// Emacs style mode select -*- C++ -*- //----------------------------------------------------------------------------- // // $Id:$ // // Copyright (C) 1993-1996 by id Software, Inc. // // This source is available for distribution and/or modification // only under the terms of the DOOM Source Code License as // published by id Software. All rights reserved. // // The source is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // FITNESS FOR A PARTICULAR PURPOSE. See the DOOM Source Code License // for more details. // // DESCRIPTION: // System specific interface stuff. // //----------------------------------------------------------------------------- #ifndef __R_DRAW_RGBA__ #define __R_DRAW_RGBA__ #include "r_draw.h" #include "v_palette.h" #include #include #include #include #include ///////////////////////////////////////////////////////////////////////////// // Drawer functions: void rt_initcols_rgba(BYTE *buffer); void rt_span_coverage_rgba(int x, int start, int stop); void rt_copy1col_rgba(int hx, int sx, int yl, int yh); void rt_copy4cols_rgba(int sx, int yl, int yh); void rt_shaded1col_rgba(int hx, int sx, int yl, int yh); void rt_shaded4cols_rgba(int sx, int yl, int yh); void rt_map1col_rgba(int hx, int sx, int yl, int yh); void rt_add1col_rgba(int hx, int sx, int yl, int yh); void rt_addclamp1col_rgba(int hx, int sx, int yl, int yh); void rt_subclamp1col_rgba(int hx, int sx, int yl, int yh); void rt_revsubclamp1col_rgba(int hx, int sx, int yl, int yh); void rt_tlate1col_rgba(int hx, int sx, int yl, int yh); void rt_tlateadd1col_rgba(int hx, int sx, int yl, int yh); void rt_tlateaddclamp1col_rgba(int hx, int sx, int yl, int yh); void rt_tlatesubclamp1col_rgba(int hx, int sx, int yl, int yh); void rt_tlaterevsubclamp1col_rgba(int hx, int sx, int yl, int yh); void rt_map4cols_rgba(int sx, int yl, int yh); void rt_add4cols_rgba(int sx, int yl, int yh); void rt_addclamp4cols_rgba(int sx, int yl, int yh); void rt_subclamp4cols_rgba(int sx, int yl, int yh); void rt_revsubclamp4cols_rgba(int sx, int yl, int yh); void rt_tlate4cols_rgba(int sx, int yl, int yh); void rt_tlateadd4cols_rgba(int sx, int yl, int yh); void rt_tlateaddclamp4cols_rgba(int sx, int yl, int yh); void rt_tlatesubclamp4cols_rgba(int sx, int yl, int yh); void rt_tlaterevsubclamp4cols_rgba(int sx, int yl, int yh); void R_DrawColumnHoriz_rgba(); void R_DrawColumn_rgba(); void R_DrawFuzzColumn_rgba(); void R_DrawTranslatedColumn_rgba(); void R_DrawShadedColumn_rgba(); void R_FillColumn_rgba(); void R_FillAddColumn_rgba(); void R_FillAddClampColumn_rgba(); void R_FillSubClampColumn_rgba(); void R_FillRevSubClampColumn_rgba(); void R_DrawAddColumn_rgba(); void R_DrawTlatedAddColumn_rgba(); void R_DrawAddClampColumn_rgba(); void R_DrawAddClampTranslatedColumn_rgba(); void R_DrawSubClampColumn_rgba(); void R_DrawSubClampTranslatedColumn_rgba(); void R_DrawRevSubClampColumn_rgba(); void R_DrawRevSubClampTranslatedColumn_rgba(); void R_DrawSpan_rgba(void); void R_DrawSpanMasked_rgba(void); void R_DrawSpanTranslucent_rgba(); void R_DrawSpanMaskedTranslucent_rgba(); void R_DrawSpanAddClamp_rgba(); void R_DrawSpanMaskedAddClamp_rgba(); void R_FillSpan_rgba(); void R_SetupDrawSlab_rgba(FColormap *base_colormap, float light, int shade); void R_DrawSlab_rgba(int