// Emacs style mode select -*- C++ -*- //----------------------------------------------------------------------------- // // $Id:$ // // Copyright (C) 1993-1996 by id Software, Inc. // // This source is available for distribution and/or modification // only under the terms of the DOOM Source Code License as // published by id Software. All rights reserved. // // The source is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // FITNESS FOR A PARTICULAR PURPOSE. See the DOOM Source Code License // for more details. // // $Log:$ // // DESCRIPTION: // True color span/column drawing functions. // //----------------------------------------------------------------------------- #include #include "templates.h" #include "doomdef.h" #include "i_system.h" #include "w_wad.h" #include "r_local.h" #include "v_video.h" #include "doomstat.h" #include "st_stuff.h" #include "g_game.h" #include "g_level.h" #include "r_data/r_translate.h" #include "v_palette.h" #include "r_data/colormaps.h" #include "r_plane.h" #include "r_draw_rgba.h" #include "r_drawers.h" #include "gl/data/gl_matrix.h" #include "gi.h" #include "stats.h" #include "x86.h" #include // Use linear filtering when scaling up CVAR(Bool, r_magfilter, false, CVAR_ARCHIVE | CVAR_GLOBALCONFIG); // Use linear filtering when scaling down CVAR(Bool, r_minfilter, true, CVAR_ARCHIVE | CVAR_GLOBALCONFIG); // Use mipmapped textures CVAR(Bool, r_mipmap, true, CVAR_ARCHIVE | CVAR_GLOBALCONFIG); // Level of detail texture bias CVAR(Float, r_lod_bias, -1.5, 0); // To do: add CVAR_ARCHIVE | CVAR_GLOBALCONFIG when a good default has been decided namespace swrenderer { extern "C" short spanend[MAXHEIGHT]; extern float rw_light; extern float rw_lightstep; extern int wallshade; ///////////////////////////////////////////////////////////////////////////// DrawSpanLLVMCommand::DrawSpanLLVMCommand() { using namespace drawerargs; args.xfrac = ds_xfrac; args.yfrac = ds_yfrac; args.xstep = ds_xstep; args.ystep = ds_ystep; args.x1 = ds_x1; args.x2 = ds_x2; args.y = ds_y; args.xbits = ds_xbits; args.ybits = ds_ybits; args.destorg = (uint32_t*)dc_destorg; args.destpitch = dc_pitch; args.source = (const uint32_t*)ds_source; args.light = LightBgra::calc_light_multiplier(ds_light); args.light_red = ds_shade_constants.light_red; args.light_green = ds_shade_constants.light_green; args.light_blue = ds_shade_constants.light_blue; args.light_alpha = ds_shade_constants.light_alpha; args.fade_red = ds_shade_constants.fade_red; args.fade_green = ds_shade_constants.fade_green; args.fade_blue = ds_shade_constants.fade_blue; args.fade_alpha = ds_shade_constants.fade_alpha; args.desaturate = ds_shade_constants.desaturate; args.srcalpha = dc_srcalpha >> (FRACBITS - 8); args.destalpha = dc_destalpha >> (FRACBITS - 8); args.flags = 0; if (ds_shade_constants.simple_shade) args.flags |= DrawSpanArgs::simple_shade; if (!sampler_setup(args.source, args.xbits, args.ybits, ds_source_mipmapped)) args.flags |= DrawSpanArgs::nearest_filter; } void DrawSpanLLVMCommand::Execute(DrawerThread *thread) { if (thread->skipped_by_thread(args.y)) return; Drawers::Instance()->DrawSpan(&args); } FString DrawSpanLLVMCommand::DebugInfo() { return "DrawSpan\n" + args.ToString(); } bool DrawSpanLLVMCommand::sampler_setup(const uint32_t * &source, int &xbits, int &ybits, bool mipmapped) { using namespace drawerargs; bool magnifying = ds_lod < 0.0f; if (r_mipmap && mipmapped) { int level = (int)ds_lod; while (level > 0) { if (xbits <= 2 || ybits <= 2) break; source += (1 << (xbits)) * (1 << (ybits)); xbits -= 1; ybits -= 1; level--; } } return (magnifying && r_magfilter) || (!magnifying && r_minfilter); } ///////////////////////////////////////////////////////////////////////////// void DrawSpanMaskedLLVMCommand::Execute(DrawerThread *thread) { if (thread->skipped_by_thread(args.y)) return; Drawers::Instance()->DrawSpanMasked(&args); } void DrawSpanTranslucentLLVMCommand::Execute(DrawerThread *thread) { if (thread->skipped_by_thread(args.y)) return; Drawers::Instance()->DrawSpanTranslucent(&args); } void DrawSpanMaskedTranslucentLLVMCommand::Execute(DrawerThread *thread) { if (thread->skipped_by_thread(args.y)) return; Drawers::Instance()->DrawSpanMaskedTranslucent(&args); } void DrawSpanAddClampLLVMCommand::Execute(DrawerThread *thread) { if (thread->skipped_by_thread(args.y)) return; Drawers::Instance()->DrawSpanAddClamp(&args); } void DrawSpanMaskedAddClampLLVMCommand::Execute(DrawerThread *thread) { if (thread->skipped_by_thread(args.y)) return; Drawers::Instance()->DrawSpanMaskedAddClamp(&args); } ///////////////////////////////////////////////////////////////////////////// WorkerThreadData DrawWall4LLVMCommand::ThreadData(DrawerThread *thread) { WorkerThreadData d; d.core = thread->core; d.num_cores = thread->num_cores; d.pass_start_y = thread->pass_start_y; d.pass_end_y = thread->pass_end_y; return d; } DrawWall4LLVMCommand::DrawWall4LLVMCommand() { using namespace drawerargs; args.dest = (uint32_t*)dc_dest; args.dest_y = _dest_y; args.count = dc_count; args.pitch = dc_pitch; args.light_red = dc_shade_constants.light_red; args.light_green = dc_shade_constants.light_green; args.light_blue = dc_shade_constants.light_blue; args.light_alpha = dc_shade_constants.light_alpha; args.fade_red = dc_shade_constants.fade_red; args.fade_green = dc_shade_constants.fade_green; args.fade_blue = dc_shade_constants.fade_blue; args.fade_alpha = dc_shade_constants.fade_alpha; args.desaturate = dc_shade_constants.desaturate; for (int i = 0; i < 4; i++) { args.texturefrac[i] = dc_wall_texturefrac[i]; args.iscale[i] = dc_wall_iscale[i]; args.texturefracx[i] = dc_wall_texturefracx[i]; args.textureheight[i] = dc_wall_sourceheight[i]; args.source[i] = (const uint32_t *)dc_wall_source[i]; args.source2[i] = (const uint32_t *)dc_wall_source2[i]; args.light[i] = LightBgra::calc_light_multiplier(dc_wall_light[i]); } args.srcalpha = dc_srcalpha >> (FRACBITS - 8); args.destalpha = dc_destalpha >> (FRACBITS - 8); args.flags = 0; if (dc_shade_constants.simple_shade) args.flags |= DrawWallArgs::simple_shade; if (args.source2[0] == nullptr) args.flags |= DrawWallArgs::nearest_filter; args.dynlights = nullptr; args.num_dynlights = 0; /* static TriLight fakelight; static bool first = true; if (first) { fakelight.x = 100.0f; fakelight.y = 0.0f; fakelight.z = 100.0f; fakelight.color = 0xffffff00; fakelight.radius = 256.0f / 1000.0f; first = false; } args.z = 0.0f; args.step_z = 1.0f; args.dynlights = &fakelight; args.num_dynlights = 1; */ DetectRangeError(args.dest, args.dest_y, args.count); } void DrawWall4LLVMCommand::Execute(DrawerThread *thread) { WorkerThreadData d = ThreadData(thread); Drawers::Instance()->vlinec4(&args, &d); } FString DrawWall4LLVMCommand::DebugInfo() { return "DrawWall4\n" + args.ToString(); } ///////////////////////////////////////////////////////////////////////////// WorkerThreadData DrawWall1LLVMCommand::ThreadData(DrawerThread *thread) { WorkerThreadData d; d.core = thread->core; d.num_cores = thread->num_cores; d.pass_start_y = thread->pass_start_y; d.pass_end_y = thread->pass_end_y; return d; } DrawWall1LLVMCommand::DrawWall1LLVMCommand() { using namespace drawerargs; args.dest = (uint32_t*)dc_dest; args.dest_y = _dest_y; args.pitch = dc_pitch; args.count = dc_count; args.texturefrac[0] = dc_texturefrac; args.texturefracx[0] = dc_texturefracx; args.iscale[0] = dc_iscale; args.textureheight[0] = dc_textureheight; args.source[0] = (const uint32 *)dc_source; args.source2[0] = (const uint32 *)dc_source2; args.light[0] = LightBgra::calc_light_multiplier(dc_light); args.light_red = dc_shade_constants.light_red; args.light_green = dc_shade_constants.light_green; args.light_blue = dc_shade_constants.light_blue; args.light_alpha = dc_shade_constants.light_alpha; args.fade_red = dc_shade_constants.fade_red; args.fade_green = dc_shade_constants.fade_green; args.fade_blue = dc_shade_constants.fade_blue; args.fade_alpha = dc_shade_constants.fade_alpha; args.desaturate = dc_shade_constants.desaturate; args.srcalpha = dc_srcalpha >> (FRACBITS - 8); args.destalpha = dc_destalpha >> (FRACBITS - 8); args.flags = 0; if (dc_shade_constants.simple_shade) args.flags |= DrawWallArgs::simple_shade; if (args.source2[0] == nullptr) args.flags |= DrawWallArgs::nearest_filter; args.z = 0.0f; args.step_z = 0.0f; args.dynlights = nullptr; args.num_dynlights = 0; DetectRangeError(args.dest, args.dest_y, args.count); } void DrawWall1LLVMCommand::Execute(DrawerThread *thread) { WorkerThreadData d = ThreadData(thread); Drawers::Instance()->vlinec1(&args, &d); } FString DrawWall1LLVMCommand::DebugInfo() { return "DrawWall1\n" + args.ToString(); } ///////////////////////////////////////////////////////////////////////////// WorkerThreadData DrawColumnLLVMCommand::ThreadData(DrawerThread *thread) { WorkerThreadData d; d.core = thread->core; d.num_cores = thread->num_cores; d.pass_start_y = thread->pass_start_y; d.pass_end_y = thread->pass_end_y; return d; } FString DrawColumnLLVMCommand::DebugInfo() { return "DrawColumn\n" + args.ToString(); } DrawColumnLLVMCommand::DrawColumnLLVMCommand() { using namespace drawerargs; args.dest = (uint32_t*)dc_dest; args.source = dc_source; args.source2 = dc_source2; args.colormap = dc_colormap; args.translation = dc_translation; args.basecolors = (const uint32_t *)GPalette.BaseColors; args.pitch = dc_pitch; args.count = dc_count; args.dest_y = _dest_y; args.iscale = dc_iscale; args.texturefracx = dc_texturefracx; args.textureheight = dc_textureheight; args.texturefrac = dc_texturefrac; args.light = LightBgra::calc_light_multiplier(dc_light); args.color = LightBgra::shade_pal_index_simple(dc_color, args.light); args.srccolor = dc_srccolor_bgra; args.srcalpha = dc_srcalpha >> (FRACBITS - 8); args.destalpha = dc_destalpha >> (FRACBITS - 8); args.light_red = dc_shade_constants.light_red; args.light_green = dc_shade_constants.light_green; args.light_blue = dc_shade_constants.light_blue; args.light_alpha = dc_shade_constants.light_alpha; args.fade_red = dc_shade_constants.fade_red; args.fade_green = dc_shade_constants.fade_green; args.fade_blue = dc_shade_constants.fade_blue; args.fade_alpha = dc_shade_constants.fade_alpha; args.desaturate = dc_shade_constants.desaturate; args.flags = 0; if (dc_shade_constants.simple_shade) args.flags |= DrawColumnArgs::simple_shade; if (args.source2 == nullptr) args.flags |= DrawColumnArgs::nearest_filter; DetectRangeError(args.dest, args.dest_y, args.count); } void DrawColumnLLVMCommand::Execute(DrawerThread *thread) { WorkerThreadData d = ThreadData(thread); Drawers::Instance()->DrawColumn(&args, &d); } ///////////////////////////////////////////////////////////////////////////// WorkerThreadData DrawSkyLLVMCommand::ThreadData(DrawerThread *thread) { WorkerThreadData d; d.core = thread->core; d.num_cores = thread->num_cores; d.pass_start_y = thread->pass_start_y; d.pass_end_y = thread->pass_end_y; return d; } DrawSkyLLVMCommand::DrawSkyLLVMCommand(uint32_t solid_top, uint32_t solid_bottom) { using namespace drawerargs; args.dest = (uint32_t*)dc_dest; args.dest_y = _dest_y; args.count = dc_count; args.pitch = dc_pitch; for (int i = 0; i < 4; i++) { args.texturefrac[i] = dc_wall_texturefrac[i]; args.iscale[i] = dc_wall_iscale[i]; args.source0[i] = (const uint32_t *)dc_wall_source[i]; args.source1[i] = (const uint32_t *)dc_wall_source2[i]; } args.textureheight0 = dc_wall_sourceheight[0]; args.textureheight1 = dc_wall_sourceheight[1]; args.top_color = solid_top; args.bottom_color = solid_bottom; DetectRangeError(args.dest, args.dest_y, args.count); } FString DrawSkyLLVMCommand::DebugInfo() { return "DrawSky\n" + args.ToString(); } ///////////////////////////////////////////////////////////////////////////// DrawFuzzColumnRGBACommand::DrawFuzzColumnRGBACommand() { using namespace drawerargs; _x = dc_x; _yl = dc_yl; _yh = dc_yh; _destorg = dc_destorg; _pitch = dc_pitch; _fuzzpos = fuzzpos; _fuzzviewheight = fuzzviewheight; } void DrawFuzzColumnRGBACommand::Execute(DrawerThread *thread) { int yl = MAX(_yl, 1); int yh = MIN(_yh, _fuzzviewheight); int count = thread->count_for_thread(yl, yh - yl + 1); // Zero length. if (count <= 0) return; uint32_t *dest = thread->dest_for_thread(yl, _pitch, ylookup[yl] + _x + (uint32_t*)_destorg); int pitch = _pitch * thread->num_cores; int fuzzstep = thread->num_cores; int fuzz = (_fuzzpos + thread->skipped_by_thread(yl)) % FUZZTABLE; yl += thread->skipped_by_thread(yl); // Handle the case where we would go out of bounds at the top: if (yl < fuzzstep) { uint32_t *srcdest = dest + fuzzoffset[fuzz] * fuzzstep + pitch; //assert(static_cast((srcdest - (uint32_t*)dc_destorg) / (_pitch)) < viewheight); uint32_t bg = *srcdest; uint32_t red = RPART(bg) * 3 / 4; uint32_t green = GPART(bg) * 3 / 4; uint32_t blue = BPART(bg) * 3 / 4; *dest = 0xff000000 | (red << 16) | (green << 8) | blue; dest += pitch; fuzz += fuzzstep; fuzz %= FUZZTABLE; count--; if (count == 0) return; } bool lowerbounds = (yl + (count + fuzzstep - 1) * fuzzstep > _fuzzviewheight); if (lowerbounds) count--; // Fuzz where fuzzoffset stays within bounds while (count > 0) { int available = (FUZZTABLE - fuzz); int next_wrap = available / fuzzstep; if (available % fuzzstep != 0) next_wrap++; int cnt = MIN(count, next_wrap); count -= cnt; do { uint32_t *srcdest = dest + fuzzoffset[fuzz] * fuzzstep; //assert(static_cast((srcdest - (uint32_t*)dc_destorg) / (_pitch)) < viewheight); uint32_t bg = *srcdest; uint32_t red = RPART(bg) * 3 / 4; uint32_t green = GPART(bg) * 3 / 4; uint32_t blue = BPART(bg) * 3 / 4; *dest = 0xff000000 | (red << 16) | (green << 8) | blue; dest += pitch; fuzz += fuzzstep; } while (--cnt); fuzz %= FUZZTABLE; } // Handle the case where we would go out of bounds at the bottom if (lowerbounds) { uint32_t *srcdest = dest + fuzzoffset[fuzz] * fuzzstep - pitch; //assert(static_cast((srcdest - (uint32_t*)dc_destorg) / (_pitch)) < viewheight); uint32_t bg = *srcdest; uint32_t red = RPART(bg) * 3 / 4; uint32_t green = GPART(bg) * 3 / 4; uint32_t blue = BPART(bg) * 3 / 4; *dest = 0xff000000 | (red << 16) | (green << 8) | blue; } } FString DrawFuzzColumnRGBACommand::DebugInfo() { return "DrawFuzzColumn"; } ///////////////////////////////////////////////////////////////////////////// FillSpanRGBACommand::FillSpanRGBACommand() { using namespace drawerargs; _x1 = ds_x1; _x2 = ds_x2; _y = ds_y; _destorg = dc_destorg; _light = ds_light; _color = ds_color; } void FillSpanRGBACommand::Execute(DrawerThread *thread) { if (thread->line_skipped_by_thread(_y)) return; uint32_t *dest = ylookup[_y] + _x1 + (uint32_t*)_destorg; int count = (_x2 - _x1 + 1); uint32_t light = LightBgra::calc_light_multiplier(_light); uint32_t color = LightBgra::shade_pal_index_simple(_color, light); for (int i = 0; i < count; i++) dest[i] = color; } FString FillSpanRGBACommand::DebugInfo() { return "FillSpan"; } ///////////////////////////////////////////////////////////////////////////// DrawSlabRGBACommand::DrawSlabRGBACommand(int dx, fixed_t v, int dy, fixed_t vi, const uint8_t *vptr, uint8_t *p, ShadeConstants shade_constants, const uint8_t *colormap, fixed_t light) { using namespace drawerargs; _dx = dx; _v = v; _dy = dy; _vi = vi; _voxelptr = vptr; _p = (uint32_t *)p; _shade_constants = shade_constants; _colormap = colormap; _light = light; _pitch = dc_pitch; _start_y = static_cast((p - dc_destorg) / (dc_pitch * 4)); assert(dx > 0); } void DrawSlabRGBACommand::Execute(DrawerThread *thread) { int dx = _dx; fixed_t v = _v; int dy = _dy; fixed_t vi = _vi; const uint8_t *vptr = _voxelptr; uint32_t *p = _p; ShadeConstants shade_constants = _shade_constants; const uint8_t *colormap = _colormap; uint32_t light = LightBgra::calc_light_multiplier(_light); int pitch = _pitch; int x; dy = thread->count_for_thread(_start_y, dy); p = thread->dest_for_thread(_start_y, pitch, p); v += vi * thread->skipped_by_thread(_start_y); vi *= thread->num_cores; pitch *= thread->num_cores; if (dx == 1) { while (dy > 0) { *p = LightBgra::shade_pal_index(colormap[vptr[v >> FRACBITS]], light, shade_constants); p += pitch; v += vi; dy--; } } else if (dx == 2) { while (dy > 0) { uint32_t color = LightBgra::shade_pal_index(colormap[vptr[v >> FRACBITS]], light, shade_constants); p[0] = color; p[1] = color; p += pitch; v += vi; dy--; } } else if (dx == 3) { while (dy > 0) { uint32_t color = LightBgra::shade_pal_index(colormap[vptr[v >> FRACBITS]], light, shade_constants); p[0] = color; p[1] = color; p[2] = color; p += pitch; v += vi; dy--; } } else if (dx == 4) { while (dy > 0) { uint32_t color = LightBgra::shade_pal_index(colormap[vptr[v >> FRACBITS]], light, shade_constants); p[0] = color; p[1] = color; p[2] = color; p[3] = color; p += pitch; v += vi; dy--; } } else while (dy > 0) { uint32_t color = LightBgra::shade_pal_index(colormap[vptr[v >> FRACBITS]], light, shade_constants); // The optimizer will probably turn this into a memset call. // Since dx is not likely to be large, I'm not sure that's a good thing, // hence the alternatives above. for (x = 0; x < dx; x++) { p[x] = color; } p += pitch; v += vi; dy--; } } FString DrawSlabRGBACommand::DebugInfo() { return "DrawSlab"; } ///////////////////////////////////////////////////////////////////////////// DrawFogBoundaryLineRGBACommand::DrawFogBoundaryLineRGBACommand(int y, int x, int x2) { using namespace drawerargs; _y = y; _x = x; _x2 = x2; _destorg = dc_destorg; _light = dc_light; _shade_constants = dc_shade_constants; } void DrawFogBoundaryLineRGBACommand::Execute(DrawerThread *thread) { if (thread->line_skipped_by_thread(_y)) return; int y = _y; int x = _x; int x2 = _x2; uint32_t *dest = ylookup[y] + (uint32_t*)_destorg; uint32_t light = LightBgra::calc_light_multiplier(_light); ShadeConstants constants = _shade_constants; do { uint32_t red = (dest[x] >> 16) & 0xff; uint32_t green = (dest[x] >> 8) & 0xff; uint32_t blue = dest[x] & 0xff; if (constants.simple_shade) { red = red * light / 256; green = green * light / 256; blue = blue * light / 256; } else { uint32_t inv_light = 256 - light; uint32_t inv_desaturate = 256 - constants.desaturate; uint32_t intensity = ((red * 77 + green * 143 + blue * 37) >> 8) * constants.desaturate; red = (red * inv_desaturate + intensity) / 256; green = (green * inv_desaturate + intensity) / 256; blue = (blue * inv_desaturate + intensity) / 256; red = (constants.fade_red * inv_light + red * light) / 256; green = (constants.fade_green * inv_light + green * light) / 256; blue = (constants.fade_blue * inv_light + blue * light) / 256; red = (red * constants.light_red) / 256; green = (green * constants.light_green) / 256; blue = (blue * constants.light_blue) / 256; } dest[x] = 0xff000000 | (red << 16) | (green << 8) | blue; } while (++x <= x2); } FString DrawFogBoundaryLineRGBACommand::DebugInfo() { return "DrawFogBoundaryLine"; } ///////////////////////////////////////////////////////////////////////////// DrawTiltedSpanRGBACommand::DrawTiltedSpanRGBACommand(int y, int x1, int x2, const FVector3 &plane_sz, const FVector3 &plane_su, const FVector3 &plane_sv, bool plane_shade, int planeshade, float planelightfloat, fixed_t