/* ** vectors.h ** Vector math routines. ** **--------------------------------------------------------------------------- ** Copyright 2005-2007 Randy Heit ** All rights reserved. ** ** Redistribution and use in source and binary forms, with or without ** modification, are permitted provided that the following conditions ** are met: ** ** 1. Redistributions of source code must retain the above copyright ** notice, this list of conditions and the following disclaimer. ** 2. Redistributions in binary form must reproduce the above copyright ** notice, this list of conditions and the following disclaimer in the ** documentation and/or other materials provided with the distribution. ** 3. The name of the author may not be used to endorse or promote products ** derived from this software without specific prior written permission. ** ** THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR ** IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES ** OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. ** IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, ** INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT ** NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, ** DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY ** THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT ** (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF ** THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. **--------------------------------------------------------------------------- ** ** Since C++ doesn't let me add completely new operators, the following two ** are overloaded for vectors: ** ** | dot product ** ^ cross product */ #ifndef VECTORS_H #define VECTORS_H #include #include #include #include "xs_Float.h" #include "math/cmath.h" #define EQUAL_EPSILON (1/65536.) // make this a local inline function to avoid any dependencies on other headers and not pollute the global namespace namespace pi { inline double pi() { return 3.14159265358979323846; } } template struct TVector3; template struct TRotator; template struct TAngle; template struct TVector2 { vec_t X, Y; TVector2 () { } TVector2 (vec_t a, vec_t b) : X(a), Y(b) { } TVector2 (const TVector2 &other) : X(other.X), Y(other.Y) { } TVector2 (const TVector3 &other) // Copy the X and Y from the 3D vector and discard the Z : X(other.X), Y(other.Y) { } void Zero() { Y = X = 0; } bool isZero() const { return X == 0 && Y == 0; } TVector2 &operator= (const TVector2 &other) { // This might seem backwards, but this helps produce smaller code when a newly // created vector is assigned, because the components can just be popped off // the FPU stack in order without the need for fxch. For platforms with a // more sensible registered-based FPU, of course, the order doesn't matter. // (And, yes, I know fxch can improve performance in the right circumstances, // but this isn't one of those times. Here, it's little more than a no-op that // makes the exe 2 bytes larger whenever you assign one vector to another.) Y = other.Y, X = other.X; return *this; } // Access X and Y as an array vec_t &operator[] (int index) { return index == 0 ? X : Y; } const vec_t &operator[] (int index) const { return index == 0 ? X : Y; } // Test for equality bool operator== (const TVector2 &other) const { return X == other.X && Y == other.Y; } // Test for inequality bool operator!= (const TVector2 &other) const { return X != other.X || Y != other.Y; } // Test for approximate equality bool ApproximatelyEquals (const TVector2 &other) const { return fabs(X - other.X) < EQUAL_EPSILON && fabs(Y - other.Y) < EQUAL_EPSILON; } // Test for approximate inequality bool DoesNotApproximatelyEqual (const TVector2 &other) const { return fabs(X - other.X) >= EQUAL_EPSILON || fabs(Y - other.Y) >= EQUAL_EPSILON; } // Unary negation TVector2 operator- () const { return TVector2(-X, -Y); } // Scalar addition TVector2 &operator+= (double scalar) { X += scalar, Y += scalar; return *this; } friend TVector2 operator+ (const TVector2 &v, vec_t scalar) { return TVector2(v.X + scalar, v.Y + scalar); } friend TVector2 operator+ (vec_t scalar, const TVector2 &v) { return TVector2(v.X + scalar, v.Y + scalar); } // Scalar subtraction TVector2 &operator-= (vec_t scalar) { X -= scalar, Y -= scalar; return *this; } TVector2 