dx, fixed_t v, int dy, fixed_t vi, const BYTE *vptr, BYTE *p); void R_DrawFogBoundary_rgba(int x1, int x2, short *uclip, short *dclip); DWORD vlinec1_rgba(); void vlinec4_rgba(); DWORD mvlinec1_rgba(); void mvlinec4_rgba(); fixed_t tmvline1_add_rgba(); void tmvline4_add_rgba(); fixed_t tmvline1_addclamp_rgba(); void tmvline4_addclamp_rgba(); fixed_t tmvline1_subclamp_rgba(); void tmvline4_subclamp_rgba(); fixed_t tmvline1_revsubclamp_rgba(); void tmvline4_revsubclamp_rgba(); void R_FillColumnHoriz_rgba(); void R_FillSpan_rgba(); ///////////////////////////////////////////////////////////////////////////// // Multithreaded rendering infrastructure: // Redirect drawer commands to worker threads void R_BeginDrawerCommands(); // Wait until all drawers finished executing void R_EndDrawerCommands(); struct FSpecialColormap; class DrawerCommandQueue; // Worker data for each thread executing drawer commands class DrawerThread { public: std::thread thread; // Thread line index of this thread int core = 0; // Number of active threads int num_cores = 1; // Range of rows processed this pass int pass_start_y = 0; int pass_end_y = MAXHEIGHT; uint32_t dc_temp_rgbabuff_rgba[MAXHEIGHT * 4]; uint32_t *dc_temp_rgba; // Checks if a line is rendered by this thread bool line_skipped_by_thread(int line) { return line < pass_start_y || line >= pass_end_y || line % num_cores != core; } // The number of lines to skip to reach the first line to be rendered by this thread int skipped_by_thread(int first_line) { int pass_skip = MAX(pass_start_y - first_line, 0); int core_skip = (num_cores - (first_line + pass_skip - core) % num_cores) % num_cores; return pass_skip + core_skip; } // The number of lines to be rendered by this thread int count_for_thread(int first_line, int count) { int lines_until_pass_end = MAX(pass_end_y - first_line, 0); count = MIN(count, lines_until_pass_end); int c = (count - skipped_by_thread(first_line) + num_cores - 1) / num_cores; return MAX(c, 0); } // Calculate the dest address for the first line to be rendered by this thread uint32_t *dest_for_thread(int first_line, int pitch, uint32_t *dest) { return dest + skipped_by_thread(first_line) * pitch; } }; // Task to be executed by each worker thread class DrawerCommand { protected: int _dest_y; public: DrawerCommand() { _dest_y = static_cast((dc_dest - dc_destorg) / (dc_pitch * 4)); } virtual void Execute(DrawerThread *thread) = 0; }; EXTERN_CVAR(Bool, r_multithreaded) EXTERN_CVAR(Bool, r_mipmap) // Manages queueing up commands and executing them on worker threads class DrawerCommandQueue { enum { memorypool_size = 16 * 1024 * 1024 }; char memorypool[memorypool_size]; size_t memorypool_pos = 0; std::vector commands; std::vector threads; std::mutex start_mutex; std::condition_variable start_condition; std::vector active_commands; bool shutdown_flag = false; int run_id = 0; std::mutex end_mutex; std::condition_variable end_condition; size_t finished_threads = 0; int threaded_render = 0; DrawerThread single_core_thread; int num_passes = 1; int rows_in_pass = MAXHEIGHT; void StartThreads(); void StopThreads(); void Finish(); static DrawerCommandQueue *Instance(); DrawerCommandQueue(); ~DrawerCommandQueue(); public: // Allocate memory valid for the duration of a command execution static