pviewx, fixed_t pviewy) { using namespace drawerargs; _x1 = x1; _x2 = x2; _y = y; _destorg = dc_destorg; _light = ds_light; _shade_constants = ds_shade_constants; _plane_sz = plane_sz; _plane_su = plane_su; _plane_sv = plane_sv; _plane_shade = plane_shade; _planeshade = planeshade; _planelightfloat = planelightfloat; _pviewx = pviewx; _pviewy = pviewy; _source = (const uint32_t*)ds_source; _xbits = ds_xbits; _ybits = ds_ybits; } void DrawTiltedSpanRGBACommand::Execute(DrawerThread *thread) { if (thread->line_skipped_by_thread(_y)) return; //#define SPANSIZE 32 //#define INVSPAN 0.03125f //#define SPANSIZE 8 //#define INVSPAN 0.125f #define SPANSIZE 16 #define INVSPAN 0.0625f int source_width = 1 << _xbits; int source_height = 1 << _ybits; uint32_t *dest = ylookup[_y] + _x1 + (uint32_t*)_destorg; int count = _x2 - _x1 + 1; // Depth (Z) change across the span double iz = _plane_sz[2] + _plane_sz[1] * (centery - _y) + _plane_sz[0] * (_x1 - centerx); // Light change across the span fixed_t lightstart = _light; fixed_t lightend = lightstart; if (_plane_shade) { double vis_start = iz * _planelightfloat; double vis_end = (iz + _plane_sz[0] * count) * _planelightfloat; lightstart = LIGHTSCALE(vis_start, _planeshade); lightend = LIGHTSCALE(vis_end, _planeshade); } fixed_t light = lightstart; fixed_t steplight = (lightend - lightstart) / count; // Texture coordinates double uz = _plane_su[2] + _plane_su[1] * (centery - _y) + _plane_su[0] * (_x1 - centerx); double vz = _plane_sv[2] + _plane_sv[1] * (centery - _y) + _plane_sv[0] * (_x1 - centerx); double startz = 1.f / iz; double startu = uz*startz; double startv = vz*startz; double izstep = _plane_sz[0] * SPANSIZE; double uzstep = _plane_su[0] * SPANSIZE; double vzstep = _plane_sv[0] * SPANSIZE; // Linear interpolate in sizes of SPANSIZE to increase speed while (count >= SPANSIZE) { iz += izstep; uz += uzstep; vz += vzstep; double endz = 1.f / iz; double endu = uz*endz; double endv = vz*endz; uint32_t stepu = (uint32_t)(SQWORD((endu - startu) * INVSPAN)); uint32_t stepv = (uint32_t)(SQWORD((endv - startv) * INVSPAN)); uint32_t u = (uint32_t)(SQWORD(startu) + _pviewx); uint32_t v = (uint32_t)(SQWORD(startv) + _pviewy); for (int i = 0; i < SPANSIZE; i++) { uint32_t sx = ((u >> 16) * source_width) >> 16; uint32_t sy = ((v >> 16) * source_height) >> 16; uint32_t fg = _source[sy + sx * source_height]; if (_shade_constants.simple_shade) *(dest++) = LightBgra::shade_bgra_simple(fg, LightBgra::calc_light_multiplier(light)); else *(dest++) = LightBgra::shade_bgra(fg, LightBgra::calc_light_multiplier(light), _shade_constants); u += stepu; v += stepv; light += steplight; } startu = endu; startv = endv; count -= SPANSIZE; } // The last few pixels at the end while (count > 0) { double endz = 1.f / iz; startu = uz*endz; startv = vz*endz; uint32_t u = (uint32_t)(SQWORD(startu) + _pviewx); uint32_t v = (uint32_t)(SQWORD(startv) + _pviewy); uint32_t sx = ((u >> 16) * source_width) >> 16; uint32_t sy = ((v >> 16) * source_height) >> 16; uint32_t fg = _source[sy + sx * source_height]; if (_shade_constants.simple_shade) *(dest++) = LightBgra::shade_bgra_simple(fg, LightBgra::calc_light_multiplier(light)); else *(dest++) = LightBgra::shade_bgra(fg, LightBgra::calc_light_multiplier(light), _shade_constants); iz += _plane_sz[0]; uz += _plane_su[0]; vz += _plane_sv[0]; light += steplight; count--; } } FString DrawTiltedSpanRGBACommand::DebugInfo() { return "DrawTiltedSpan"; } ///////////////////////////////////////////////////////////////////////////// DrawColoredSpanRGBACommand::DrawColoredSpanRGBACommand(int y, int x1, int x2) { using namespace drawerargs; _y = y; _x1 = x1; _x2 = x2; _destorg = dc_destorg; _light = ds_light; _color = ds_color; } void DrawColoredSpanRGBACommand::Execute(DrawerThread *thread) { if (thread->line_skipped_by_thread(_y)) return; int y = _y; int x1 = _x1; int x2 = _x2; uint32_t *dest = ylookup[y] + x1 + (uint32_t*)_destorg; int count = (x2 - x1 + 1); uint32_t light = LightBgra::calc_light_multiplier(_light); uint32_t color = LightBgra::shade_pal_index_simple(_color, light); for (int i = 0; i < count; i++) dest[i] = color; } FString DrawColoredSpanRGBACommand::DebugInfo() { return "DrawColoredSpan"; } ///////////////////////////////////////////////////////////////////////////// FillTransColumnRGBACommand::FillTransColumnRGBACommand(int x, int y1, int y2, int color, int a) { using namespace drawerargs; _x = x; _y1 = y1; _y2 = y2; _color = color; _a = a; _destorg = dc_destorg; _pitch = dc_pitch; } void FillTransColumnRGBACommand::Execute(DrawerThread *thread) { int x = _x; int y1 = _y1; int y2 = _y2; int color = _color; int a = _a; int ycount = thread->count_for_thread(y1, y2 - y1 + 1); if (ycount <= 0) return; uint32_t fg = GPalette.BaseColors[color].d; uint32_t fg_red = (fg >> 16) & 0xff; uint32_t fg_green = (fg >> 8) & 0xff; uint32_t fg_blue = fg & 0xff; uint32_t alpha = a + 1; uint32_t inv_alpha = 256 - alpha; fg_red *= alpha; fg_green *= alpha; fg_blue *= alpha; int spacing = _pitch * thread->num_cores; uint32_t *dest = thread->dest_for_thread(y1, _pitch, ylookup[y1] + x + (uint32_t*)_destorg); for (int y = 0; y < ycount; y++) { uint32_t bg_red = (*dest >> 16) & 0xff; uint32_t bg_green = (*dest >> 8) & 0xff; uint32_t bg_blue = (*dest) & 0xff; uint32_t red = (fg_red + bg_red * inv_alpha) / 256; uint32_t green = (fg_green + bg_green * inv_alpha) / 256; uint32_t blue = (fg_blue + bg_blue * inv_alpha) / 256; *dest = 0xff000000 | (red << 16) | (green << 8) | blue; dest += spacing; } } FString FillTransColumnRGBACommand::DebugInfo() { return "FillTransColumn"; } ///////////////////////////////////////////////////////////////////////////// ApplySpecialColormapRGBACommand::ApplySpecialColormapRGBACommand(FSpecialColormap *colormap, DFrameBuffer *screen) { buffer = screen->GetBuffer(); pitch = screen->GetPitch(); width = screen->GetWidth(); height = screen->GetHeight(); start_red = (int)(colormap->ColorizeStart[0] * 255); start_green = (int)(colormap->ColorizeStart[1] * 255); start_blue = (int)(colormap->ColorizeStart[2] * 255); end_red = (int)(colormap->ColorizeEnd[0] * 255); end_green = (int)(colormap->ColorizeEnd[1] * 255); end_blue = (int)(colormap->ColorizeEnd[2] * 255); } #ifdef NO_SSE void ApplySpecialColormapRGBACommand::Execute(DrawerThread *thread) { int y = thread->skipped_by_thread(0); int count = thread->count_for_thread(0, height); while (count > 0) { uint8_t *pixels = buffer + y * pitch * 4; for (int x = 0; x < width; x++) { int fg_red = pixels[2]; int fg_green = pixels[1]; int fg_blue = pixels[0]; int gray = (fg_red * 77 + fg_green * 143 + fg_blue * 37) >> 8; gray += (gray >> 7); // gray*=256/255 int inv_gray = 256 - gray; int red = clamp((start_red * inv_gray + end_red * gray) >> 8, 0, 255); int green = clamp((start_green * inv_gray + end_green * gray) >> 8, 0, 255); int blue = clamp((start_blue * inv_gray + end_blue * gray) >> 8, 0, 255); pixels[0] = (uint8_t)blue; pixels[1] = (uint8_t)green; pixels[2] = (uint8_t)red; pixels[3] = 0xff; pixels += 4; } y += thread->num_cores; count--; } } #else void ApplySpecialColormapRGBACommand::Execute(DrawerThread *thread) { int y = thread->skipped_by_thread(0); int count = thread->count_for_thread(0, height); __m128i gray_weight = _mm_set_epi16(256, 77, 143, 37, 256, 77, 143, 37); __m128i start_end = _mm_set_epi16(255, start_red, start_green, start_blue, 255, end_red, end_green, end_blue); while (count > 0) { uint8_t *pixels = buffer + y * pitch * 4; int sse_length = width / 4; for (int x = 0; x < sse_length; x++) { // Unpack to integers: __m128i p = _mm_loadu_si128((const __m128i*)pixels); __m128i