operator- (vec_t scalar) const { return TVector2(X - scalar, Y - scalar); } // Scalar multiplication TVector2 &operator*= (vec_t scalar) { X *= scalar, Y *= scalar; return *this; } friend TVector2 operator* (const TVector2 &v, vec_t scalar) { return TVector2(v.X * scalar, v.Y * scalar); } friend TVector2 operator* (vec_t scalar, const TVector2 &v) { return TVector2(v.X * scalar, v.Y * scalar); } // Scalar division TVector2 &operator/= (vec_t scalar) { scalar = 1 / scalar, X *= scalar, Y *= scalar; return *this; } TVector2 operator/ (vec_t scalar) const { scalar = 1 / scalar; return TVector2(X * scalar, Y * scalar); } // Vector addition TVector2 &operator+= (const TVector2 &other) { X += other.X, Y += other.Y; return *this; } TVector2 operator+ (const TVector2 &other) const { return TVector2(X + other.X, Y + other.Y); } // Vector subtraction TVector2 &operator-= (const TVector2 &other) { X -= other.X, Y -= other.Y; return *this; } TVector2 operator- (const TVector2 &other) const { return TVector2(X - other.X, Y - other.Y); } // Vector length vec_t Length() const { return (vec_t)g_sqrt (X*X + Y*Y); } vec_t LengthSquared() const { return X*X + Y*Y; } // Return a unit vector facing the same direction as this one TVector2 Unit() const { vec_t len = Length(); if (len != 0) len = 1 / len; return *this * len; } // Scales this vector into a unit vector. Returns the old length vec_t MakeUnit() { vec_t len, ilen; len = ilen = Length(); if (ilen != 0) ilen = 1 / ilen; *this *= ilen; return len; } // Resizes this vector to be the specified length (if it is not 0) TVector2 &MakeResize(double len) { double scale = len / Length(); X = vec_t(X * scale); Y = vec_t(Y * scale); return *this; } // Dot product double operator | (const TVector2 &other) const { return X*other.X + Y*other.Y; } // Returns the angle that the ray (0,0)-(X,Y) faces TAngle Angle() const; // Returns a rotated vector. angle is in degrees. TVector2 Rotated (double angle) { double cosval = g_cosdeg (angle); double sinval = g_sindeg (angle); return TVector2(X*cosval - Y*sinval, Y*cosval + X*sinval); } // Returns a rotated vector. angle is in degrees. template TVector2 Rotated(TAngle angle) { double cosval = angle.Cos(); double sinval = angle.Sin(); return TVector2(X*cosval - Y*sinval, Y*cosval + X*sinval); } // Returns a vector rotated 90 degrees clockwise. TVector2 Rotated90CW() { return TVector2(Y, -X); } // Returns a vector rotated 90 degrees counterclockwise. TVector2 Rotated90CCW() { return TVector2(-Y, X); } }; template struct TVector3 { typedef TVector2 Vector2; vec_t X, Y, Z; TVector3 () { } TVector3 (vec_t a, vec_t b, vec_t c) : X(a), Y(b), Z(c) { } TVector3(vec_t *o) : X(o[0]), Y(o[1]), Z(o[2]) { } TVector3 (const TVector3 &other) : X(other.X), Y(other.Y), Z(other.Z) { } TVector3 (const Vector2 &xy, vec_t z) : X(xy.X), Y(xy.Y), Z(z) { } TVector3 (const TRotator &rot); void Zero() { Z = Y = X = 0; } bool isZero() const { return X == 0 && Y == 0 && Z == 0; } TVector3 &operator= (const TVector3 &other) { Z = other.Z, Y = other.Y, X = other.X; return *this; } // Access X and Y and Z as an array vec_t &operator[] (int index) { return index == 0 ? X : index == 1 ? Y : Z; } const vec_t &operator[] (int index) const { return index == 0 ? X : index == 1 ? Y : Z; } // Test for equality bool operator== (const TVector3 &other) const { return X == other.X && Y == other.Y && Z == other.Z; } // Test for inequality bool operator!= (const TVector3 &other) const { return X != other.X || Y != other.Y || Z != other.Z; } // Test for approximate equality bool ApproximatelyEquals (const TVector3 &other) const { return fabs(X - other.X) < EQUAL_EPSILON && fabs(Y - other.Y) < EQUAL_EPSILON && fabs(Z - other.Z) < EQUAL_EPSILON; } // Test for approximate inequality bool DoesNotApproximatelyEqual (const TVector3 &other) const { return fabs(X - other.X) >= EQUAL_EPSILON || fabs(Y - other.Y) >= EQUAL_EPSILON || fabs(Z - other.Z) >= EQUAL_EPSILON; } // Unary negation TVector3 operator- () const { return TVector3(-X, -Y, -Z); } // Scalar addition TVector3 &operator+= (vec_t scalar) { X += scalar, Y += scalar, Z += scalar; return *this; } friend TVector3 operator+ (const TVector3 &v, vec_t scalar) { return TVector3(v.X + scalar, v.Y + scalar, v.Z + scalar); } friend TVector3 operator+ (vec_t