void* AllocMemory(size_t size); // Queue command to be executed by drawer worker threads template static void QueueCommand(Types &&... args) { auto queue = Instance(); if (queue->threaded_render == 0 || !r_multithreaded) { T command(std::forward(args)...); command.Execute(&queue->single_core_thread); } else { void *ptr = AllocMemory(sizeof(T)); if (!ptr) // Out of memory - render what we got { queue->Finish(); ptr = AllocMemory(sizeof(T)); if (!ptr) return; } T *command = new (ptr)T(std::forward(args)...); queue->commands.push_back(command); } } // Redirects all drawing commands to worker threads until End is called // Begin/End blocks can be nested. static void Begin(); // End redirection and wait until all worker threads finished executing static void End(); // Waits until all worker threads finished executing static void WaitForWorkers(); }; ///////////////////////////////////////////////////////////////////////////// // Drawer commands: class ApplySpecialColormapRGBACommand : public DrawerCommand { BYTE *buffer; int pitch; int width; int height; int start_red; int start_green; int start_blue; int end_red; int end_green; int end_blue; public: ApplySpecialColormapRGBACommand(FSpecialColormap *colormap, DFrameBuffer *screen); void Execute(DrawerThread *thread) override; }; template class DrawerBlendCommand : public CommandType { public: void Execute(DrawerThread *thread) override { LoopIterator loop(this, thread); if (!loop) return; BlendMode blend(*this, loop); do { blend.Blend(*this, loop); } while (loop.next()); } }; ///////////////////////////////////////////////////////////////////////////// // Pixel shading inline functions: // Give the compiler a strong hint we want these functions inlined: #ifndef FORCEINLINE #if defined(_MSC_VER) #define FORCEINLINE __forceinline #elif defined(__GNUC__) #define FORCEINLINE __attribute__((always_inline)) inline #else #define FORCEINLINE inline #endif #endif // Promise compiler we have no aliasing of this pointer #ifndef RESTRICT #if defined(_MSC_VER) #define RESTRICT __restrict #elif defined(__GNUC__) #define RESTRICT __restrict__ #else #define RESTRICT #endif #endif class LightBgra { public: // calculates the light constant passed to the shade_pal_index function FORCEINLINE static uint32_t calc_light_multiplier(dsfixed_t light) { return 256 - (light >> (FRACBITS - 8)); } // Calculates a ARGB8 color for the given palette index and light multiplier FORCEINLINE static uint32_t shade_pal_index_simple(uint32_t index, uint32_t light) { const PalEntry &color = GPalette.BaseColors[index]; uint32_t red = color.r; uint32_t green = color.g; uint32_t blue = color.b; red = red * light / 256; green = green * light / 256; blue = blue * light / 256; return 0xff000000 | (red << 16) | (green << 8) | blue; } // Calculates a ARGB8 color for the given palette index, light multiplier and dynamic colormap FORCEINLINE static uint32_t shade_pal_index(uint32_t index, uint32_t light, const ShadeConstants &constants) { const PalEntry &color = GPalette.BaseColors[index]; uint32_t alpha = color.d & 0xff000000; uint32_t red = color.r; uint32_t green = color.g; uint32_t blue = color.b; if (constants.simple_shade) { red = red * light / 256; green = green * light / 256; blue = blue * light / 256; } else { uint32_t