpha >> (FRACBITS - 8); uint32_t dest_alpha = _destalpha >> (FRACBITS - 8); do { uint32_t pix = source[frac >> bits]; uint32_t fg_alpha = src_alpha; uint32_t bg_alpha = calc_blend_bgalpha(pix, dest_alpha); uint32_t fg = shade_bgra(pix, light, shade_constants); uint32_t fg_red = (fg >> 16) & 0xff; uint32_t fg_green = (fg >> 8) & 0xff; uint32_t fg_blue = fg & 0xff; uint32_t bg_red = (*dest >> 16) & 0xff; uint32_t bg_green = (*dest >> 8) & 0xff; uint32_t bg_blue = (*dest) & 0xff; uint32_t red = clamp((0x10000 + fg_red * fg_alpha - bg_red * bg_alpha) / 256, 256, 256 + 255) - 256; uint32_t green = clamp((0x10000 + fg_green * fg_alpha - bg_green * bg_alpha) / 256, 256, 256 + 255) - 256; uint32_t blue = clamp((0x10000 + fg_blue * fg_alpha - bg_blue * bg_alpha) / 256, 256, 256 + 255) - 256; *dest = 0xff000000 | (red << 16) | (green << 8) | blue; frac += fracstep; dest += pitch; } while (--count); } }; class Tmvline4RevSubClampRGBACommand : public DrawerCommand { BYTE * RESTRICT _dest; int _count; int _pitch; ShadeConstants _shade_constants; fixed_t _srcalpha; fixed_t _destalpha; int tmvlinebits; fixed_t palookuplight[4]; DWORD vplce[4]; DWORD vince[4]; const uint32 *RESTRICT bufplce[4]; public: Tmvline4RevSubClampRGBACommand() { _dest = dc_dest; _count = dc_count; _pitch = dc_pitch; _shade_constants = dc_shade_constants; _srcalpha = dc_srcalpha; _destalpha = dc_destalpha; tmvlinebits = ::tmvlinebits; for (int i = 0; i < 4; i++) { palookuplight[i] = ::palookuplight[i]; vplce[i] = ::vplce[i]; vince[i] = ::vince[i]; bufplce[i] = (const uint32 *)::bufplce[i]; } } void Execute(DrawerThread *thread) override { int count = thread->count_for_thread(_dest_y, _count); if (count <= 0) return; uint32_t *dest = thread->dest_for_thread(_dest_y, _pitch, (uint32_t*)_dest); int pitch = _pitch * thread->num_cores; int bits = tmvlinebits; uint32_t light[4]; light[0] = calc_light_multiplier(palookuplight[0]); light[1] = calc_light_multiplier(palookuplight[1]); light[2] = calc_light_multiplier(palookuplight[2]); light[3] = calc_light_multiplier(palookuplight[3]); ShadeConstants shade_constants = _shade_constants; uint32_t src_alpha = _srcalpha >> (FRACBITS - 8); uint32_t dest_alpha = _destalpha >> (FRACBITS - 8); DWORD local_vplce[4] = { vplce[0], vplce[1], vplce[2], vplce[3] }; DWORD local_vince[4] = { vince[0], vince[1], vince[2], vince[3] }; int skipped = thread->skipped_by_thread(_dest_y); for (int i = 0; i < 4; i++) { local_vplce[i] += local_vince[i] * skipped; local_vince[i] *= thread->num_cores; } do { for (int i = 0; i < 4; ++i) { uint32_t pix = bufplce[i][local_vplce[i] >> bits]; uint32_t fg_alpha = src_alpha; uint32_t bg_alpha = calc_blend_bgalpha(pix, dest_alpha); uint32_t fg = shade_bgra(pix, light[i], shade_constants); uint32_t fg_red = (fg >> 16) & 0xff; uint32_t fg_green = (fg >> 8) & 0xff; uint32_t fg_blue = fg & 0xff; uint32_t bg_red = (dest[i] >> 16) & 0xff; uint32_t bg_green = (dest[i] >> 8) & 0xff; uint32_t bg_blue = (dest[i]) & 0xff; uint32_t red = clamp((0x10000 + fg_red * fg_alpha - bg_red * bg_alpha) / 256, 256, 256 + 255) - 256; uint32_t green = clamp((0x10000 + fg_green * fg_alpha - bg_green * bg_alpha) / 256, 256, 256 + 255) - 256; uint32_t blue = clamp((0x10000 + fg_blue * fg_alpha - bg_blue * bg_alpha) / 256, 256, 256 + 255) - 256; dest[i] = 0xff000000 | (red << 16) | (green << 8) | blue; local_vplce[i] += local_vince[i]; } dest += pitch; } while (--count); } }; class DrawFogBoundaryLineRGBACommand : public DrawerCommand { int _y; int _x; int _x2; BYTE * RESTRICT _destorg; fixed_t _light; ShadeConstants _shade_constants; public: DrawFogBoundaryLineRGBACommand(int y, int x, int x2) { _y = y; _x = x; _x2 = x2; _destorg = dc_destorg; _light = dc_light; _shade_constants = dc_shade_constants; } void Execute(DrawerThread *thread) override { if (thread->line_skipped_by_thread(_y)) return; int y = _y; int x = _x; int x2 = _x2; uint32_t *dest = ylookup[y] + (uint32_t*)_destorg; uint32_t light = calc_light_multiplier(_light); ShadeConstants constants = _shade_constants; do { uint32_t red = (dest[x] >> 16) & 0xff; uint32_t green = (dest[x] >> 8) & 0xff; uint32_t blue = dest[x] & 0xff; if (constants.simple_shade) { red = red * light / 256; green = green * light / 256; blue = blue * light / 256; } else { uint32_t inv_light = 256 - light; uint32_t inv_desaturate = 256 - constants.desaturate; uint32_t intensity = ((red * 77 + green * 143 + blue * 37) >> 8) * constants.desaturate; red = (red * inv_desaturate + intensity) / 256; green = (green * inv_desaturate + intensity) / 256; blue = (blue * inv_desaturate + intensity) / 256; red = (constants.fade_red * inv_light + red * light) / 256; green = (constants.fade_green * inv_light + green * light) / 256; blue = (constants.fade_blue * inv_light + blue * light) / 256; red = (red * constants.light_red) / 256; green = (green * constants.light_green) / 256; blue = (blue * constants.light_blue) / 256; } dest[x] = 0xff000000 | (red << 16) | (green << 8) | blue; } while (++x <= x2); } }; class DrawTiltedSpanRGBACommand : public DrawerCommand { int _y; int _x1; int _x2; BYTE * RESTRICT _destorg; fixed_t _light; ShadeConstants _shade_constants; const BYTE * RESTRICT _source; public: DrawTiltedSpanRGBACommand(int y, int x1, int x2) { _y = y; _x1 = x1; _x2 = x2; _destorg = dc_destorg; _source = ds_source; } void Execute(DrawerThread *thread) override { if (thread->line_skipped_by_thread(_y)) return; int y = _y; int x1 = _x1; int x2 = _x2; // Slopes are broken currently in master. // Until R_DrawTiltedPlane is fixed we are just going to fill with a solid color. uint32_t *source = (uint32_t*)_source; uint32_t *dest = ylookup[y] + x1 + (uint32_t*)_destorg; int count = x2 - x1 + 1; while (count > 0) { *(dest++) = source[0]; count--; } } }; class DrawColoredSpanRGBACommand : public DrawerCommand { int _y; int _x1; int _x2; BYTE * RESTRICT _destorg; fixed_t _light; int _color; public: DrawColoredSpanRGBACommand(int y, int x1, int x2) { _y = y; _x1 = x1; _x2 = x2; _destorg = dc_destorg; _light = ds_light; _color = ds_color; } void Execute(DrawerThread *thread) override { if (thread->line_skipped_by_thread(_y)) return; int y = _y; int x1 = _x1; int x2 = _x2; uint32_t *dest = ylookup[y] + x1 + (uint32_t*)_destorg; int count = (x2 - x1 + 1); uint32_t light = calc_light_multiplier(_light); uint32_t color = shade_pal_index_simple(_color, light); for (int i = 0; i < count; i++) dest[i] = color; } }; class FillTransColumnRGBACommand : public DrawerCommand { int _x; int _y1; int _y2; int _color; int _a; BYTE * RESTRICT _destorg; int _pitch; fixed_t _light; public: FillTransColumnRGBACommand(int x, int y1, int