scalar, const TVector3 &v) { return TVector3(v.X + scalar, v.Y + scalar, v.Z + scalar); } // Scalar subtraction TVector3 &operator-= (vec_t scalar) { X -= scalar, Y -= scalar, Z -= scalar; return *this; } TVector3 operator- (vec_t scalar) const { return TVector3(X - scalar, Y - scalar, Z - scalar); } // Scalar multiplication TVector3 &operator*= (vec_t scalar) { X = vec_t(X *scalar), Y = vec_t(Y * scalar), Z = vec_t(Z * scalar); return *this; } friend TVector3 operator* (const TVector3 &v, vec_t scalar) { return TVector3(v.X * scalar, v.Y * scalar, v.Z * scalar); } friend TVector3 operator* (vec_t scalar, const TVector3 &v) { return TVector3(v.X * scalar, v.Y * scalar, v.Z * scalar); } // Scalar division TVector3 &operator/= (vec_t scalar) { scalar = 1 / scalar, X = vec_t(X * scalar), Y = vec_t(Y * scalar), Z = vec_t(Z * scalar); return *this; } TVector3 operator/ (vec_t scalar) const { scalar = 1 / scalar; return TVector3(X * scalar, Y * scalar, Z * scalar); } // Vector addition TVector3 &operator+= (const TVector3 &other) { X += other.X, Y += other.Y, Z += other.Z; return *this; } TVector3 operator+ (const TVector3 &other) const { return TVector3(X + other.X, Y + other.Y, Z + other.Z); } // Vector subtraction TVector3 &operator-= (const TVector3 &other) { X -= other.X, Y -= other.Y, Z -= other.Z; return *this; } TVector3 operator- (const TVector3 &other) const { return TVector3(X - other.X, Y - other.Y, Z - other.Z); } // Add a 2D vector to this 3D vector, leaving Z unchanged. TVector3 &operator+= (const Vector2 &other) { X += other.X, Y += other.Y; return *this; } // Subtract a 2D vector from this 3D vector, leaving Z unchanged. TVector3 &operator-= (const Vector2 &other) { X -= other.X, Y -= other.Y; return *this; } // returns the XY fields as a 2D-vector. Vector2 XY() const { return{ X, Y }; } // Add a 3D vector and a 2D vector. friend TVector3 operator+ (const TVector3 &v3, const Vector2 &v2) { return TVector3(v3.X + v2.X, v3.Y + v2.Y, v3.Z); } friend TVector3 operator- (const TVector3 &v3, const Vector2 &v2) { return TVector3(v3.X - v2.X, v3.Y - v2.Y, v3.Z); } friend Vector2 operator+ (const Vector2 &v2, const TVector3 &v3) { return Vector2(v2.X + v3.X, v2.Y + v3.Y); } // Subtract a 3D vector and a 2D vector. // Discards the Z component of the 3D vector and returns a 2D vector. friend Vector2 operator- (const TVector2 &v2, const TVector3 &v3) { return Vector2(v2.X - v3.X, v2.Y - v3.Y); } void GetRightUp(TVector3 &right, TVector3 &up) { TVector3 n(X, Y, Z); TVector3 fn(fabs(n.X), fabs(n.Y), fabs(n.Z)); int major = 0; if (fn[1] > fn[major]) major = 1; if (fn[2] > fn[major]) major = 2; // build right vector by hand if (fabs(fn[0] - 1.0f) < FLT_EPSILON || fabs(fn[1] - 1.0f) < FLT_EPSILON || fabs(fn[2] - 1.0f) < FLT_EPSILON) { if (major == 0 && n[0] > 0.f) { right = { 0.f, 0.f, -1.f }; } else if (major == 0) { right = { 0.f, 0.f, 1.f }; } if (major == 1 || (major == 2 && n[2] > 0.f)) { right = { 1.f, 0.f, 0.f }; } if (major == 2 && n[2] < 0.0f) { right = { -1.f, 0.f, 0.f }; } } else { static TVector3 axis[3] = { { 1.0f, 0.0f, 0.0f }, { 0.0f, 1.0f, 0.0f }, { 0.0f, 0.0f, 1.0f } }; right = axis[major] ^ n; } up = n ^right; right.MakeUnit();; up.MakeUnit(); } // Returns the angle (in radians) that the ray (0,0)-(X,Y) faces TAngle Angle() const; TAngle Pitch() const; // Vector length double Length() const { return g_sqrt (X*X + Y*Y + Z*Z); } double LengthSquared() const { return X*X + Y*Y + Z*Z; } // Return a unit vector facing the same direction as this one TVector3 Unit() const { double len = Length(); if (len != 0) len = 1 / len; return *this * (vec_t)len; } // Scales this vector into a unit vector void MakeUnit() { double len = Length(); if (len != 0) len = 1 / len; *this *= (vec_t)len; } // Resizes this vector to be the specified length (if it is not 0) TVector3 &MakeResize(double len) { double vlen = Length(); if (vlen != 0.) { double scale = len / vlen; X = vec_t(X * scale); Y = vec_t(Y * scale); Z = vec_t(Z * scale); } return *this; } TVector3 Resized(double len) { double vlen = Length(); if (vlen != 0.) { double scale = len / vlen; return{ vec_t(X * scale), vec_t(Y * scale), vec_t(Z * scale) }; } else { return *this; } } // Dot product vec_t operator | (const TVector3 &other) const { return X*other.X + Y*other.Y + Z*other.Z; } // Cross product TVector3 operator ^ (const TVector3 &other) const { return TVector3(Y*other.Z - Z*other.Y, Z*other.X - X*other.Z, X*other.Y - Y*other.X); } TVector3 &operator ^= (const TVector3 &other) { *this = *this ^ other; return *this; } }; template struct TVector4 { typedef TVector3 Vector3; vec_t X, Y, Z, W; TVector4() { } TVector4(vec_t a, vec_t b, vec_t c, vec_t d) : X(a), Y(b), Z(c), W(d) { } TVector4(vec_t *o) : X(o[0]), Y(o[1]), Z(o[2]), W(o[3]) { } TVector4(const TVector4 &other) : X(other.X), Y(other.Y), Z(other.Z), W(other.W) { } TVector4(const Vector3 &xyz, vec_t w) : X(xyz.X), Y(xyz.Y), Z(xyz.Z), W(w) { } void Zero() { Z = Y = X = W = 0; } bool isZero() const { return X == 0 && Y == 0 && Z == 0 && W == 0; } TVector4 &operator= (const TVector4 &other) { W = other.W, Z = other.Z, Y = other.Y, X = other.X; return *this; } // Access X and Y and Z as an array vec_t &operator[] (int index) { return (&X)[index]; } const vec_t &operator[] (int index) const { return (&X)[index]; } // Test for equality bool operator== (const TVector4 &other) const { return X == other.X && Y == other.Y && Z == other.Z && W = other.W; } // Test for inequality bool operator!= (const TVector4 &other) const { return X != other.X || Y != other.Y || Z != other.Z || W != other.W; } // Test for approximate equality bool ApproximatelyEquals(const TVector4 &other) const { return fabs(X - other.X) < EQUAL_EPSILON && fabs(Y - other.Y) < EQUAL_EPSILON && fabs(Z - other.Z) < EQUAL_EPSILON && fabs(W - other.W) < EQUAL_EPSILON; } // Test for approximate inequality bool DoesNotApproximatelyEqual(const TVector4 &other) const { return fabs(X - other.X) >= EQUAL_EPSILON || fabs(Y - other.Y) >= EQUAL_EPSILON || fabs(Z - other.Z) >= EQUAL_EPSILON || fabs(W - other.W) >= EQUAL_EPSILON; } // Unary negation TVector4 operator- () const { return TVector4(-X, -Y, -Z, -W); } // Scalar addition TVector4 &operator+= (vec_t scalar) { X += scalar, Y += scalar, Z += scalar; W += scalar; return *this; } friend TVector4 operator+ (const TVector4 &v, vec_t scalar) { return TVector4(v.X + scalar, v.Y + scalar, v.Z + scalar, v.W + scalar); } friend TVector4 operator+ (vec_t scalar, const TVector4 &v) { return TVector4(v.X + scalar, v.Y + scalar, v.Z + scalar, v.W + scalar); } // Scalar subtraction TVector4 &operator-= (vec_t scalar) { X -= scalar, Y -= scalar, Z -= scalar, W -= scalar; return *this; } TVector4 operator- (vec_t scalar) const { return TVector4(X - scalar, Y - scalar, Z - scalar, W - scalar); } // Scalar multiplication TVector4 &operator*= (vec_t scalar) { X = vec_t(X *scalar), Y = vec_t(Y * scalar), Z = vec_t(Z * scalar), W = vec_t(W * scalar); return *this; } friend TVector4 operator* (const TVector4 &v, vec_t scalar) { return TVector4(v.X * scalar, v.Y * scalar, v.Z * scalar, v.W * scalar); } friend TVector4 operator* (vec_t scalar, const TVector4 &v) { return TVector4(v.X * scalar, v.Y * scalar, v.Z * scalar, v.W * scalar); } // Scalar division TVector4 &operator/= (vec_t scalar) { scalar = 1 / scalar, X = vec_t(X * scalar), Y = vec_t(Y * scalar), Z = vec_t(Z * scalar), W = vec_t(W * scalar); return *this; } TVector4 operator/ (vec_t scalar) const { scalar = 1 / scalar; return TVector4(X * scalar, Y * scalar, Z * scalar, W * scalar); } // Vector addition TVector4 &operator+= (const TVector4 &other) { X += other.X, Y += other.Y, Z += other.Z, W += other.W; return *this; } TVector4 operator+ (const TVector4 &other) const { return TVector4(X + other.X, Y + other.Y, Z + other.Z, W + other.W); } // Vector subtraction TVector4 &operator-= (const TVector4 &other) { X -= other.X, Y -= other.Y, Z -= other.Z, W -= other.W; return *this; } TVector4 operator- (const TVector4 &other) const { return TVector4(X - other.X, Y - other.Y, Z - other.Z, W - other.W); } // Add a 3D vector to this 4D vector, leaving W unchanged. TVector4 &operator+= (const Vector3 &other) { X += other.X, Y += other.Y, Z += other.Z; return *this; } // Subtract a 3D vector from this 4D vector, leaving W unchanged. TVector4 &operator-= (const Vector3 &other) { X -= other.X, Y -= other.Y, Z -= other.Z; return *this; } // returns the XYZ fields as a 3D-vector. Vector3 XYZ() const { return{ X, Y, Z }; } // Add a 4D vector and a 3D vector. friend TVector4 operator+ (const