inv_light = 256 - light; uint32_t inv_desaturate = 256 - constants.desaturate; uint32_t intensity = ((red * 77 + green * 143 + blue * 37) >> 8) * constants.desaturate; red = (red * inv_desaturate + intensity) / 256; green = (green * inv_desaturate + intensity) / 256; blue = (blue * inv_desaturate + intensity) / 256; red = (constants.fade_red * inv_light + red * light) / 256; green = (constants.fade_green * inv_light + green * light) / 256; blue = (constants.fade_blue * inv_light + blue * light) / 256; red = (red * constants.light_red) / 256; green = (green * constants.light_green) / 256; blue = (blue * constants.light_blue) / 256; } return alpha | (red << 16) | (green << 8) | blue; } FORCEINLINE static uint32_t shade_bgra_simple(uint32_t color, uint32_t light) { uint32_t red = RPART(color) * light / 256; uint32_t green = GPART(color) * light / 256; uint32_t blue = BPART(color) * light / 256; return 0xff000000 | (red << 16) | (green << 8) | blue; } FORCEINLINE static uint32_t shade_bgra(uint32_t color, uint32_t light, const ShadeConstants &constants) { uint32_t alpha = color & 0xff000000; uint32_t red = (color >> 16) & 0xff; uint32_t green = (color >> 8) & 0xff; uint32_t blue = color & 0xff; if (constants.simple_shade) { red = red * light / 256; green = green * light / 256; blue = blue * light / 256; } else { uint32_t inv_light = 256 - light; uint32_t inv_desaturate = 256 - constants.desaturate; uint32_t intensity = ((red * 77 + green * 143 + blue * 37) >> 8) * constants.desaturate; red = (red * inv_desaturate + intensity) / 256; green = (green * inv_desaturate + intensity) / 256; blue = (blue * inv_desaturate + intensity) / 256; red = (constants.fade_red * inv_light + red * light) / 256; green = (constants.fade_green * inv_light + green * light) / 256; blue = (constants.fade_blue * inv_light + blue * light) / 256; red = (red * constants.light_red) / 256; green = (green * constants.light_green) / 256; blue = (blue * constants.light_blue) / 256; } return alpha | (red << 16) | (green << 8) | blue; } }; class BlendBgra { public: FORCEINLINE static uint32_t copy(uint32_t fg) { return fg; } FORCEINLINE static uint32_t add(uint32_t fg, uint32_t bg, uint32_t srcalpha, uint32_t destalpha) { uint32_t red = MIN((RPART(fg) * srcalpha + RPART(bg) * destalpha) >> 8, 255); uint32_t green = MIN((GPART(fg) * srcalpha + GPART(bg) * destalpha) >> 8, 255); uint32_t blue = MIN((BPART(fg) * srcalpha + BPART(bg) * destalpha) >> 8, 255); return 0xff000000 | (red << 16) | (green << 8) | blue; } FORCEINLINE static uint32_t sub(uint32_t fg, uint32_t bg, uint32_t srcalpha, uint32_t destalpha) { uint32_t red = clamp((0x10000 - RPART(fg) * srcalpha + RPART(bg) * destalpha) >> 8, 256, 256 + 255) - 256; uint32_t green = clamp((0x10000 - GPART(fg) * srcalpha + GPART(bg) * destalpha) >> 8, 256, 256 + 255) - 256; uint32_t blue = clamp((0x10000 - BPART(fg) * srcalpha + BPART(bg) * destalpha) >> 8, 256, 256 + 255) - 256; return 0xff000000 | (red << 16) | (green << 8) | blue; } FORCEINLINE static uint32_t revsub(uint32_t fg, uint32_t bg, uint32_t srcalpha, uint32_t destalpha) { uint32_t red = clamp((0x10000 + RPART(fg) * srcalpha - RPART(bg) * destalpha) >> 8, 256, 256 + 255) - 256; uint32_t green = clamp((0x10000 + GPART(fg) * srcalpha - GPART(bg) * destalpha) >> 