y2, int color, int a) { _x = x; _y1 = y1; _y2 = y2; _color = color; _a = a; _destorg = dc_destorg; _pitch = dc_pitch; } void Execute(DrawerThread *thread) override { int x = _x; int y1 = _y1; int y2 = _y2; int color = _color; int a = _a; int ycount = thread->count_for_thread(y1, y2 - y1 + 1); if (ycount <= 0) return; uint32_t fg = GPalette.BaseColors[color].d; uint32_t fg_red = (fg >> 16) & 0xff; uint32_t fg_green = (fg >> 8) & 0xff; uint32_t fg_blue = fg & 0xff; uint32_t alpha = a + 1; uint32_t inv_alpha = 256 - alpha; fg_red *= alpha; fg_green *= alpha; fg_blue *= alpha; int spacing = _pitch * thread->num_cores; uint32_t *dest = thread->dest_for_thread(y1, _pitch, ylookup[y1] + x + (uint32_t*)_destorg); for (int y = 0; y < ycount; y++) { uint32_t bg_red = (*dest >> 16) & 0xff; uint32_t bg_green = (*dest >> 8) & 0xff; uint32_t bg_blue = (*dest) & 0xff; uint32_t red = (fg_red + bg_red * inv_alpha) / 256; uint32_t green = (fg_green + bg_green * inv_alpha) / 256; uint32_t blue = (fg_blue + bg_blue * inv_alpha) / 256; *dest = 0xff000000 | (red << 16) | (green << 8) | blue; dest += spacing; } } }; ApplySpecialColormapRGBACommand::ApplySpecialColormapRGBACommand(FSpecialColormap *colormap, DFrameBuffer *screen) { buffer = screen->GetBuffer(); pitch = screen->GetPitch(); width = screen->GetWidth(); height = screen->GetHeight(); start_red = (int)(colormap->ColorizeStart[0] * 255); start_green = (int)(colormap->ColorizeStart[1] * 255); start_blue = (int)(colormap->ColorizeStart[2] * 255); end_red = (int)(colormap->ColorizeEnd[0] * 255); end_green = (int)(colormap->ColorizeEnd[1] * 255); end_blue = (int)(colormap->ColorizeEnd[2] * 255); } #ifdef NO_SSE void ApplySpecialColormapRGBACommand::Execute(DrawerThread *thread) { int y = thread->skipped_by_thread(0); int count = thread->count_for_thread(0, height); while (count > 0) { BYTE *pixels = buffer + y * pitch * 4; for (int x = 0; x < width; x++) { int fg_red = pixels[2]; int fg_green = pixels[1]; int fg_blue = pixels[0]; int gray = (fg_red * 77 + fg_green * 143 + fg_blue * 37) >> 8; gray += (gray >> 7); // gray*=256/255 int inv_gray = 256 - gray; int red = clamp((start_red * inv_gray + end_red * gray) >> 8, 0, 255); int green = clamp((start_green * inv_gray + end_green * gray) >> 8, 0, 255); int blue = clamp((start_blue * inv_gray + end_blue * gray) >> 8, 0, 255); pixels[0] = (BYTE)blue; pixels[1] = (BYTE)green; pixels[2] = (BYTE)red; pixels[3] = 0xff; pixels += 4; } y += thread->num_cores; count--; } } #else void ApplySpecialColormapRGBACommand::Execute(DrawerThread *thread) { int y = thread->skipped_by_thread(0); int count = thread->count_for_thread(0, height); __m128i gray_weight = _mm_set_epi16(256, 77, 143, 37, 256, 77, 143, 37); __m128i start_end = _mm_set_epi16(255, start_red, start_green, start_blue, 255, end_red, end_green, end_blue); while (count > 0) { BYTE *pixels = buffer + y * pitch * 4; int sse_length = width / 4; for (int x = 0; x < sse_length; x++) { // Unpack to integers: __m128i p = _mm_loadu_si128((const __m128i*)pixels); __m128i p16_0 = _mm_unpacklo_epi8(p, _mm_setzero_si128()); __m128i p16_1 = _mm_unpackhi_epi8(p, _mm_setzero_si128()); // Add gray weighting to colors __m128i mullo0 = _mm_mullo_epi16(p16_0, gray_weight); __m128i mullo1 = _mm_mullo_epi16(p16_1, gray_weight); __m128i p32_0 = _mm_unpacklo_epi16(mullo0, _mm_setzero_si128()); __m128i p32_1 = _mm_unpackhi_epi16(mullo0, _mm_setzero_si128()); __m128i p32_2 = _mm_unpacklo_epi16(mullo1, _mm_setzero_si128()); __m128i p32_3 = _mm_unpackhi_epi16(mullo1, _mm_setzero_si128()); // Transpose to get color components in individual vectors: __m128 tmpx = _mm_castsi128_ps(p32_0); __m128 tmpy = _mm_castsi128_ps(p32_1); __m128 tmpz = _mm_castsi128_ps(p32_2); __m128 tmpw = _mm_castsi128_ps(p32_3); _MM_TRANSPOSE4_PS(tmpx, tmpy, tmpz, tmpw); __m128i blue = _mm_castps_si128(tmpx); __m128i green = _mm_castps_si128(tmpy); __m128i red = _mm_castps_si128(tmpz); __m128i alpha = _mm_castps_si128(tmpw); // Calculate gray and 256-gray values: __m128i gray = _mm_srli_epi32(_mm_add_epi32(_mm_add_epi32(red, green), blue), 8); __m128i inv_gray = _mm_sub_epi32(_mm_set1_epi32(256), gray); // p32 = start * inv_gray + end * gray: __m128i gray0 = _mm_shuffle_epi32(gray, _MM_SHUFFLE(0, 0, 0, 0)); __m128i gray1 = _mm_shuffle_epi32(gray, _MM_SHUFFLE(1, 1, 1, 1)); __m128i gray2 = _mm_shuffle_epi32(gray, _MM_SHUFFLE(2, 2, 2, 2)); __m128i gray3 = _mm_shuffle_epi32(gray, _MM_SHUFFLE(3, 3, 3, 3)); __m128i inv_gray0 = _mm_shuffle_epi32(inv_gray, _MM_SHUFFLE(0, 0, 0, 0)); __m128i inv_gray1 = _mm_shuffle_epi32(inv_gray, _MM_SHUFFLE(1, 1, 1, 1)); __m128i inv_gray2 = _mm_shuffle_epi32(inv_gray, _MM_SHUFFLE(2, 2, 2, 2)); __m128i inv_gray3 = _mm_shuffle_epi32(inv_gray, _MM_SHUFFLE(3, 3, 3, 3)); __m128i gray16_0 = _mm_packs_epi32(gray0, inv_gray0); __m128i gray16_1 = _mm_packs_epi32(gray1, inv_gray1); __m128i gray16_2 = _mm_packs_epi32(gray2, inv_gray2); __m128i gray16_3 = _mm_packs_epi32(gray3, inv_gray3); __m128i gray16_0_mullo = _mm_mullo_epi16(gray16_0, start_end); __m128i gray16_1_mullo = _mm_mullo_epi16(gray16_1, start_end); __m128i gray16_2_mullo = _mm_mullo_epi16(gray16_2, start_end); __m128i gray16_3_mullo = _mm_mullo_epi16(gray16_3, start_end); __m128i gray16_0_mulhi = _mm_mulhi_epi16(gray16_0, start_end); __m128i gray16_1_mulhi = _mm_mulhi_epi16(gray16_1, start_end); __m128i gray16_2_mulhi = _mm_mulhi_epi16(gray16_2, start_end); __m128i gray16_3_mulhi = _mm_mulhi_epi16(gray16_3, start_end); p32_0 = _mm_srli_epi32(_mm_add_epi32(_mm_unpacklo_epi16(gray16_0_mullo, gray16_0_mulhi), _mm_unpackhi_epi16(gray16_0_mullo, gray16_0_mulhi)), 8); p32_1 = _mm_srli_epi32(_mm_add_epi32(_mm_unpacklo_epi16(gray16_1_mullo, gray16_1_mulhi), _mm_unpackhi_epi16(gray16_1_mullo, gray16_1_mulhi)), 8); p32_2 = _mm_srli_epi32(_mm_add_epi32(_mm_unpacklo_epi16(gray16_2_mullo, gray16_2_mulhi), _mm_unpackhi_epi16(gray16_2_mullo, gray16_2_mulhi)), 8); p32_3 = _mm_srli_epi32(_mm_add_epi32(_mm_unpacklo_epi16(gray16_3_mullo, gray16_3_mulhi), _mm_unpackhi_epi16(gray16_3_mullo, gray16_3_mulhi)), 8); p16_0 = _mm_packs_epi32(p32_0, p32_1); p16_1 = _mm_packs_epi32(p32_2, p32_3); p = _mm_packus_epi16(p16_0, p16_1); _mm_storeu_si128((__m128i*)pixels, p); pixels += 16; } for (int x = sse_length * 4; x < width; x++) { int fg_red = pixels[2]; int fg_green = pixels[1]; int fg_blue = pixels[0]; int gray = (fg_red * 77 + fg_green * 143 + fg_blue * 37) >> 8; gray += (gray >> 7); // gray*=256/255 int inv_gray = 256 - gray; int red = clamp((start_red * inv_gray + end_red * gray) >> 8, 0, 255); int green = clamp((start_green * inv_gray + end_green * gray) >> 8, 0, 255); int blue = clamp((start_blue * inv_gray + end_blue * gray) >> 8, 0, 255); pixels[0] = (BYTE)blue; pixels[1] = (BYTE)green; pixels[2] = (BYTE)red; pixels[3] = 0xff; pixels += 4; } y += thread->num_cores; count--; } } #endif ///////////////////////////////////////////////////////////////////////////// void R_BeginDrawerCommands() { DrawerCommandQueue::Begin(); } void R_EndDrawerCommands() { DrawerCommandQueue::End(); } void R_DrawColumn_rgba() { DrawerCommandQueue::QueueCommand(); } void R_FillColumn_rgba() { DrawerCommandQueue::QueueCommand(); } void R_FillAddColumn_rgba() { DrawerCommandQueue::QueueCommand(); } void R_FillAddClampColumn_rgba() { DrawerCommandQueue::QueueCommand(); } void R_FillSubClampColumn_rgba() { DrawerCommandQueue::QueueCommand(); } void R_FillRevSubClampColumn_rgba() { DrawerCommandQueue::QueueCommand(); } void R_DrawFuzzColumn_rgba() { DrawerCommandQueue::QueueCommand(); dc_yl = MAX(dc_yl, 1); dc_yh = MIN(dc_yh, fuzzviewheight); if (dc_yl <= dc_yh) fuzzpos = (fuzzpos + dc_yh - dc_yl + 1) % FUZZTABLE; } void R_DrawAddColumn_rgba() { DrawerCommandQueue::QueueCommand(); } void R_DrawTranslatedColumn_rgba() { DrawerCommandQueue::QueueCommand(); } void R_DrawTlatedAddColumn_rgba() { DrawerCommandQueue::QueueCommand(); } void R_DrawShadedColumn_rgba() { DrawerCommandQueue::QueueCommand(); } void R_DrawAddClampColumn_rgba() { DrawerCommandQueue::QueueCommand(); } void R_DrawAddClampTranslatedColumn_rgba() { DrawerCommandQueue::QueueCommand(); } void R_DrawSubClampColumn_rgba() { DrawerCommandQueue::QueueCommand(); } void R_DrawSubClampTranslatedColumn_rgba() { DrawerCommandQueue::QueueCommand(); } void R_DrawRevSubClampColumn_rgba() { DrawerCommandQueue::QueueCommand(); } void R_DrawRevSubClampTranslatedColumn_rgba() { DrawerCommandQueue::QueueCommand(); } void R_DrawSpan_rgba() { #ifdef NO_SSE DrawerCommandQueue::QueueCommand(); #else DrawerCommandQueue::QueueCommand(); #endif } void R_DrawSpanMasked_rgba() { DrawerCommandQueue::QueueCommand(); } void R_DrawSpanTranslucent_rgba() { DrawerCommandQueue::QueueCommand(); } void R_DrawSpanMaskedTranslucent_rgba() { DrawerCommandQueue::QueueCommand(); } void R_DrawSpanAddClamp_rgba() { DrawerCommandQueue::QueueCommand(); } void R_DrawSpanMaskedAddClamp_rgba() { DrawerCommandQueue::QueueCommand(); } void R_FillSpan_rgba() { DrawerCommandQueue::QueueCommand(); } //extern FTexture *rw_pic; // For the asserts below DWORD vlinec1_rgba() { /*DWORD fracstep = dc_iscale; DWORD frac = dc_texturefrac; DWORD height = rw_pic->GetHeight(); assert((frac >> vlinebits) < height); frac += (dc_count-1) * fracstep; assert((frac >> vlinebits) <= height);*/ DrawerCommandQueue::QueueCommand(); return dc_texturefrac + dc_count * dc_iscale; } void vlinec4_rgba() { #ifdef NO_SSE DrawerCommandQueue::QueueCommand(); #else DrawerCommandQueue::QueueCommand(); #endif for (int i = 0; i < 4; i++) vplce[i] += vince[i] * dc_count; } DWORD mvlinec1_rgba() { DrawerCommandQueue::QueueCommand(); return dc_texturefrac + dc_count * dc_iscale; } void mvlinec4_rgba() { #ifdef NO_SSE DrawerCommandQueue::QueueCommand(); #else DrawerCommandQueue::QueueCommand(); #endif for (int i = 0; i < 4; i++) vplce[i] += vince[i] * dc_count; } fixed_t tmvline1_add_rgba() { DrawerCommandQueue::QueueCommand(); return dc_texturefrac + dc_count * dc_iscale; } void