p16_0 = _mm_unpacklo_epi8(p, _mm_setzero_si128()); __m128i p16_1 = _mm_unpackhi_epi8(p, _mm_setzero_si128()); // Add gray weighting to colors __m128i mullo0 = _mm_mullo_epi16(p16_0, gray_weight); __m128i mullo1 = _mm_mullo_epi16(p16_1, gray_weight); __m128i p32_0 = _mm_unpacklo_epi16(mullo0, _mm_setzero_si128()); __m128i p32_1 = _mm_unpackhi_epi16(mullo0, _mm_setzero_si128()); __m128i p32_2 = _mm_unpacklo_epi16(mullo1, _mm_setzero_si128()); __m128i p32_3 = _mm_unpackhi_epi16(mullo1, _mm_setzero_si128()); // Transpose to get color components in individual vectors: __m128 tmpx = _mm_castsi128_ps(p32_0); __m128 tmpy = _mm_castsi128_ps(p32_1); __m128 tmpz = _mm_castsi128_ps(p32_2); __m128 tmpw = _mm_castsi128_ps(p32_3); _MM_TRANSPOSE4_PS(tmpx, tmpy, tmpz, tmpw); __m128i blue = _mm_castps_si128(tmpx); __m128i green = _mm_castps_si128(tmpy); __m128i red = _mm_castps_si128(tmpz); __m128i alpha = _mm_castps_si128(tmpw); // Calculate gray and 256-gray values: __m128i gray = _mm_srli_epi32(_mm_add_epi32(_mm_add_epi32(red, green), blue), 8); __m128i inv_gray = _mm_sub_epi32(_mm_set1_epi32(256), gray); // p32 = start * inv_gray + end * gray: __m128i gray0 = _mm_shuffle_epi32(gray, _MM_SHUFFLE(0, 0, 0, 0)); __m128i gray1 = _mm_shuffle_epi32(gray, _MM_SHUFFLE(1, 1, 1, 1)); __m128i gray2 = _mm_shuffle_epi32(gray, _MM_SHUFFLE(2, 2, 2, 2)); __m128i gray3 = _mm_shuffle_epi32(gray, _MM_SHUFFLE(3, 3, 3, 3)); __m128i inv_gray0 = _mm_shuffle_epi32(inv_gray, _MM_SHUFFLE(0, 0, 0, 0)); __m128i inv_gray1 = _mm_shuffle_epi32(inv_gray, _MM_SHUFFLE(1, 1, 1, 1)); __m128i inv_gray2 = _mm_shuffle_epi32(inv_gray, _MM_SHUFFLE(2, 2, 2, 2)); __m128i inv_gray3 = _mm_shuffle_epi32(inv_gray, _MM_SHUFFLE(3, 3, 3, 3)); __m128i gray16_0 = _mm_packs_epi32(gray0, inv_gray0); __m128i gray16_1 = _mm_packs_epi32(gray1, inv_gray1); __m128i gray16_2 = _mm_packs_epi32(gray2, inv_gray2); __m128i gray16_3 = _mm_packs_epi32(gray3, inv_gray3); __m128i gray16_0_mullo = _mm_mullo_epi16(gray16_0, start_end); __m128i gray16_1_mullo = _mm_mullo_epi16(gray16_1, start_end); __m128i gray16_2_mullo = _mm_mullo_epi16(gray16_2, start_end); __m128i gray16_3_mullo = _mm_mullo_epi16(gray16_3, start_end); __m128i gray16_0_mulhi = _mm_mulhi_epi16(gray16_0, start_end); __m128i gray16_1_mulhi = _mm_mulhi_epi16(gray16_1, start_end); __m128i gray16_2_mulhi = _mm_mulhi_epi16(gray16_2, start_end); __m128i gray16_3_mulhi = _mm_mulhi_epi16(gray16_3, start_end); p32_0 = _mm_srli_epi32(_mm_add_epi32(_mm_unpacklo_epi16(gray16_0_mullo, gray16_0_mulhi), _mm_unpackhi_epi16(gray16_0_mullo, gray16_0_mulhi)), 8); p32_1 = _mm_srli_epi32(_mm_add_epi32(_mm_unpacklo_epi16(gray16_1_mullo, gray16_1_mulhi), _mm_unpackhi_epi16(gray16_1_mullo, gray16_1_mulhi)), 8); p32_2 = _mm_srli_epi32(_mm_add_epi32(_mm_unpacklo_epi16(gray16_2_mullo, gray16_2_mulhi), _mm_unpackhi_epi16(gray16_2_mullo, gray16_2_mulhi)), 8); p32_3 = _mm_srli_epi32(_mm_add_epi32(_mm_unpacklo_epi16(gray16_3_mullo, gray16_3_mulhi), _mm_unpackhi_epi16(gray16_3_mullo, gray16_3_mulhi)), 8); p16_0 = _mm_packs_epi32(p32_0, p32_1); p16_1 = _mm_packs_epi32(p32_2, p32_3); p = _mm_packus_epi16(p16_0, p16_1); _mm_storeu_si128((__m128i*)pixels, p); pixels += 16; } for (int x = sse_length * 4; x < width; x++) { int fg_red = pixels[2]; int fg_green = pixels[1]; int fg_blue = pixels[0]; int gray = (fg_red * 77 + fg_green * 143 + fg_blue * 37) >> 8; gray += (gray >> 7); // gray*=256/255 int inv_gray = 256 - gray; int red = clamp((start_red * inv_gray + end_red * gray) >> 8, 0, 255); int green = clamp((start_green * inv_gray + end_green * gray) >> 8, 0, 255); int blue = clamp((start_blue * inv_gray + end_blue * gray) >> 8, 0, 255); pixels[0] = (uint8_t)blue; pixels[1] = (uint8_t)green; pixels[2] = (uint8_t)red; pixels[3] = 0xff; pixels += 4; } y += thread->num_cores; count--; } } #endif }