/* ** r_drawt_rgba.cpp ** Faster column drawers for modern processors, true color edition ** **--------------------------------------------------------------------------- ** Copyright 1998-2006 Randy Heit ** All rights reserved. ** ** Redistribution and use in source and binary forms, with or without ** modification, are permitted provided that the following conditions ** are met: ** ** 1. Redistributions of source code must retain the above copyright ** notice, this list of conditions and the following disclaimer. ** 2. Redistributions in binary form must reproduce the above copyright ** notice, this list of conditions and the following disclaimer in the ** documentation and/or other materials provided with the distribution. ** 3. The name of the author may not be used to endorse or promote products ** derived from this software without specific prior written permission. ** ** THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR ** IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES ** OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. ** IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, ** INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT ** NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, ** DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY ** THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT ** (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF ** THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. **--------------------------------------------------------------------------- ** ** True color versions of the similar functions in r_drawt.cpp ** Please see r_drawt.cpp for a description of the globals used. */ #include "templates.h" #include "doomtype.h" #include "doomdef.h" #include "r_defs.h" #include "r_draw.h" #include "r_main.h" #include "r_things.h" #include "v_video.h" #ifndef NO_SSE #include #endif uint32_t dc_temp_rgbabuff_rgba[MAXHEIGHT*4]; uint32_t *dc_temp_rgba; // Defined in r_draw_t.cpp: extern unsigned int dc_tspans[4][MAXHEIGHT]; extern unsigned int *dc_ctspan[4]; extern unsigned int *horizspan[4]; // Copies one span at hx to the screen at sx. void rt_copy1col_RGBA_c (int hx, int sx, int yl, int yh) { uint32_t *source; uint32_t *dest; int count; int pitch; count = yh-yl; if (count < 0) return; count++; dest = ylookup[yl] + sx + (uint32_t*)dc_destorg; source = &dc_temp_rgba[yl*4 + hx]; pitch = dc_pitch; if (count & 1) { *dest = *source; source += 4; dest += pitch; } if (count & 2) { dest[0] = source[0]; dest[pitch] = source[4]; source += 8; dest += pitch*2; } if (!(count >>= 2)) return; do { dest[0] = source[0]; dest[pitch] = source[4]; dest[pitch*2] = source[8]; dest[pitch*3] = source[12]; source += 16; dest += pitch*4; } while (--count); } // Copies all four spans to the screen starting at sx. void rt_copy4cols_RGBA_c (int sx, int yl, int yh) { // To do: we could do this with SSE using __m128i rt_copy1col_RGBA_c(0, sx, yl, yh); rt_copy1col_RGBA_c(1, sx + 1, yl, yh); rt_copy1col_RGBA_c(2, sx + 2, yl, yh); rt_copy1col_RGBA_c(3, sx + 3, yl, yh); } // Maps one span at hx to the screen at sx. void rt_map1col_RGBA_c (int hx, int sx, int yl, int yh) { BYTE *colormap; uint32_t *source; uint32_t *dest; int count; int pitch; count = yh-yl; if (count < 0) return; count++; uint32_t light = calc_light_multiplier(dc_light); colormap = dc_colormap; dest = ylookup[yl] + sx + (uint32_t*)dc_destorg; source = &dc_temp_rgba[yl*4 + hx]; pitch = dc_pitch; if (count & 1) { *dest = shade_pal_index(colormap[*source], light); source += 4; dest += pitch; } if (!