TVector4 &v4, const Vector3 &v3) { return TVector4(v4.X + v3.X, v4.Y + v3.Y, v4.Z + v3.Z, v4.W); } friend TVector4 operator- (const TVector4 &v4, const Vector3 &v3) { return TVector4(v4.X - v3.X, v4.Y - v3.Y, v4.Z - v3.Z, v4.W); } friend Vector3 operator+ (const Vector3 &v3, const TVector4 &v4) { return Vector3(v3.X + v4.X, v3.Y + v4.Y, v3.Z + v4.Z); } // Subtract a 4D vector and a 3D vector. // Discards the W component of the 4D vector and returns a 3D vector. friend Vector3 operator- (const TVector3 &v3, const TVector4 &v4) { return Vector3(v3.X - v4.X, v3.Y - v4.Y, v3.Z - v4.Z); } // Vector length double Length() const { return g_sqrt(X*X + Y*Y + Z*Z + W*W); } double LengthSquared() const { return X*X + Y*Y + Z*Z + W*W; } // Return a unit vector facing the same direction as this one TVector4 Unit() const { double len = Length(); if (len != 0) len = 1 / len; return *this * (vec_t)len; } // Scales this vector into a unit vector void MakeUnit() { double len = Length(); if (len != 0) len = 1 / len; *this *= (vec_t)len; } // Resizes this vector to be the specified length (if it is not 0) TVector4 &MakeResize(double len) { double vlen = Length(); if (vlen != 0.) { double scale = len / vlen; X = vec_t(X * scale); Y = vec_t(Y * scale); Z = vec_t(Z * scale); W = vec_t(W * scale); } return *this; } TVector4 Resized(double len) { double vlen = Length(); if (vlen != 0.) { double scale = len / vlen; return{ vec_t(X * scale), vec_t(Y * scale), vec_t(Z * scale), vec_t(W * scale) }; } else { return *this; } } // Dot product vec_t operator | (const TVector4 &other) const { return X*other.X + Y*other.Y + Z*other.Z + W*other.W; } }; template struct TMatrix3x3 { typedef TVector3 Vector3; vec_t Cells[3][3]; TMatrix3x3() { } TMatrix3x3(const TMatrix3x3 &other) { (*this)[0] = other[0]; (*this)[1] = other[1]; (*this)[2] = other[2]; } TMatrix3x3(const Vector3 &row1, const Vector3 &row2, const Vector3 &row3) { (*this)[0] = row1; (*this)[1] = row2; (*this)[2] = row3; } // Construct a rotation matrix about an arbitrary axis. // (The axis vector must be normalized.) TMatrix3x3(const Vector3 &axis, double radians) { double c = g_cos(radians), s = g_sin(radians), t = 1 - c; /* In comments: A more readable version of the matrix setup. This was found in Diana Gruber's article "The Mathematics of the 3D Rotation Matrix" at and is attributed to Graphics Gems (Glassner, Academic Press, 1990). Cells[0][0] = t*axis.X*axis.X + c; Cells[0][1] = t*axis.X*axis.Y - s*axis.Z; Cells[0][2] = t*axis.X*axis.Z + s*axis.Y; Cells[1][0] = t*axis.Y*axis.X + s*axis.Z; Cells[1][1] = t*axis.Y*axis.Y + c; Cells[1][2] = t*axis.Y*axis.Z - s*axis.X; Cells[2][0] = t*axis.Z*axis.X - s*axis.Y; Cells[2][1] = t*axis.Z*axis.Y + s*axis.X; Cells[2][2] = t*axis.Z*axis.Z + c; Outside comments: A faster version with only 10 (not 24) multiplies. */ double sx = s*axis.X, sy = s*axis.Y, sz = s*axis.Z; double tx, ty, txx, tyy, u, v; tx = t*axis.X; Cells[0][0] = vec_t( (txx=tx*axis.X) + c ); Cells[0][1] = vec_t( (u=tx*axis.Y) - sz); Cells[0][2] = vec_t( (v=tx*axis.Z) + sy); ty = t*axis.Y; Cells[1][0] = vec_t( u + sz); Cells[1][1] = vec_t( (tyy=ty*axis.Y) + c ); Cells[1][2] = vec_t( (u=ty*axis.Z) - sx); Cells[2][0] = vec_t( v - sy); Cells[2][1] = vec_t( u + sx); Cells[2][2] = vec_t( (t-txx-tyy) + c ); } TMatrix3x3(const Vector3 &axis, double c/*cosine*/, double s/*sine*/) { double t = 1 - c; double sx = s*axis.X, sy = s*axis.Y, sz = s*axis.Z; double tx, ty, txx, tyy, u, v; tx = t*axis.X; Cells[0][0] = vec_t( (txx=tx*axis.X) + c ); Cells[0][1] = vec_t( (u=tx*axis.Y) - sz); Cells[0][2] = vec_t( (v=tx*axis.Z) + sy); ty = t*axis.Y; Cells[1][0] = vec_t( u + sz); Cells[1][1] = vec_t( (tyy=ty*axis.Y) + c ); Cells[1][2] = vec_t( (u=ty*axis.Z) - sx); Cells[2][0] = vec_t( v - sy); Cells[2][1] = vec_t( u + sx); Cells[2][2] = vec_t( (t-txx-tyy) + c ); } TMatrix3x3(const Vector3 &axis, TAngle degrees); void Zero() { memset (this, 0, sizeof *this); } void Identity() { Cells[0][0] = 1; Cells[0][1] = 0; Cells[0][2] = 0; Cells[1][0] = 0; Cells[1][1] = 1; Cells[1][2] = 0; Cells[2][0] = 0; Cells[2][1] = 0; Cells[2][2] = 1; } Vector3 &operator[] (int index) { return *((Vector3 *)&Cells[index]); } const Vector3 &operator[] (int index) const { return *((Vector3 *)&Cells[index]); } // Multiply a scalar TMatrix3x3 &operator*= (double scalar) { (*this)[0] *= scalar; (*this)[1] *= scalar; (*this)[2] *= scalar; return *this; } friend TMatrix3x3 operator* (double s, const TMatrix3x3 &m) { return TMatrix3x3(m[0]*s, m[1]*s, m[2]*s); } TMatrix3x3 operator* (double s) const { return TMatrix3x3((*this)[0]*s, (*this)[1]*s, (*this)[2]*s); } // Divide a scalar TMatrix3x3 &operator/= (double scalar) { return *this *= 1 / scalar; } TMatrix3x3 operator/ (double s) const { return *this * (1 / s); } // Add two 3x3 matrices together TMatrix3x3 &operator+= (const TMatrix3x3 &o) { (*this)[0] += o[0]; (*this)[1] += o[1]; (*this)[2] += o[2]; return *this; } TMatrix3x3 operator+ (const TMatrix3x3 &o) const { return TMatrix3x3((*this)[0] + o[0], (*this)[1] + o[1], (*this)[2] + o[2]); } // Subtract two 3x3 matrices TMatrix3x3 &operator-= (const TMatrix3x3 &o) { (*this)[0] -= o[0]; (*this)[1] -= o[1]; (*this)[2] -= o[2]; return *this; } TMatrix3x3 operator- (const TMatrix3x3 &o) const { return TMatrix3x3((*this)[0] - o[0], (*this)[1] - o[1], (*this)[2] - o[2]); } // Concatenate two 3x3 matrices TMatrix3x3 &operator*= (const TMatrix3x3 &o) { return *this = *this * o; } TMatrix3x3 operator* (const TMatrix3x3 &o) const { return TMatrix3x3( Vector3(Cells[0][0]*o[0][0] + Cells[0][1]*o[1][0] + Cells[0][2]*o[2][0], Cells[0][0]*o[0][1] + Cells[0][1]*o[1][1] + Cells[0][2]*o[2][1], Cells[0][0]*o[0][2] + Cells[0][1]*o[1][2] + Cells[0][2]*o[2][2]), Vector3(Cells[1][0]*o[0][0] + Cells[1][1]*o[1][0] + Cells[1][2]*o[2][0], Cells[1][0]*o[0][1] + Cells[1][1]*o[1][1] + Cells[1][2]*o[2][1], Cells[1][0]*o[0][2] + Cells[1][1]*o[1][2] + Cells[1][2]*o[2][2]), Vector3(Cells[2][0]*o[0][0] + Cells[2][1]*o[1][0] + Cells[2][2]*o[2][0], Cells[2][0]*o[0][1] + Cells[2][1]*o[1][1] + Cells[2][2]*o[2][1], Cells[2][0]*o[0][2] + Cells[2][1]*o[1][2] + Cells[2][2]*o[2][2])); } // Multiply a 3D vector by a rotation matrix friend Vector3 operator* (const Vector3 &v, const TMatrix3x3 &m) { return Vector3(m[0] | v, m[1] | v, m[2] | v); } friend Vector3 operator* (const TMatrix3x3 &m, const Vector3 &v) { return Vector3(m[0] | v, m[1] | v, m[2] | v); } }; #define BAM_FACTOR (90. / 0x40000000) template struct TAngle { vec_t Degrees; // This is to catch any accidental attempt to assign an angle_t to this type. Any explicit exception will require a type cast. TAngle(int) = delete; TAngle(unsigned int) = delete; TAngle(long) = delete; TAngle(unsigned long) = delete; TAngle &operator= (int other) = delete; TAngle &operator= (unsigned other) = delete; TAngle &operator= (long other) = delete; TAngle &operator= (unsigned long other) = delete; TAngle () { } TAngle (vec_t amt) : Degrees(amt) { } /* TAngle (int amt) : Degrees(vec_t(amt)) { } */ TAngle (const TAngle &other) : Degrees(other.Degrees) { } TAngle &operator= (const TAngle &other) { Degrees = other.Degrees; return *this; } TAngle &operator= (double other) { Degrees = other; return *this; } // intentionally disabled so that common math functions cannot be accidentally called with a TAngle. //operator vec_t() const { return Degrees; } TAngle operator- () const { return TAngle(-Degrees); } TAngle &operator+= (TAngle other) { Degrees += other.Degrees; return *this; } TAngle &operator-= (TAngle other) { Degrees -= other.Degrees; return *this; } TAngle &operator*= (TAngle other) { Degrees *= other.Degrees; return *this; } TAngle &operator/= (TAngle other) { Degrees /= other.Degrees; return *this; } TAngle operator+ (TAngle other) const { return Degrees + other.Degrees; } TAngle operator- (TAngle other) const { return Degrees - other.Degrees; } TAngle operator* (TAngle other) const { return Degrees * other.Degrees; } TAngle operator/ (TAngle other) const { return Degrees / other.Degrees; } TAngle &operator+= (vec_t other) { Degrees = Degrees + other; return *this; } TAngle &operator-= (vec_t other) { Degrees = Degrees - other; return *this; } TAngle &operator*= (vec_t other) { Degrees = Degrees * other; return *this; } TAngle &operator/= (vec_t other) { Degrees = Degrees / other; return *this; } TAngle operator+ (vec_t other) const { return Degrees + other; } TAngle operator- (vec_t other) const { return Degrees - other; } friend TAngle operator- (vec_t o1, TAngle o2) { return TAngle(o1 - o2.Degrees); } TAngle operator* (vec_t other) const { return Degrees * other; } TAngle operator/ (vec_t other) const { return Degrees / other; } // Should the comparisons consider an epsilon value? bool operator< (TAngle other) const { return Degrees < other.Degrees; } bool operator> (TAngle other) const { return Degrees > other.Degrees; } bool operator<= (TAngle other) const { return Degrees <= other.Degrees; } bool operator>= (TAngle other) const { return Degrees >= other.Degrees; } bool operator== (TAngle other) const { return Degrees == other.Degrees; } bool operator!