#ifndef DOBJTYPE_H #define DOBJTYPE_H #ifndef __DOBJECT_H__ #error You must #include "dobject.h" to get dobjtype.h #endif #include "vm.h" // Variable/parameter/field flags ------------------------------------------- // Making all these different storage types use a common set of flags seems // like the simplest thing to do. #define VARF_Optional (1<<0) // func param is optional #define VARF_Method (1<<1) // func has an implied self parameter #define VARF_Action (1<<2) // func has implied owner and state parameters #define VARF_Native (1<<3) // func is native code/don't auto serialize field // Symbol information ------------------------------------------------------- class PSymbol : public DObject { DECLARE_ABSTRACT_CLASS(PSymbol, DObject); public: virtual ~PSymbol(); FName SymbolName; protected: PSymbol(FName name) { SymbolName = name; } }; // An action function ------------------------------------------------------- struct FState; struct StateCallData; class VMFrameStack; struct VMValue; struct VMReturn; typedef int (*actionf_p)(VMFrameStack *stack, VMValue *param, int numparam, VMReturn *ret, int numret);/*(VM_ARGS)*/ class VMFunction; // A VM function ------------------------------------------------------------ class PSymbolVMFunction : public PSymbol { DECLARE_CLASS(PSymbolVMFunction, PSymbol); HAS_OBJECT_POINTERS; public: VMFunction *Function; PSymbolVMFunction(FName name) : PSymbol(name) {} PSymbolVMFunction() : PSymbol(NAME_None) {} }; // A symbol for a type ------------------------------------------------------ class PSymbolType : public PSymbol { DECLARE_CLASS(PSymbolType, PSymbol); HAS_OBJECT_POINTERS; public: class PType *Type; PSymbolType(FName name, class PType *ty) : PSymbol(name), Type(ty) {} PSymbolType() : PSymbol(NAME_None) {} }; // A symbol table ----------------------------------------------------------- struct PSymbolTable { PSymbolTable(); PSymbolTable(PSymbolTable *parent); ~PSymbolTable(); size_t MarkSymbols(); // Sets the table to use for searches if this one doesn't contain the // requested symbol. void SetParentTable (PSymbolTable *parent); // Finds a symbol in the table, optionally searching parent tables // as well. PSymbol *FindSymbol (FName symname, bool searchparents) const; // Places the symbol in the table and returns a pointer to it or NULL if // a symbol with the same name is already in the table. This symbol is // not copied and will be freed when the symbol table is destroyed. PSymbol *AddSymbol (PSymbol *sym); // Frees all symbols from this table. void ReleaseSymbols(); private: typedef TMap MapType; PSymbolTable *ParentSymbolTable; MapType Symbols; friend class DObject; }; extern PSymbolTable GlobalSymbols; // Basic information shared by all types ------------------------------------ // Only one copy of a type is ever instantiated at one time. // - Enums, classes, and structs are defined by their names and outer classes. // - Pointers are uniquely defined by the type they point at. // - ClassPointers are also defined by their class restriction. // - Arrays are defined by their element type and count. // - DynArrays are defined by their element type. // - Maps are defined by their key and value types. // - Prototypes are defined by the argument and return types. // - Functions are defined by their names and outer objects. // In table form: // Outer Name Type Type2 Count // Enum * * // Class * * // Struct * * // Function * * // Pointer * // ClassPointer + * // Array * * // DynArray * // Map * * // Prototype *+ *+ struct ZCC_ExprConstant; class PClassType; class PType : public DObject { //DECLARE_ABSTRACT_CLASS_WITH_META(PType, DObject, PClassType); // We need to unravel the _WITH_META macro, since PClassType isn't defined yet, // and we can't define it until we've defined PClass. But we can't define that // without defining PType. DECLARE_ABSTRACT_CLASS(PType, DObject) HAS_OBJECT_POINTERS; protected: enum { MetaClassNum = CLASSREG_PClassType }; public: typedef PClassType