(count >>= 1)) return; do { dest[0] = shade_pal_index(colormap[source[0]], light); dest[pitch] = shade_pal_index(colormap[source[4]], light); source += 8; dest += pitch*2; } while (--count); } // Maps all four spans to the screen starting at sx. void rt_map4cols_RGBA_c (int sx, int yl, int yh) { BYTE *colormap; uint32_t *source; uint32_t *dest; int count; int pitch; count = yh-yl; if (count < 0) return; count++; uint32_t light = calc_light_multiplier(dc_light); colormap = dc_colormap; dest = ylookup[yl] + sx + (uint32_t*)dc_destorg; source = &dc_temp_rgba[yl*4]; pitch = dc_pitch; if (count & 1) { dest[0] = shade_pal_index(colormap[source[0]], light); dest[1] = shade_pal_index(colormap[source[1]], light); dest[2] = shade_pal_index(colormap[source[2]], light); dest[3] = shade_pal_index(colormap[source[3]], light); source += 4; dest += pitch; } if (!(count >>= 1)) return; do { dest[0] = shade_pal_index(colormap[source[0]], light); dest[1] = shade_pal_index(colormap[source[1]], light); dest[2] = shade_pal_index(colormap[source[2]], light); dest[3] = shade_pal_index(colormap[source[3]], light); dest[pitch] = shade_pal_index(colormap[source[4]], light); dest[pitch + 1] = shade_pal_index(colormap[source[5]], light); dest[pitch + 2] = shade_pal_index(colormap[source[6]], light); dest[pitch + 3] = shade_pal_index(colormap[source[7]], light); source += 8; dest += pitch*2; } while (--count); } // Maps all four spans to the screen starting at sx. void rt_map4cols_RGBA_SSE(int sx, int yl, int yh) { BYTE *colormap; uint32_t *source; uint32_t *dest; int count; int pitch; count = yh - yl; if (count < 0) return; count++; uint32_t light = calc_light_multiplier(dc_light); uint32_t *palette = (uint32_t*)GPalette.BaseColors; colormap = dc_colormap; dest = ylookup[yl] + sx + (uint32_t*)dc_destorg; source = &dc_temp_rgba[yl * 4]; pitch = dc_pitch; __m128i mlight = _mm_set_epi16(256, light, light, light, 256, light, light, light); if (count & 1) { uint32_t p0 = colormap[source[0]]; uint32_t p1 = colormap[source[1]]; uint32_t p2 = colormap[source[2]]; uint32_t p3 = colormap[source[3]]; // shade_pal_index: __m128i fg = _mm_set_epi32(palette[p3], palette[p2], palette[p1], palette[p0]); __m128i fg_hi = _mm_unpackhi_epi8(fg, _mm_setzero_si128()); __m128i fg_lo = _mm_unpacklo_epi8(fg, _mm_setzero_si128()); fg_hi = _mm_mullo_epi16(fg_hi, mlight); fg_hi = _mm_srli_epi16(fg_hi, 8); fg_lo = _mm_mullo_epi16(fg_lo, mlight); fg_lo = _mm_srli_epi16(fg_lo, 8); fg = _mm_packus_epi16(fg_lo, fg_hi); _mm_storeu_si128((__m128i*)dest, fg); source += 4; dest += pitch; } if (!(count >>= 1)) return; do { // shade_pal_index 0-3 { uint32_t p0 = colormap[source[0]]; uint32_t p1 = colormap[source[1]]; uint32_t p2 = colormap[source[2]]; uint32_t p3 = colormap[source[3]]; __m128i fg = _mm_set_epi32(palette[p3], palette[p2], palette[p1], palette[p0]); __m128i fg_hi = _mm_unpackhi_epi8(fg, _mm_setzero_si128()); __m128i fg_lo = _mm_unpacklo_epi8(fg, _mm_setzero_si128()); fg_hi = _mm_mullo_epi16(fg_hi, mlight); fg_hi = _mm_srli_epi16(fg_hi, 8); fg_lo = _mm_mullo_epi16(fg_lo, mlight); fg_lo = _mm_srli_epi16(fg_lo, 8); fg = _mm_packus_epi16(fg_lo, fg_hi); _mm_storeu_si128((__m128i*)dest, fg); } // shade_pal_index 4-7 (pitch) { uint32_t p0 = colormap[source[4]]; uint32_t p1 = colormap[source[5]]; uint32_t p2 = colormap[source[6]]; uint32_t p3 = colormap[source[7]]; __m128i fg = _mm_set_epi32(palette[p3], palette[p2], palette[p1], palette[p0]); __m128i fg_hi = _mm_unpackhi_epi8(fg, _mm_setzero_si128()); __m128i fg_lo = _mm_unpacklo_epi8(fg, _mm_setzero_si128()); fg_hi = _mm_mullo_epi16(fg_hi, mlight); fg_hi = _mm_srli_epi16(fg_hi, 8); fg_lo = _mm_mullo_epi16(fg_lo, mlight); fg_lo = _mm_srli_epi16(fg_lo, 8); fg = _mm_packus_epi16(fg_lo, fg_hi); _mm_storeu_si128((__m128i*)(dest + pitch), fg); } source += 8; dest += pitch * 2; } while (--count); } void rt_Translate1col_RGBA_c(const BYTE *translation, int hx, int yl, int yh) { int count = yh - yl + 1; uint32_t *source = &dc_temp_rgba[yl*4 + hx]; // Things we do to hit the compiler's optimizer with a clue bat: // 1. Parallelism is explicitly spelled out by using a separate // C instruction for each assembly instruction. GCC lets me // have four temporaries, but VC++ spills to the stack with // more than two. Two is probably optimal, anyway. // 2. The results