= (TAngle other) const { return Degrees != other.Degrees; } bool operator< (vec_t other) const { return Degrees < other; } bool operator> (vec_t other) const { return Degrees > other; } bool operator<= (vec_t other) const { return Degrees <= other; } bool operator>= (vec_t other) const { return Degrees >= other; } bool operator== (vec_t other) const { return Degrees == other; } bool operator!= (vec_t other) const { return Degrees != other; } // Ensure the angle is between [0.0,360.0) degrees TAngle Normalized360() const { // Normalizing the angle converts it to a BAM, which masks it, and converts it back to a float. // Note: We MUST use xs_Float here because it is the only method that guarantees reliable wraparound. return (vec_t)(BAM_FACTOR * BAMs()); } // Ensures the angle is between (-180.0,180.0] degrees TAngle Normalized180() const { return (vec_t)(BAM_FACTOR * (signed int)BAMs()); } vec_t Radians() const { return Degrees * (pi::pi() / 180.0); } unsigned BAMs() const { return xs_CRoundToInt(Degrees * (0x40000000 / 90.)); } TVector2 ToVector(vec_t length = 1) const { return TVector2(length * Cos(), length * Sin()); } vec_t Cos() const { return vec_t(g_cosdeg(Degrees)); } vec_t Sin() const { return vec_t(g_sindeg(Degrees)); } double Tan() const { return g_tan(Degrees * (pi::pi() / 180.)); } // This is for calculating vertical velocity. For high pitches the tangent will become too large to be useful. double TanClamped(double max = 5.) const { return clamp(Tan(), -max, max); } static inline TAngle ToDegrees(double rad) { return TAngle(double(rad * (180.0 / pi::pi()))); } }; // Emulates the old floatbob offset table with direct calls to trig functions. inline double BobSin(double fb) { return TAngle(double(fb * (180.0 / 32))).Sin() * 8; } template inline TAngle fabs (const TAngle °) { return TAngle(fabs(deg.Degrees)); } template inline TAngle deltaangle(const TAngle &a1, const TAngle &a2) { return (a2 - a1).Normalized180(); } template inline TAngle deltaangle(const TAngle &a1, double a2) { return (a2 - a1).Normalized180(); } template inline TAngle deltaangle(double a1, const TAngle &a2) { return (a2 - a1).Normalized180(); } template inline TAngle absangle(const TAngle &a1, const TAngle &a2) { return fabs((a1 - a2).Normalized180()); } template inline TAngle absangle(const TAngle &a1, double a2) { return fabs((a1 - a2).Normalized180()); } inline TAngle VecToAngle(double x, double y) { return g_atan2(y, x) * (180.0 / pi::pi()); } template inline TAngle VecToAngle (const TVector2 &vec) { return (T)g_atan2(vec.Y, vec.X) * (180.0 / pi::pi()); } template inline TAngle VecToAngle (const TVector3 &vec) { return (T)g_atan2(vec.Y, vec.X) * (180.0 / pi::pi()); } template TAngle TVector2::Angle() const { return VecToAngle(X, Y); } template TAngle TVector3::Angle() const { return VecToAngle(X, Y); } template TAngle TVector3::Pitch() const { return VecToAngle(TVector2(X, Y).Length(), Z); } // Much of this is copied from TVector3. Is all that functionality really appropriate? template struct TRotator { typedef TAngle Angle; Angle Pitch; // up/down Angle Yaw; // left/right Angle Roll; // rotation about the forward axis. Angle CamRoll; // Roll specific to actor cameras. Used by quakes. TRotator () { } TRotator (const Angle &p, const Angle &y, const Angle &r) : Pitch(p), Yaw(y), Roll(r) { } TRotator (const TRotator &other) : Pitch(other.Pitch), Yaw(other.Yaw), Roll(other.Roll) { } TRotator &operator= (const TRotator &other) { Roll = other.Roll, Yaw = other.Yaw, Pitch = other.Pitch; return *this; } // Access angles as an array Angle &operator[] (int index) { return *(&Pitch + index); } const Angle &operator[] (int index) const { return *(&Pitch + index); } // Test for equality bool operator== (const TRotator &other) const { return fabs(Pitch - other.Pitch) < Angle(EQUAL_EPSILON) && fabs(Yaw - other.Yaw) < Angle(EQUAL_EPSILON) && fabs(Roll - other.Roll) < Angle(EQUAL_EPSILON); } // Test for inequality bool operator!