MetaClass; MetaClass *GetClass() const; struct Conversion { Conversion(PType *target, void (*convert)(ZCC_ExprConstant *, class FSharedStringArena &)) : TargetType(target), ConvertConstant(convert) {} PType *TargetType; void (*ConvertConstant)(ZCC_ExprConstant *val, class FSharedStringArena &strdump); }; unsigned int Size; // this type's size unsigned int Align; // this type's preferred alignment PType *HashNext; // next type in this type table PSymbolTable Symbols; PType(); PType(unsigned int size, unsigned int align); virtual ~PType(); bool AddConversion(PType *target, void (*convertconst)(ZCC_ExprConstant *, class FSharedStringArena &)); int FindConversion(PType *target, const Conversion **slots, int numslots); // Sets the value of a variable of this type at (addr) virtual void SetValue(void *addr, int val); // Gets the value of a variable of this type at (addr) virtual int GetValueInt(void *addr) const; // Gets the opcode to store from a register to memory virtual int GetStoreOp() const; // Gets the opcode to load from memory to a register virtual int GetLoadOp() const; // Gets the register type for this type virtual int GetRegType() const; // Returns true if this type matches the two identifiers. Referring to the // above table, any type is identified by at most two characteristics. Each // type that implements this function will cast these to the appropriate type. // It is up to the caller to make sure they are the correct types. There is // only one prototype for this function in order to simplify type table // management. virtual bool IsMatch(intptr_t id1, intptr_t id2) const; // Get the type IDs used by IsMatch virtual void GetTypeIDs(intptr_t &id1, intptr_t &id2) const; size_t PropagateMark(); static void StaticInit(); private: // Stuff for type conversion searches class VisitQueue { public: VisitQueue() : In(0), Out(0) {} void Push(PType *type); PType *Pop(); bool IsEmpty() { return In == Out; } private: // This is a fixed-sized ring buffer. PType *Queue[64]; int In, Out; void Advance(int &ptr) { ptr = (ptr + 1) & (countof(Queue) - 1); } }; class VisitedNodeSet { public: VisitedNodeSet() { memset(Buckets, 0, sizeof(Buckets)); } void Insert(PType *node); bool Check(const PType *node); private: PType *Buckets[32]; size_t Hash(const PType *type) { return size_t(type) >> 4; } }; TArray Conversions; PType *PredType; PType *VisitNext; short PredConv; short Distance; void MarkPred(PType *pred, int conv, int dist) { PredType = pred; PredConv = conv; Distance = dist; } void FillConversionPath(const Conversion **slots); }; // Not-really-a-type types -------------------------------------------------- class PErrorType : public PType { DECLARE_CLASS(PErrorType, PType); public: PErrorType() : PType(0, 1) {} }; class PVoidType : public PType { DECLARE_CLASS(PVoidType, PType); public: PVoidType() : PType(0, 1) {} }; // Some categorization typing ----------------------------------------------- class PBasicType : public PType { DECLARE_ABSTRACT_CLASS(PBasicType, PType); public: PBasicType(); PBasicType(unsigned int size, unsigned int align); }; class PCompoundType : public PType { DECLARE_ABSTRACT_CLASS(PCompoundType, PType); }; class PNamedType : public PCompoundType { DECLARE_ABSTRACT_CLASS(PNamedType, PCompoundType); HAS_OBJECT_POINTERS; public: DObject *Outer; // object this type is contained within FName TypeName; // this type's name PNamedType() : Outer(NULL) {} PNamedType(FName name, DObject *outer) : Outer(outer), TypeName(name) {} virtual bool IsMatch(intptr_t id1, intptr_t id2) const; virtual void GetTypeIDs(intptr_t &id1, intptr_t &id2) const; }; // Basic types -------------------------------------------------------------- class PInt : public PBasicType { DECLARE_CLASS(PInt, PBasicType); public: PInt(unsigned int size, bool unsign); virtual void SetValue(void *addr, int val); virtual int GetValueInt(void *addr) const; virtual int GetStoreOp() const; virtual int GetLoadOp() const; virtual int GetRegType() const; bool