of the translation lookups are explicitly // stored in byte-sized variables. This causes the VC++ code // to use byte mov instructions in most cases; for apparently // random reasons, it will use movzx for some places. GCC // ignores this and uses movzx always. // Do 8 rows at a time. for (int count8 = count >> 3; count8; --count8) { int c0, c1; BYTE b0, b1; c0 = source[0]; c1 = source[4]; b0 = translation[c0]; b1 = translation[c1]; source[0] = b0; source[4] = b1; c0 = source[8]; c1 = source[12]; b0 = translation[c0]; b1 = translation[c1]; source[8] = b0; source[12] = b1; c0 = source[16]; c1 = source[20]; b0 = translation[c0]; b1 = translation[c1]; source[16] = b0; source[20] = b1; c0 = source[24]; c1 = source[28]; b0 = translation[c0]; b1 = translation[c1]; source[24] = b0; source[28] = b1; source += 32; } // Finish by doing 1 row at a time. for (count &= 7; count; --count, source += 4) { source[0] = translation[source[0]]; } } void rt_Translate4cols_RGBA_c(const BYTE *translation, int yl, int yh) { int count = yh - yl + 1; uint32_t *source = &dc_temp_rgba[yl*4]; int c0, c1; BYTE b0, b1; // Do 2 rows at a time. for (int count8 = count >> 1; count8; --count8) { c0 = source[0]; c1 = source[1]; b0 = translation[c0]; b1 = translation[c1]; source[0] = b0; source[1] = b1; c0 = source[2]; c1 = source[3]; b0 = translation[c0]; b1 = translation[c1]; source[2] = b0; source[3] = b1; c0 = source[4]; c1 = source[5]; b0 = translation[c0]; b1 = translation[c1]; source[4] = b0; source[5] = b1; c0 = source[6]; c1 = source[7]; b0 = translation[c0]; b1 = translation[c1]; source[6] = b0; source[7] = b1; source += 8; } // Do the final row if count was odd. if (count & 1) { c0 = source[0]; c1 = source[1]; b0 = translation[c0]; b1 = translation[c1]; source[0] = b0; source[1] = b1; c0 = source[2]; c1 = source[3]; b0 = translation[c0]; b1 = translation[c1]; source[2] = b0; source[3] = b1; } } // Translates one span at hx to the screen at sx. void rt_tlate1col_RGBA_c (int hx, int sx, int yl, int yh) { rt_Translate1col_RGBA_c(dc_translation, hx, yl, yh); rt_map1col(hx, sx, yl, yh); } // Translates all four spans to the screen starting at sx. void rt_tlate4cols_RGBA_c (int sx, int yl, int yh) { rt_Translate4cols_RGBA_c(dc_translation, yl, yh); rt_map4cols(sx, yl, yh); } // Adds one span at hx to the screen at sx without clamping. void rt_add1col_RGBA_c (int hx, int sx, int yl, int yh) { BYTE *colormap; uint32_t *source; uint32_t *dest; int count; int pitch; count = yh-yl; if (count < 0) return; count++; dest = ylookup[yl] + sx + (uint32_t*)dc_destorg; source = &dc_temp_rgba[yl*4 + hx]; pitch = dc_pitch; colormap = dc_colormap; uint32_t light = calc_light_multiplier(dc_light); uint32_t fg_alpha = dc_srcalpha >> (FRACBITS - 8); uint32_t bg_alpha = dc_destalpha >> (FRACBITS - 8); do { uint32_t fg = shade_pal_index(colormap[*source], light); uint32_t fg_red = (fg >> 16) & 0xff; uint32_t fg_green = (fg >> 8) & 0xff; uint32_t fg_blue = fg & 0xff; uint32_t bg_red = (*dest >> 16) & 0xff; uint32_t bg_green = (*dest >> 8) & 0xff; uint32_t bg_blue = (*dest) & 0xff; uint32_t red = clamp((fg_red * fg_alpha + bg_red * bg_alpha) / 256, 0, 255); uint32_t green = clamp((fg_green * fg_alpha + bg_green * bg_alpha) / 256, 0, 255); uint32_t blue = clamp((fg_blue * fg_alpha + bg_blue * bg_alpha) / 256, 0, 255); *dest = 0xff000000 | (red << 16) | (green << 8) | blue; source += 4; dest += pitch; } while (--count); } // Adds all four spans to the screen starting at sx without clamping. void rt_add4cols_RGBA_c (int sx, int yl, int yh) { BYTE *colormap; uint32_t *source; uint32_t *dest; int count; int pitch; count = yh-yl; if (count < 0) return; count++; dest = ylookup[yl] + sx + (uint32_t*)dc_destorg; source = &dc_temp_rgba[yl*4]; pitch = dc_pitch; colormap = dc_colormap; uint32_t light = calc_light_multiplier(dc_light); uint32_t fg_alpha = dc_srcalpha >> (FRACBITS - 8); uint32_t bg_alpha = dc_destalpha >> (FRACBITS - 8); do { for (int i = 0; i < 4; i++) { uint32_t fg = shade_pal_index(colormap[source[i]], light); uint32_t fg_red = (fg >> 16) & 0xff; uint32_t fg_green = (fg >> 8) & 0xff; uint32_t fg_blue = fg & 0xff; uint32_t bg_red = (dest[i] >> 16) & 0xff; uint32_t bg_green = (dest[i] >> 8) & 0xff; uint32_t bg_blue = (dest[i]) & 0xff; uint32_t red = clamp((fg_red * fg_alpha + bg_red * bg_alpha) / 256, 0, 255); uint32_t green = clamp((fg_green * fg_alpha + bg_green * bg_alpha) / 256, 0, 255); uint32_t blue = clamp((fg_blue * fg_alpha + bg_blue * bg_alpha) / 256, 0, 255); dest[i] = 0xff000000 | (red << 16) | (green << 8) | blue; } source += 4; dest += pitch; } while (--count); } // Adds all four spans to the screen starting at sx without clamping. #ifndef NO_SSE void rt_add4cols_RGBA_SSE(int sx, int yl, int yh) { BYTE *colormap; uint32_t *source; uint32_t *dest; int count; int pitch; count = yh - yl; if (count < 0) return; count++; dest = ylookup[yl] + sx + (uint32_t*)dc_destorg; source = &dc_temp_rgba[yl * 4]; pitch = dc_pitch; colormap = dc_colormap; uint32_t light = calc_light_multiplier(dc_light); uint32_t *palette = (uint32_t*)GPalette.BaseColors; uint32_t fg_alpha = dc_srcalpha >> (FRACBITS - 8); uint32_t bg_alpha = dc_destalpha >> (FRACBITS - 8); __m128i mlight = _mm_set_epi16(256, light, light, light, 256, light, light, light); __m128i mfg_alpha = _mm_set_epi16(256, fg_alpha, fg_alpha, fg_alpha, 256, fg_alpha, fg_alpha, fg_alpha); __m128i mbg_alpha = _mm_set_epi16(256, bg_alpha, bg_alpha, bg_alpha, 256, bg_alpha, bg_alpha, bg_alpha); do { uint32_t p0 = colormap[source[0]]; uint32_t p1 = colormap[source[1]]; uint32_t p2 = colormap[source[2]]; uint32_t p3 = colormap[source[3]]; // shade_pal_index: __m128i fg = _mm_set_epi32(palette[p3], palette[p2], palette[p1], palette[p0]); __m128i fg_hi = _mm_unpackhi_epi8(fg, _mm_setzero_si128()); __m128i fg_lo = _mm_unpacklo_epi8(fg, _mm_setzero_si128()); fg_hi = _mm_mullo_epi16(fg_hi, mlight); fg_hi = _mm_srli_epi16(fg_hi, 8); fg_lo = _mm_mullo_epi16(fg_lo, mlight); fg_lo = _mm_srli_epi16(fg_lo, 8); // unpack bg: __m128i bg = _mm_loadu_si128((const __m128i*)dest); __m128i bg_hi = _mm_unpackhi_epi8(bg, _mm_setzero_si128()); __m128i bg_lo = _mm_unpacklo_epi8(bg, _mm_setzero_si128()); // (fg_red * fg_alpha + bg_red * bg_alpha) / 256: __m128i color_hi = _mm_srli_epi16(_mm_adds_epu16(_mm_mullo_epi16(fg_hi, mfg_alpha), _mm_mullo_epi16(bg_hi, mbg_alpha)), 8); __m128i color_lo = _mm_srli_epi16(_mm_adds_epu16(_mm_mullo_epi16(fg_lo, mfg_alpha), _mm_mullo_epi16(bg_lo, mbg_alpha)), 8); __m128i color = _mm_packus_epi16(color_lo, color_hi); _mm_storeu_si128((__m128i*)dest, color); source += 4; dest += pitch; } while (--count); } #endif // Translates and adds one span at hx to the screen at sx without clamping. void rt_tlateadd1col_RGBA_c (int hx, int sx, int yl, int yh) { rt_Translate1col_RGBA_c(dc_translation, hx, yl, yh); rt_add1col(hx, sx, yl, yh); } // Translates and adds all four spans to the screen starting at sx without clamping. void rt_tlateadd4cols_RGBA_c(int sx, int yl, int yh) { rt_Translate4cols_RGBA_c(dc_translation, yl, yh); rt_add4cols(sx, yl, yh); } // Shades one span at hx to the screen at sx. void rt_shaded1col_RGBA_c (int hx, int sx, int yl, int yh) { BYTE *colormap; uint32_t *source; uint32_t *dest; int count; int pitch; count = yh-yl; if (count < 0) return; count++; colormap = dc_colormap; dest = ylookup[yl] + sx + (uint32_t*)dc_destorg; source = &dc_temp_rgba[yl*4 + hx]; pitch = dc_pitch; uint32_t fg = shade_pal_index(dc_color, calc_light_multiplier(dc_light)); uint32_t fg_red = (fg >> 16) & 0xff; uint32_t fg_green = (fg >> 8) & 0xff; uint32_t fg_blue = fg & 0xff; do { uint32_t alpha = colormap[*source]; uint32_t inv_alpha = 64 - alpha; uint32_t bg_red = (*dest >> 16) & 0xff; uint32_t bg_green = (*dest >> 8) & 0xff; uint32_t bg_blue = (*dest) & 0xff; uint32_t red = (fg_red * alpha + bg_red * inv_alpha) / 64; uint32_t green = (fg_green * alpha + bg_green * inv_alpha) / 64; uint32_t blue = (fg_blue * alpha + bg_blue * inv_alpha) / 64; *dest = 0xff000000 | (red << 16) | (green << 8) | blue; source += 4; dest += pitch; } while (--count); } // Shades all four spans to the screen starting at sx. void rt_shaded4cols_RGBA_c (int sx, int yl, int yh) { BYTE *colormap; uint32_t *source; uint32_t *dest; int count; int pitch; count = yh-yl; if (count < 0) return; count++; colormap = dc_colormap; dest = ylookup[yl] + sx + (uint32_t*)dc_destorg; source = &dc_temp_rgba[yl*4]; pitch = dc_pitch; uint32_t fg = shade_pal_index(dc_color, calc_light_multiplier(dc_light)); uint32_t fg_red = (fg >> 16) & 0xff; uint32_t fg_green = (fg >> 8) & 0xff; uint32_t fg_blue = fg & 0xff; do { for (int i = 0; i < 4; i++) { uint32_t alpha = colormap[source[i]]; uint32_t inv_alpha = 64 - alpha; uint32_t bg_red = (dest[i] >> 16) & 0xff; uint32_t bg_green = (dest[i] >> 8) & 0xff; uint32_t bg_blue = (dest[i]) & 0xff; uint32_t red = (fg_red * alpha + bg_red * inv_alpha) / 64; uint32_t green = (fg_green * alpha + bg_green * inv_alpha) / 64; uint32_t blue = (fg_blue * alpha + bg_blue * inv_alpha) / 64; dest[i] = 0xff000000 | (red << 16) | (green << 8) | blue; } source += 4; dest += pitch; } while (--count); } // Shades all four spans to the screen starting at sx. #ifndef NO_SSE void rt_shaded4cols_RGBA_SSE(int sx, int yl, int yh) { BYTE *colormap; uint32_t *source; uint32_t *dest; int count; int pitch; count = yh - yl; if (count < 0) return; count++; colormap = dc_colormap; dest = ylookup[yl] + sx + (uint32_t*)dc_destorg; source = &dc_temp_rgba[yl * 4]; pitch = dc_pitch; __m128i fg = _mm_unpackhi_epi8(_mm_set1_epi32(shade_pal_index(dc_color, calc_light_multiplier(dc_light))), _mm_setzero_si128()); __m128i alpha_one = _mm_set1_epi16(64); do { uint32_t p0 = colormap[source[0]]; uint32_t p1 = colormap[source[1]]; uint32_t p2 = colormap[source[2]]; uint32_t p3 = colormap[source[3]]; __m128i alpha_hi = _mm_set_epi16(64, p3, p3, p3, 64, p2, p2, p2); __m128i alpha_lo = _mm_set_epi16(64, p1, p1, p1, 64, p0, p0, p0); __m128i inv_alpha_hi = _mm_subs_epu16(alpha_one, alpha_hi); __m128i inv_alpha_lo = _mm_subs_epu16(alpha_one, alpha_lo); // unpack bg: __m128i bg = _mm_loadu_si128((const __m128i*)dest); __m128i bg_hi = _mm_unpackhi_epi8(bg, _mm_setzero_si128()); __m128i bg_lo = _mm_unpacklo_epi8(bg, _mm_setzero_si128()); // (fg_red * alpha + bg_red * inv_alpha) / 64: __m128i color_hi = _mm_srli_epi16(_mm_adds_epu16(_mm_mullo_epi16(fg, alpha_hi), _mm_mullo_epi16(bg_hi, inv_alpha_hi)), 6); __m128i color_lo = _mm_srli_epi16(_mm_adds_epu16(_mm_mullo_epi16(fg, alpha_lo), _mm_mullo_epi16(bg_lo, inv_alpha_lo)), 6); __m128i color = _mm_packus_epi16(color_lo, color_hi); _mm_storeu_si128((__m128i*)dest, color); source += 4; dest += pitch; } while (--count); } #endif // Adds one span at hx to the screen at sx with clamping. void rt_addclamp1col_RGBA_c (int hx, int sx, int yl, int yh) { BYTE *colormap; uint32_t *source; uint32_t *dest; int count; int pitch; count = yh-yl; if (count < 0) return; count++; dest = ylookup[yl] + sx + (uint32_t*)dc_destorg; source = &dc_temp_rgba[yl*4 + hx]; pitch = dc_pitch; colormap = dc_colormap; uint32_t light = calc_light_multiplier(dc_light); uint32_t fg_alpha = dc_srcalpha >> (FRACBITS - 8); uint32_t bg_alpha = dc_destalpha >> (FRACBITS - 8); do { uint32_t fg = shade_pal_index(colormap[*source], light); uint32_t fg_red = (fg >> 16) & 0xff; uint32_t fg_green = (fg >> 8) & 0xff; uint32_t fg_blue = fg & 0xff; uint32_t bg_red = (*dest >> 16) & 0xff; uint32_t bg_green = (*dest >> 8) & 0xff; uint32_t bg_blue = (*dest) & 0xff; uint32_t red = clamp((fg_red * fg_alpha + bg_red * bg_alpha) / 256, 0, 255); uint32_t green = clamp((fg_green * fg_alpha + bg_green * bg_alpha) / 256, 0, 255); uint32_t blue = clamp((fg_blue * fg_alpha + bg_blue * bg_alpha) / 256, 0, 255); *dest = 0xff000000 | (red << 16) | (green << 8) | blue; source += 4; dest += pitch; } while (--count); } // Adds all four spans to the screen starting at sx with clamping. void rt_addclamp4cols_RGBA_c (int sx, int yl, int yh) { BYTE *colormap; uint32_t *source; uint32_t *dest; int count; int pitch; count = yh-yl; if (count < 0) return; count++; dest = ylookup[yl] + sx + (uint32_t*)dc_destorg; source = &dc_temp_rgba[yl*4]; pitch = dc_pitch; colormap = dc_colormap; uint32_t light = calc_light_multiplier(dc_light); uint32_t fg_alpha = dc_srcalpha >> (FRACBITS - 8); uint32_t bg_alpha = dc_destalpha >> (FRACBITS - 8); do { for (int i = 0; i < 4; i++) { uint32_t fg = shade_pal_index(colormap[source[i]], light); uint32_t fg_red = (fg >> 16) & 0xff; uint32_t fg_green = (fg >> 8) & 0xff; uint32_t fg_blue = fg & 0xff; uint32_t bg_red = (dest[i] >> 16) & 0xff; uint32_t bg_green = (dest[i] >> 8) & 0xff; uint32_t bg_blue = (dest[i]) & 0xff; uint32_t red = clamp((fg_red * fg_alpha + bg_red * bg_alpha) / 256, 0, 255); uint32_t green = clamp((fg_green * fg_alpha + bg_green * bg_alpha) / 256, 0, 255); uint32_t blue = clamp((fg_blue * fg_alpha + bg_blue * bg_alpha) / 256, 0, 255); dest[i] = 0xff000000 | (red << 16) | (green << 8) | blue; } source += 4; dest += pitch; } while (--count); } // Adds all four spans to the screen starting at sx with clamping. #ifndef NO_SSE void rt_addclamp4cols_RGBA_SSE(int sx, int yl, int yh) { BYTE *colormap; uint32_t *source; uint32_t *dest; int count; int pitch; count = yh - yl; if (count < 0) return; count++; dest = ylookup[yl] + sx + (uint32_t*)dc_destorg; source = &dc_temp_rgba[yl * 4]; pitch = dc_pitch; colormap = dc_colormap; uint32_t light = calc_light_multiplier(dc_light); uint32_t *palette = (uint32_t*)GPalette.BaseColors; uint32_t fg_alpha = dc_srcalpha >> (FRACBITS - 8); uint32_t bg_alpha = dc_destalpha >> (FRACBITS - 8); __m128i mlight = _mm_set_epi16(256, light, light, light, 256, light, light, light); __m128i mfg_alpha = _mm_set_epi16(256, fg_alpha, fg_alpha, fg_alpha, 256, fg_alpha, fg_alpha, fg_alpha); __m128i mbg_alpha = _mm_set_epi16(256, bg_alpha, bg_alpha, bg_alpha, 256, bg_alpha, bg_alpha, bg_alpha); do { uint32_t p0 = colormap[source[0]]; uint32_t p1 = colormap[source[1]]; uint32_t p2 = colormap[source[2]]; uint32_t p3 = colormap[source[3]]; // shade_pal_index: __m128i fg = _mm_set_epi32(palette[p3], palette[p2], palette[p1], palette[p0]); __m128i fg_hi = _mm_unpackhi_epi8(fg, _mm_setzero_si128()); __m128i fg_lo = _mm_unpacklo_epi8(fg, _mm_setzero_si128()); fg_hi = _mm_mullo_epi16(fg_hi, mlight); fg_hi = _mm_srli_epi16(fg_hi, 8); fg_lo = _mm_mullo_epi16(fg_lo, mlight); fg_lo = _mm_srli_epi16(fg_lo, 8); // unpack bg: __m128i bg = _mm_loadu_si128((const __m128i*)dest); __m128i bg_hi = _mm_unpackhi_epi8(bg, _mm_setzero_si128()); __m128i bg_lo = _mm_unpacklo_epi8(bg, _mm_setzero_si128()); // (fg_red * fg_alpha + bg_red * bg_alpha) / 256: __m128i color_hi = _mm_srli_epi16(_mm_adds_epu16(_mm_mullo_epi16(fg_hi, mfg_alpha), _mm_mullo_epi16(bg_hi, mbg_alpha)), 8); __m128i color_lo = _mm_srli_epi16(_mm_adds_epu16(_mm_mullo_epi16(fg_lo, mfg_alpha), _mm_mullo_epi16(bg_lo, mbg_alpha)), 8); __m128i color = _mm_packus_epi16(color_lo, color_hi); _mm_storeu_si128((__m128i*)dest, color); source += 4; dest += pitch; } while (--count); } #endif // Translates and adds one span at hx to the screen at sx with clamping. void rt_tlateaddclamp1col_RGBA_c (int hx, int sx, int yl, int yh) { rt_Translate1col_RGBA_c(dc_translation, hx, yl, yh); rt_addclamp1col_RGBA_c(hx, sx, yl, yh); } // Translates and adds all four spans to the screen starting at sx with clamping. void rt_tlateaddclamp4cols_RGBA_c (int sx, int yl, int yh) { rt_Translate4cols_RGBA_c(dc_translation, yl, yh); rt_addclamp4cols(sx, yl, yh); } // Subtracts one span at hx to the screen at sx with clamping. void rt_subclamp1col_RGBA_c (int hx, int sx, int yl, int yh) { BYTE *colormap; uint32_t *source; uint32_t *dest; int count; int pitch; count = yh-yl; if (count < 0) return; count++; dest = ylookup[yl] + sx + (uint32_t*)dc_destorg; source = &dc_temp_rgba[yl*4 + hx]; pitch = dc_pitch; colormap = dc_colormap; uint32_t light = calc_light_multiplier(dc_light); uint32_t fg_alpha = dc_srcalpha >> (FRACBITS - 8); uint32_t bg_alpha = dc_destalpha >> (FRACBITS - 8); do { uint32_t fg = shade_pal_index(colormap[*source], light); uint32_t fg_red = (fg >> 16) & 0xff; uint32_t fg_green = (fg >> 8) & 0xff; uint32_t fg_blue = fg & 0xff; uint32_t bg_red = (*dest >> 16) & 0xff; uint32_t bg_green = (*dest >> 8) & 0xff; uint32_t bg_blue = (*dest) & 0xff; uint32_t red = clamp((0x10000 - fg_red * fg_alpha + bg_red * bg_alpha) / 256, 256, 256 + 255) - 256; uint32_t green = clamp((0x10000 - fg_green * fg_alpha + bg_green * bg_alpha) / 256, 256, 256 + 255) - 256; uint32_t blue = clamp((0x10000 - fg_blue * fg_alpha + bg_blue * bg_alpha) / 256, 256, 256 + 255) - 256; *dest = 0xff000000 | (red << 16) | (green << 8) | blue; source += 4; dest += pitch; } while (--count); } // Subtracts all four spans to the screen starting at sx with clamping. void rt_subclamp4cols_RGBA_c (int sx, int yl, int yh) { BYTE *colormap; uint32_t *source; uint32_t *dest; int count; int pitch; count = yh-yl; if (count < 0) return; count++; dest = ylookup[yl] + sx + (uint32_t*)dc_destorg; source = &dc_temp_rgba[yl*4]; pitch = dc_pitch; colormap = dc_colormap; uint32_t light = calc_light_multiplier(dc_light); uint32_t fg_alpha = dc_srcalpha >> (FRACBITS - 8); uint32_t bg_alpha = dc_destalpha >> (FRACBITS - 8); do { for (int i = 0; i < 4; i++) { uint32_t fg = shade_pal_index(colormap[source[i]], light); uint32_t fg_red = (fg >> 16) & 0xff; uint32_t fg_green = (fg >> 8) & 0xff; uint32_t fg_blue = fg & 0xff; uint32_t bg_red = (dest[i] >> 16) & 0xff; uint32_t bg_green = (dest[i] >> 8) & 0xff; uint32_t bg_blue = (dest[i]) & 0xff; uint32_t red = clamp((0x10000 - fg_red * fg_alpha + bg_red * bg_alpha) / 256, 256, 256 + 255) - 256; uint32_t green = clamp((0x10000 - fg_green * fg_alpha + bg_green * bg_alpha) / 256, 256, 256 + 255) - 256; uint32_t blue = clamp((0x10000 - fg_blue * fg_alpha + bg_blue * bg_alpha) / 256, 256, 256 + 255) - 256; dest[i] = 0xff000000 | (red << 16) | (green << 8) | blue; } source += 4; dest += pitch; } while (--count); } // Translates and subtracts one span at hx to the screen at sx with clamping. void rt_tlatesubclamp1col_RGBA_c (int hx, int sx, int yl, int yh) { rt_Translate1col_RGBA_c(dc_translation, hx, yl, yh); rt_subclamp1col_RGBA_c(hx, sx, yl, yh); } // Translates and subtracts all four spans to the screen starting at sx with clamping. void rt_tlatesubclamp4cols_RGBA_c (int sx, int yl, int yh) { rt_Translate4cols_RGBA_c(dc_translation, yl, yh); rt_subclamp4cols_RGBA_c(sx, yl, yh); } // Subtracts one span at hx from the screen at sx with clamping. void rt_revsubclamp1col_RGBA_c (int hx, int sx, int yl, int yh) { BYTE *colormap; uint32_t *source; uint32_t *dest; int count; int pitch; count = yh-yl; if (count < 0) return; count++; dest = ylookup[yl] + sx + (uint32_t*)dc_destorg; source = &dc_temp_rgba[yl*4 + hx]; pitch = dc_pitch; colormap = dc_colormap; uint32_t light = calc_light_multiplier(dc_light); uint32_t fg_alpha = dc_srcalpha >> (FRACBITS - 8); uint32_t bg_alpha = dc_destalpha >> (FRACBITS - 8); do { uint32_t fg = shade_pal_index(colormap[*source], light); uint32_t fg_red = (fg >> 16) & 0xff; uint32_t fg_green = (fg >> 8) & 0xff; uint32_t fg_blue = fg & 0xff; uint32_t bg_red = (*dest >> 16) & 0xff; uint32_t bg_green = (*dest >> 8) & 0xff; uint32_t bg_blue = (*dest) & 0xff; uint32_t red = clamp((0x10000 + fg_red * fg_alpha - bg_red * bg_alpha) / 256, 256, 256 + 255) - 256; uint32_t green = clamp((0x10000 + fg_green * fg_alpha - bg_green * bg_alpha) / 256, 256, 256 + 255) - 256; uint32_t blue = clamp((0x10000 + fg_blue * fg_alpha - bg_blue * bg_alpha) / 256, 256, 256 + 255) - 256; *dest = 0xff000000 | (red << 16) | (green << 8) | blue; source += 4; dest += pitch; } while (--count); } // Subtracts all