= (const TRotator &other) const { return fabs(Pitch - other.Pitch) >= Angle(EQUAL_EPSILON) && fabs(Yaw - other.Yaw) >= Angle(EQUAL_EPSILON) && fabs(Roll - other.Roll) >= Angle(EQUAL_EPSILON); } // Unary negation TRotator operator- () const { return TRotator(-Pitch, -Yaw, -Roll); } // Scalar addition TRotator &operator+= (const Angle &scalar) { Pitch += scalar, Yaw += scalar, Roll += scalar; return *this; } friend TRotator operator+ (const TRotator &v, const Angle &scalar) { return TRotator(v.Pitch + scalar, v.Yaw + scalar, v.Roll + scalar); } friend TRotator operator+ (const Angle &scalar, const TRotator &v) { return TRotator(v.Pitch + scalar, v.Yaw + scalar, v.Roll + scalar); } // Scalar subtraction TRotator &operator-= (const Angle &scalar) { Pitch -= scalar, Yaw -= scalar, Roll -= scalar; return *this; } TRotator operator- (const Angle &scalar) const { return TRotator(Pitch - scalar, Yaw - scalar, Roll - scalar); } // Scalar multiplication TRotator &operator*= (const Angle &scalar) { Pitch *= scalar, Yaw *= scalar, Roll *= scalar; return *this; } friend TRotator operator* (const TRotator &v, const Angle &scalar) { return TRotator(v.Pitch * scalar, v.Yaw * scalar, v.Roll * scalar); } friend TRotator operator* (const Angle &scalar, const TRotator &v) { return TRotator(v.Pitch * scalar, v.Yaw * scalar, v.Roll * scalar); } // Scalar division TRotator &operator/= (const Angle &scalar) { Angle mul(1 / scalar.Degrees); Pitch *= scalar, Yaw *= scalar, Roll *= scalar; return *this; } TRotator operator/ (const Angle &scalar) const { Angle mul(1 / scalar.Degrees); return TRotator(Pitch * mul, Yaw * mul, Roll * mul); } // Vector addition TRotator &operator+= (const TRotator &other) { Pitch += other.Pitch, Yaw += other.Yaw, Roll += other.Roll; return *this; } TRotator operator+ (const TRotator &other) const { return TRotator(Pitch + other.Pitch, Yaw + other.Yaw, Roll + other.Roll); } // Vector subtraction TRotator &operator-= (const TRotator &other) { Pitch -= other.Pitch, Yaw -= other.Yaw, Roll -= other.Roll; return *this; } TRotator operator- (const TRotator &other) const { return TRotator(Pitch - other.Pitch, Yaw - other.Yaw, Roll - other.Roll); } }; // Create a forward vector from a rotation (ignoring roll) template inline TVector3::TVector3 (const TRotator &rot) { double pcos = rot.Pitch.Cos(); X = pcos * rot.Yaw.Cos(); Y = pcos * rot.Yaw.Sin(); Z = rot.Pitch.Sin(); } template inline TMatrix3x3::TMatrix3x3(const TVector3 &axis, TAngle degrees) { double c = degrees.Cos(), s = degrees.Sin(), t = 1 - c; double sx = s*axis.X, sy = s*axis.Y, sz = s*axis.Z; double tx, ty, txx, tyy, u, v; tx = t*axis.X; Cells[0][0] = T( (txx=tx*axis.X) + c ); Cells[0][1] = T( (u=tx*axis.Y) - sz ); Cells[0][2] = T( (v=tx*axis.Z) + sy ); ty = t*axis.Y; Cells[1][0] = T( u + sz ); Cells[1][1] = T( (tyy=ty*axis.Y) + c ); Cells[1][2] = T( (u=ty*axis.Z) - sx ); Cells[2][0] = T( v - sy ); Cells[2][1] = T( u + sx ); Cells[2][2] = T( (t-txx-tyy) + c ); } typedef TVector2 FVector2; typedef TVector3 FVector3; typedef TVector4 FVector4; typedef TRotator FRotator; typedef TMatrix3x3 FMatrix3x3; typedef TAngle FAngle; typedef TVector2 DVector2; typedef TVector3 DVector3; typedef TVector4 DVector4; typedef TRotator DRotator; typedef TMatrix3x3 DMatrix3x3; typedef TAngle DAngle; class Plane { public: void Set(FVector3 normal, float d) { m_normal = normal; m_d = d; } // same for a play-vector. Note that y and z are inversed. void Set(DVector3 normal, double d) { m_normal = { (float)normal.X, (float)normal.Z, (float)normal.Y }; m_d = (float)d; } float DistToPoint(float x, float y, float z) { FVector3 p(x, y, z); return (m_normal | p) + m_d; } bool PointOnSide(float x, float y, float z) { return DistToPoint(x, y, z) < 0.f; } bool PointOnSide(FVector3 &v) { return PointOnSide(v.X, v.Y, v.Z); } bool ValidNormal() { return m_normal.LengthSquared() == 1.f; } float A() { return m_normal.X; } float B() { return m_normal.Y; } float C() { return m_normal.Z; } float D() { return m_d; } const FVector3 &Normal() const { return m_normal; } protected: FVector3 m_normal; float m_d; }; #endif