Unsigned; protected: PInt(); }; class PBool : public PInt { DECLARE_CLASS(PBool, PInt); public: PBool(); }; class PFloat : public PBasicType { DECLARE_CLASS(PFloat, PBasicType); public: PFloat(unsigned int size); virtual void SetValue(void *addr, int val); virtual int GetValueInt(void *addr) const; virtual int GetStoreOp() const; virtual int GetLoadOp() const; virtual int GetRegType() const; protected: PFloat(); private: struct SymbolInitF { ENamedName Name; double Value; }; struct SymbolInitI { ENamedName Name; int Value; }; void SetSingleSymbols(); void SetDoubleSymbols(); void SetSymbols(const SymbolInitF *syminit, size_t count); void SetSymbols(const SymbolInitI *syminit, size_t count); }; class PString : public PBasicType { DECLARE_CLASS(PString, PBasicType); public: PString(); virtual int GetRegType() const; }; // Variations of integer types ---------------------------------------------- class PName : public PInt { DECLARE_CLASS(PName, PInt); public: PName(); }; class PSound : public PInt { DECLARE_CLASS(PSound, PInt); public: PSound(); }; class PColor : public PInt { DECLARE_CLASS(PColor, PInt); public: PColor(); }; // Variations of floating point types --------------------------------------- // These get converted to floats when they're loaded from memory. class PFixed : public PFloat { DECLARE_CLASS(PFixed, PFloat); public: PFixed(); virtual void SetValue(void *addr, int val); virtual int GetValueInt(void *addr) const; virtual int GetStoreOp() const; virtual int GetLoadOp() const; }; class PAngle : public PFloat { DECLARE_CLASS(PAngle, PFloat); public: PAngle(); virtual void SetValue(void *addr, int val); virtual int GetValueInt(void *addr) const; virtual int GetStoreOp() const; virtual int GetLoadOp() const; }; // Pointers ----------------------------------------------------------------- class PStatePointer : public PBasicType { DECLARE_CLASS(PStatePointer, PBasicType); public: PStatePointer(); virtual int GetStoreOp() const; virtual int GetLoadOp() const; virtual int GetRegType() const; }; class PPointer : public PBasicType { DECLARE_CLASS(PPointer, PBasicType); HAS_OBJECT_POINTERS; public: PPointer(PType *pointsat); PType *PointedType; virtual int GetStoreOp() const; virtual int GetLoadOp() const; virtual int GetRegType() const; virtual bool IsMatch(intptr_t id1, intptr_t id2) const; virtual void GetTypeIDs(intptr_t &id1, intptr_t &id2) const; protected: PPointer(); }; class PClassPointer : public PPointer { DECLARE_CLASS(PClassPointer, PPointer); HAS_OBJECT_POINTERS; public: PClassPointer(class PClass *restrict); class PClass *ClassRestriction; virtual bool IsMatch(intptr_t id1, intptr_t id2) const; virtual void GetTypeIDs(intptr_t &id1, intptr_t &id2) const; protected: PClassPointer(); }; // Struct/class fields ------------------------------------------------------ // A PField describes a symbol that takes up physical space in the struct. class PField : public PSymbol { DECLARE_CLASS(PField, PSymbol); HAS_OBJECT_POINTERS public: PField(FName name, PType *type) : PSymbol(name), Offset(0), Type(type), Flags(0) {} PField(FName name, PType *type, DWORD flags) : PSymbol(name), Offset(0), Type(type), Flags(flags) {} PField(FName name, PType *type, DWORD flags, unsigned offset) : PSymbol(name), Offset(offset), Type(type), Flags(flags) {} unsigned int Offset; PType *Type; DWORD Flags; protected: PField(); }; // Compound types ----------------------------------------------------------- class PEnum : public PNamedType { DECLARE_CLASS(PEnum, PNamedType); HAS_OBJECT_POINTERS; public: PEnum(FName name, DObject *outer); PType *ValueType; TMap Values; protected: PEnum(); }; class PArray : public PCompoundType { DECLARE_CLASS(PArray, PCompoundType); HAS_OBJECT_POINTERS; public: PArray(PType *etype, unsigned int ecount); PType *ElementType; unsigned int ElementCount; unsigned int ElementSize; virtual bool IsMatch(intptr_t id1, intptr_t id2) const; virtual void GetTypeIDs(intptr_t &id1, intptr_t &id2) const; protected: PArray(); }; // A