tmvline4_add_rgba() { #ifdef NO_SSE DrawerCommandQueue::QueueCommand(); #else DrawerCommandQueue::QueueCommand(); #endif for (int i = 0; i < 4; i++) vplce[i] += vince[i] * dc_count; } fixed_t tmvline1_addclamp_rgba() { DrawerCommandQueue::QueueCommand(); return dc_texturefrac + dc_count * dc_iscale; } void tmvline4_addclamp_rgba() { #ifdef NO_SSE DrawerCommandQueue::QueueCommand(); #else DrawerCommandQueue::QueueCommand(); #endif for (int i = 0; i < 4; i++) vplce[i] += vince[i] * dc_count; } fixed_t tmvline1_subclamp_rgba() { DrawerCommandQueue::QueueCommand(); return dc_texturefrac + dc_count * dc_iscale; } void tmvline4_subclamp_rgba() { #ifdef NO_SSE DrawerCommandQueue::QueueCommand(); #else DrawerCommandQueue::QueueCommand(); #endif for (int i = 0; i < 4; i++) vplce[i] += vince[i] * dc_count; } fixed_t tmvline1_revsubclamp_rgba() { DrawerCommandQueue::QueueCommand(); return dc_texturefrac + dc_count * dc_iscale; } void tmvline4_revsubclamp_rgba() { #ifdef NO_SSE DrawerCommandQueue::QueueCommand(); #else DrawerCommandQueue::QueueCommand(); #endif for (int i = 0; i < 4; i++) vplce[i] += vince[i] * dc_count; } void R_DrawFogBoundarySection_rgba(int y, int y2, int x1) { for (; y < y2; ++y) { int x2 = spanend[y]; DrawerCommandQueue::QueueCommand(y, x1, x2); } } void R_DrawFogBoundary_rgba(int x1, int x2, short *uclip, short *dclip) { // To do: we do not need to create new spans when using rgba output - instead we should calculate light on a per pixel basis // This is essentially the same as R_MapVisPlane but with an extra step // to create new horizontal spans whenever the light changes enough that // we need to use a new colormap. double lightstep = rw_lightstep; double light = rw_light + rw_lightstep*(x2 - x1 - 1); int x = x2 - 1; int t2 = uclip[x]; int b2 = dclip[x]; int rcolormap = GETPALOOKUP(light, wallshade); int lcolormap; BYTE *basecolormapdata = basecolormap->Maps; if (b2 > t2) { clearbufshort(spanend + t2, b2 - t2, x); } R_SetColorMapLight(basecolormap, (float)light, wallshade); BYTE *fake_dc_colormap = basecolormap->Maps + (GETPALOOKUP(light, wallshade) << COLORMAPSHIFT); for (--x; x >= x1; --x) { int t1 = uclip[x]; int b1 = dclip[x]; const int xr = x + 1; int stop; light -= rw_lightstep; lcolormap = GETPALOOKUP(light, wallshade); if (lcolormap != rcolormap) { if (t2 < b2 && rcolormap != 0) { // Colormap 0 is always the identity map, so rendering it is // just a waste of time. R_DrawFogBoundarySection_rgba(t2, b2, xr); } if (t1 < t2) t2 = t1; if (b1 > b2) b2 = b1; if (t2 < b2) { clearbufshort(spanend + t2, b2 - t2, x); } rcolormap = lcolormap; R_SetColorMapLight(basecolormap, (float)light, wallshade); fake_dc_colormap = basecolormap->Maps + (GETPALOOKUP(light, wallshade) << COLORMAPSHIFT); } else { if (fake_dc_colormap != basecolormapdata) { stop = MIN(t1, b2); while (t2 < stop) { int y = t2++; DrawerCommandQueue::QueueCommand(y, xr, spanend[y]); } stop = MAX(b1, t2); while (b2 > stop) { int y = --b2; DrawerCommandQueue::QueueCommand(y, xr, spanend[y]); } } else { t2 = MAX(t2, MIN(t1, b2)); b2 = MIN(b2, MAX(b1, t2)); } stop = MIN(t2, b1); while (t1 < stop) { spanend[t1++] = x; } stop = MAX(b2, t2); while (b1 > stop) { spanend[--b1] = x; } } t2 = uclip[x]; b2 = dclip[x]; } if (t2 < b2 && rcolormap != 0) { R_DrawFogBoundarySection_rgba(t2, b2, x1); } }