four spans from the screen starting at sx with clamping. void rt_revsubclamp4cols_RGBA_c (int sx, int yl, int yh) { BYTE *colormap; uint32_t *source; uint32_t *dest; int count; int pitch; count = yh-yl; if (count < 0) return; count++; dest = ylookup[yl] + sx + (uint32_t*)dc_destorg; source = &dc_temp_rgba[yl*4]; pitch = dc_pitch; colormap = dc_colormap; uint32_t light = calc_light_multiplier(dc_light); uint32_t fg_alpha = dc_srcalpha >> (FRACBITS - 8); uint32_t bg_alpha = dc_destalpha >> (FRACBITS - 8); do { for (int i = 0; i < 4; i++) { uint32_t fg = shade_pal_index(colormap[source[i]], light); uint32_t fg_red = (fg >> 16) & 0xff; uint32_t fg_green = (fg >> 8) & 0xff; uint32_t fg_blue = fg & 0xff; uint32_t bg_red = (dest[i] >> 16) & 0xff; uint32_t bg_green = (dest[i] >> 8) & 0xff; uint32_t bg_blue = (dest[i]) & 0xff; uint32_t red = clamp((0x10000 + fg_red * fg_alpha - bg_red * bg_alpha) / 256, 256, 256 + 255) - 256; uint32_t green = clamp((0x10000 + fg_green * fg_alpha - bg_green * bg_alpha) / 256, 256, 256 + 255) - 256; uint32_t blue = clamp((0x10000 + fg_blue * fg_alpha - bg_blue * bg_alpha) / 256, 256, 256 + 255) - 256; dest[i] = 0xff000000 | (red << 16) | (green << 8) | blue; } source += 4; dest += pitch; } while (--count); } // Translates and subtracts one span at hx from the screen at sx with clamping. void rt_tlaterevsubclamp1col_RGBA_c (int hx, int sx, int yl, int yh) { rt_Translate1col_RGBA_c(dc_translation, hx, yl, yh); rt_revsubclamp1col_RGBA_c(hx, sx, yl, yh); } // Translates and subtracts all four spans from the screen starting at sx with clamping. void rt_tlaterevsubclamp4cols_RGBA_c (int sx, int yl, int yh) { rt_Translate4cols_RGBA_c(dc_translation, yl, yh); rt_revsubclamp4cols_RGBA_c(sx, yl, yh); } // Before each pass through a rendering loop that uses these routines, // call this function to set up the span pointers. void rt_initcols_rgba (BYTE *buff) { int y; dc_temp_rgba = buff == NULL ? dc_temp_rgbabuff_rgba : (uint32_t*)buff; for (y = 3; y >= 0; y--) horizspan[y] = dc_ctspan[y] = &dc_tspans[y][0]; } // Stretches a column into a temporary buffer which is later // drawn to the screen along with up to three other columns. void R_DrawColumnHorizP_RGBA_C (void) { int count = dc_count; uint32_t *dest; fixed_t fracstep; fixed_t frac; if (count <= 0) return; { int x = dc_x & 3; unsigned int **span; span = &dc_ctspan[x]; (*span)[0] = dc_yl; (*span)[1] = dc_yh; *span += 2; dest = &dc_temp_rgba[x + 4*dc_yl]; } fracstep = dc_iscale; frac = dc_texturefrac; { const BYTE *source = dc_source; if (count & 1) { *dest = source[frac>>FRACBITS]; dest += 4; frac += fracstep; } if (count & 2) { dest[0] = source[frac>>FRACBITS]; frac += fracstep; dest[4] = source[frac>>FRACBITS]; frac += fracstep; dest += 8; } if (count & 4) { dest[0] = source[frac>>FRACBITS]; frac += fracstep; dest[4] = source[frac>>FRACBITS]; frac += fracstep; dest[8] = source[frac>>FRACBITS]; frac += fracstep; dest[12]= source[frac>>FRACBITS]; frac += fracstep; dest += 16; } count >>= 3; if (!count) return; do { dest[0] = source[frac>>FRACBITS]; frac += fracstep; dest[4] = source[frac>>FRACBITS]; frac += fracstep; dest[8] = source[frac>>FRACBITS]; frac += fracstep; dest[12]= source[frac>>FRACBITS]; frac += fracstep; dest[16]= source[frac>>FRACBITS]; frac += fracstep; dest[20]= source[frac>>FRACBITS]; frac += fracstep; dest[24]= source[frac>>FRACBITS]; frac += fracstep; dest[28]= source[frac>>FRACBITS]; frac += fracstep; dest += 32; } while (--count); } } // [RH] Just fills a column with a given color void R_FillColumnHorizP_RGBA_C (void) { int count = dc_count; BYTE color = dc_color; uint32_t *dest; if (count <= 0) return; { int x = dc_x & 3; unsigned int **span = &dc_ctspan[x]; (*span)[0] = dc_yl; (*span)[1] = dc_yh; *span += 2; dest = &dc_temp_rgba[x + 4*dc_yl]; } if (count & 1) { *dest = color; dest += 4; } if (!(count >>= 1)) return; do { dest[0] = color; dest[4] = color; dest += 8; } while (--count); }