vector is an array with extra operations. class PVector : public PArray { DECLARE_CLASS(PVector, PArray); HAS_OBJECT_POINTERS; public: PVector(unsigned int size); protected: PVector(); }; class PDynArray : public PCompoundType { DECLARE_CLASS(PDynArray, PCompoundType); HAS_OBJECT_POINTERS; public: PDynArray(PType *etype); PType *ElementType; virtual bool IsMatch(intptr_t id1, intptr_t id2) const; virtual void GetTypeIDs(intptr_t &id1, intptr_t &id2) const; protected: PDynArray(); }; class PMap : public PCompoundType { DECLARE_CLASS(PMap, PCompoundType); HAS_OBJECT_POINTERS; public: PMap(PType *keytype, PType *valtype); PType *KeyType; PType *ValueType; virtual bool IsMatch(intptr_t id1, intptr_t id2) const; virtual void GetTypeIDs(intptr_t &id1, intptr_t &id2) const; protected: PMap(); }; class PStruct : public PNamedType { DECLARE_CLASS(PStruct, PNamedType); public: PStruct(FName name, DObject *outer); TArray Fields; PField *AddField(FName name, PType *type, DWORD flags=0); size_t PropagateMark(); protected: PStruct(); }; class PPrototype : public PCompoundType { DECLARE_CLASS(PPrototype, PCompoundType); public: PPrototype(const TArray &rettypes, const TArray &argtypes); TArray ArgumentTypes; TArray ReturnTypes; size_t PropagateMark(); virtual bool IsMatch(intptr_t id1, intptr_t id2) const; virtual void GetTypeIDs(intptr_t &id1, intptr_t &id2) const; protected: PPrototype(); }; // TBD: Should we really support overloading? class PFunction : public PSymbol { DECLARE_CLASS(PFunction, PSymbol); public: struct Variant { //PPrototype *Proto; VMFunction *Implementation; TArray ArgFlags; // Should be the same length as Proto->ArgumentTypes }; TArray Variants; DWORD Flags; unsigned AddVariant(PPrototype *proto, TArray &argflags, VMFunction *impl); size_t PropagateMark(); PFunction(FName name) : PSymbol(name), Flags(0) {} PFunction() : PSymbol(NAME_None), Flags(0) {} }; // Meta-info for every class derived from DObject --------------------------- enum { TentativeClass = UINT_MAX, }; class PClassClass; class PClass : public PStruct { DECLARE_CLASS(PClass, PStruct); HAS_OBJECT_POINTERS; protected: // We unravel _WITH_META here just as we did for PType. enum { MetaClassNum = CLASSREG_PClassClass }; virtual void Derive(PClass *newclass); public: typedef PClassClass MetaClass; MetaClass *GetClass() const; virtual void DeriveData(PClass *newclass) {} static void StaticInit(); static void StaticShutdown(); static void StaticBootstrap(); // Per-class information ------------------------------------- PClass *ParentClass; // the class this class derives from const size_t *Pointers; // object pointers defined by this class *only* const size_t *FlatPointers; // object pointers defined by this class and all its superclasses; not initialized by default BYTE *Defaults; bool bRuntimeClass; // class was defined at run-time, not compile-time void (*ConstructNative)(void *); // The rest are all functions and static data ---------------- PClass(); ~PClass(); void InsertIntoHash(); DObject *CreateNew() const; PClass *CreateDerivedClass(FName name, unsigned int size); unsigned int Extend(unsigned int extension); void InitializeActorInfo(); void BuildFlatPointers(); const PClass *NativeClass() const; // Returns true if this type is an ancestor of (or same as) the passed type. bool IsAncestorOf(const PClass *ti) const { while (ti) { if (this == ti) return true; ti = ti->ParentClass; } return false; } inline bool IsDescendantOf(const PClass *ti) const { return ti->IsAncestorOf(this); } // Find a type, given its name. static PClass *FindClass(const char *name) { return FindClass(FName(name, true)); } static PClass *FindClass(const FString &name) { return FindClass(FName(name, true)); } static PClass *FindClass(ENamedName name) { return FindClass(FName(name)); } static PClass *FindClass(FName name); static PClassActor *FindActor(const char *name) { return FindActor(FName(name, true)); } static PClassActor *FindActor(const FString &name) { return FindActor(FName(name, true)); } static PClassActor *FindActor(ENamedName name) { return FindActor(FName(name)); } static PClassActor *FindActor(FName name); PClass *FindClassTentative(FName name, bool fatal = true); // not static! static TArray AllClasses; static bool bShutdown; }; class PClassType : public PClass { DECLARE_CLASS(PClassType, PClass); protected: public: PClassType(); virtual void Derive(PClass *newclass); PClass *TypeTableType; // The type to use for hashing into the type table }; inline PType::MetaClass *PType::GetClass() const { return static_cast(DObject::GetClass()); } class PClassClass : public PClassType { DECLARE_CLASS(PClassClass, PClassType); public: PClassClass(); }; inline PClass::MetaClass *PClass::GetClass() const { return static_cast(DObject::GetClass()); } // A class that hasn't had its parent class defined yet --------------------- class PClassWaitingForParent : public PClass { DECLARE_CLASS(PClassWaitingForParent, PClass); public: PClassWaitingForParent(FName myname, FName parentname); FName ParentName; }; // Type tables -------------------------------------------------------------- struct FTypeTable { enum { HASH_SIZE = 1021 }; PType *TypeHash[HASH_SIZE]; PType *FindType(PClass *metatype, intptr_t parm1, intptr_t parm2, size_t *bucketnum); void ReplaceType(PType *newtype, PType *oldtype, size_t bucket); void AddType(PType *type, PClass *metatype, intptr_t parm1, intptr_t parm2, size_t bucket); void AddType(PType *type); void Mark(); void Clear(); static size_t Hash(const PClass *p1, intptr_t p2, intptr_t p3); }; extern FTypeTable TypeTable; // Returns a type from the TypeTable. Will create one if it isn't present. PVector *NewVector(unsigned int size); PMap *NewMap(PType *keytype, PType *valuetype); PArray *NewArray(PType *type, unsigned int count); PDynArray *NewDynArray(PType *type); PPointer *NewPointer(PType *type); PClassPointer *NewClassPointer(PClass *restrict); PClassWaitingForParent *NewUnknownClass(FName myname, FName parentname); PEnum *NewEnum(FName name, DObject *outer); PStruct *NewStruct(FName name, DObject *outer); PPrototype *NewPrototype(const TArray &rettypes, const TArray &argtypes); // Built-in types ----------------------------------------------------------- extern PErrorType *TypeError; extern PVoidType *TypeVoid; extern PInt *TypeSInt8, *TypeUInt8; extern PInt *TypeSInt16, *TypeUInt16; extern PInt *TypeSInt32, *TypeUInt32; extern PBool *TypeBool; extern PFloat *TypeFloat32, *TypeFloat64; extern PString *TypeString; extern PName *TypeName; extern PSound *TypeSound; extern PColor *TypeColor; extern PStatePointer *TypeState; extern PFixed *TypeFixed; extern PAngle *TypeAngle; // A constant value --------------------------------------------------------- class PSymbolConst : public PSymbol { DECLARE_CLASS(PSymbolConst, PSymbol); public: PType *ValueType; PSymbolConst(FName name, PType *type=NULL) : PSymbol(name), ValueType(type) {} PSymbolConst() : PSymbol(NAME_None), ValueType(NULL) {} }; // A constant numeric value ------------------------------------------------- class PSymbolConstNumeric : public PSymbolConst { DECLARE_CLASS(PSymbolConstNumeric, PSymbolConst); public: union { int Value; double Float; void *Pad; }; PSymbolConstNumeric(FName name, PType *type=NULL) : PSymbolConst(name, type) {} PSymbolConstNumeric(FName name, PType *type, int val) : PSymbolConst(name, type), Value(val) {} PSymbolConstNumeric(FName name, PType *type, unsigned int val) : PSymbolConst(name, type), Value((int)val) {} PSymbolConstNumeric(FName name, PType *type, double val) : PSymbolConst(name, type), Float(val) {} PSymbolConstNumeric() {} }; // A constant string value -------------------------------------------------- class PSymbolConstString : public PSymbolConst { DECLARE_CLASS(PSymbolConstString, PSymbolConst); public: FString Str; PSymbolConstString(FName name, FString &str) : PSymbolConst(name, TypeString), Str(str) {} PSymbolConstString() {} }; void ReleaseGlobalSymbols(); #endif