8, 256, 256 + 255) - 256; uint32_t blue = clamp((0x10000 + BPART(fg) * srcalpha - BPART(bg) * destalpha) >> 8, 256, 256 + 255) - 256; return 0xff000000 | (red << 16) | (green << 8) | blue; } FORCEINLINE static uint32_t alpha_blend(uint32_t fg, uint32_t bg) { uint32_t alpha = APART(fg) + (APART(fg) >> 7); // 255 -> 256 uint32_t inv_alpha = 256 - alpha; uint32_t red = MIN(RPART(fg) + (RPART(bg) * inv_alpha) / 256, 255); uint32_t green = MIN(GPART(fg) + (GPART(bg) * inv_alpha) / 256, 255); uint32_t blue = MIN(BPART(fg) + (BPART(bg) * inv_alpha) / 256, 255); return 0xff000000 | (red << 16) | (green << 8) | blue; } }; class SampleBgra { public: inline static bool span_sampler_setup(const uint32_t * RESTRICT &source, int &xbits, int &ybits, fixed_t xstep, fixed_t ystep, bool mipmapped) { // Is this a magfilter or minfilter? fixed_t xmagnitude = abs(xstep) >> (32 - xbits - FRACBITS); fixed_t ymagnitude = abs(ystep) >> (32 - ybits - FRACBITS); fixed_t magnitude = (xmagnitude + ymagnitude) * 2 + (1 << (FRACBITS - 1)); bool magnifying = (magnitude >> FRACBITS == 0); if (r_mipmap && mipmapped) { int level = magnitude >> (FRACBITS + 1); while (level != 0) { if (xbits <= 2 || ybits <= 2) break; source += (1 << (xbits)) * (1 << (ybits)); xbits -= 1; ybits -= 1; level >>= 1; } } return (magnifying && r_magfilter) || (!magnifying && r_minfilter); } FORCEINLINE static uint32_t sample_bilinear(const uint32_t *col0, const uint32_t *col1, uint32_t texturefracx, uint32_t texturefracy, uint32_t one, uint32_t height) { uint32_t frac_y0 = (texturefracy >> FRACBITS) * height; uint32_t frac_y1 = ((texturefracy + one) >> FRACBITS) * height; uint32_t y0 = frac_y0 >> FRACBITS; uint32_t y1 = frac_y1 >> FRACBITS; uint32_t p00 = col0[y0]; uint32_t p01 = col0[y1]; uint32_t p10 = col1[y0]; uint32_t p11 = col1[y1]; uint32_t inv_b = texturefracx; uint32_t inv_a = (frac_y1 >> (FRACBITS - 4)) & 15; uint32_t a = 16 - inv_a; uint32_t b = 16 - inv_b; uint32_t red = (RPART(p00) * a * b + RPART(p01) * inv_a * b + RPART(p10) * a * inv_b + RPART(p11) * inv_a * inv_b + 127) >> 8; uint32_t green = (GPART(p00) * a * b + GPART(p01) * inv_a * b + GPART(p10) * a * inv_b + GPART(p11) * inv_a * inv_b + 127) >> 8; uint32_t blue = (BPART(p00) * a * b + BPART(p01) * inv_a * b + BPART(p10) * a * inv_b + BPART(p11) * inv_a * inv_b + 127) >> 8; uint32_t alpha = (APART(p00) * a * b + APART(p01) * inv_a * b + APART(p10) * a * inv_b + APART(p11) * inv_a * inv_b + 127) >> 8; return (alpha << 24) | (red << 16) | (green << 8) | blue; } FORCEINLINE static uint32_t sample_bilinear(const uint32_t *texture, dsfixed_t xfrac, dsfixed_t yfrac, int xbits, int ybits) { int xshift = (32 - xbits); int yshift = (32 - ybits); int xmask = (1 << xshift) - 1; int ymask = (1 << yshift) - 1; uint32_t x = xfrac >> xbits; uint32_t y = yfrac >> ybits; uint32_t p00 = texture[(y & ymask) + ((x & xmask) << yshift)]; uint32_t p01 = texture[((y + 1) & ymask) + ((x & xmask) << yshift)]; uint32_t p10 = texture[(y & ymask) + (((x + 1) & xmask) << yshift)]; uint32_t p11 = texture[((y + 1) & ymask) + (((x + 1) & xmask) << yshift)]; uint32_t inv_b = (xfrac >> (xbits - 4)) & 15; uint32_t inv_a = (yfrac >> (ybits - 4)) & 15; uint32_t a = 16 - inv_a; uint32_t b = 16 - inv_b; uint32_t red = (RPART(p00) * a * b + RPART(p01) * inv_a * b + RPART(p10) * a * inv_b + RPART(p11) * inv_a * inv_b + 127) >> 8; uint32_t green = (GPART(p00) * a * b + GPART(p01) * inv_a * b + GPART(p10) * a * inv_b + GPART(p11) * inv_a * inv_b + 127) >> 8; uint32_t blue = (BPART(p00) * a * b + BPART(p01) * inv_a * b + BPART(p10) * a * inv_b + BPART(p11) * inv_a * inv_b + 127) >> 8; uint32_t alpha = (APART(p00) * a * b + APART(p01) * inv_a * b + APART(p10) * a * inv_b + APART(p11) * inv_a * inv_b + 127) >> 8; return (alpha << 24) | (red << 16) | (green << 8) | blue; } #ifndef NO_SSE static __m128i samplertable[256 * 2]; #endif }; ///////////////////////////////////////////////////////////////////////////// // SSE/AVX shading macros: #define AVX2_SAMPLE_BILINEAR4_COLUMN_INIT(col0, col1, one, height, texturefracx) \ const uint32_t *baseptr = col0[0]; \ __m128i coloffsets0 = _mm_setr_epi32(col0[0] - baseptr, col0[1] - baseptr, col0[2] - baseptr, col0[3] - baseptr); \ __m128i coloffsets1 = _mm_setr_epi32(col1[0] - baseptr, col1[1] - baseptr, col1[2] - baseptr, col1[3] - baseptr); \ __m128i mone = _mm_loadu_si128((const __m128i*)one); \ __m128i m127 = _mm_set1_epi16(127); \ __m128i m16 = _mm_set1_epi32(16); \ __m128i m15 = _mm_set1_epi32(15); \ __m128i mheight = _mm_loadu_si128((const __m128i*)height); \ __m128i mtexturefracx = _mm_loadu_si128((const __m128i*)texturefracx); #define AVX2_SAMPLE_BILINEAR4_COLUMN(fg, texturefracy) { \ __m128i mtexturefracy = _mm_loadu_si128((const __m128i*)texturefracy); \ __m128i multmp0 = _mm_srli_epi32(mtexturefracy, FRACBITS); \ __m128i multmp1 = _mm_srli_epi32(_mm_add_epi32(mtexturefracy, mone), FRACBITS); \ __m128i frac_y0 = _mm_or_si128(_mm_mul_epu32(multmp0, mheight), _mm_slli_si128(_mm_mul_epu32(_mm_srli_si128(multmp0, 4), _mm_srli_si128(mheight, 4)), 4)); \ __m128i frac_y1 = _mm_or_si128(_mm_mul_epu32(multmp1, mheight), _mm_slli_si128(_mm_mul_epu32(_mm_srli_si128(multmp1, 4), _mm_srli_si128(mheight, 4)), 4)); \ __m128i y0 = _mm_srli_epi32(frac_y0, FRACBITS); \ __m128i y1 = _mm_srli_epi32(frac_y1, FRACBITS); \ __m128i inv_b = mtexturefracx; \ __m128i inv_a = _mm_and_si128(_mm_srli_epi32(frac_y1, FRACBITS - 4), m15); \ __m128i a = _mm_sub_epi32(m16, inv_a); \ __m128i b = _mm_sub_epi32(m16, inv_b); \ __m128i ab = _mm_mullo_epi16(a, b); \ __m128i invab = _mm_mullo_epi16(inv_a, b); \ __m128i ainvb = _mm_mullo_epi16(a, inv_b); \ __m128i invainvb = _mm_mullo_epi16(inv_a, inv_b); \ __m128i ab_lo = _mm_shuffle_epi32(ab, _MM_SHUFFLE(1, 1, 0, 0)); \ __m128i ab_hi = _mm_shuffle_epi32(ab, _MM_SHUFFLE(3, 3, 2, 2)); \ __m128i invab_lo = _mm_shuffle_epi32(invab, _MM_SHUFFLE(1, 1, 0, 0)); \ __m128i invab_hi = _mm_shuffle_epi32(invab, _MM_SHUFFLE(3, 3, 2, 2)); \ __m128i ainvb_lo = _mm_shuffle_epi32(ainvb, _MM_SHUFFLE(1, 1, 0, 0)); \ __m128i ainvb_hi = _mm_shuffle_epi32(ainvb, _MM_SHUFFLE(3, 3, 2, 2)); \ __m128i invainvb_lo = _mm_shuffle_epi32(invainvb, _MM_SHUFFLE(1, 1, 0, 0)); \ __m128i invainvb_hi = _mm_shuffle_epi32(invainvb, _MM_SHUFFLE(3, 3, 2, 2)); \ ab_lo = _mm_or_si128(ab_lo, _mm_slli_epi32(ab_lo, 16)); \ ab_hi = _mm_or_si128(ab_hi, _mm_slli_epi32(ab_hi, 16)); \ invab_lo = _mm_or_si128(invab_lo, _mm_slli_epi32(invab_lo, 16)); \ invab_hi = _mm_or_si128(invab_hi, _mm_slli_epi32(invab_hi, 16)); \ ainvb_lo = _mm_or_si128(ainvb_lo, _mm_slli_epi32(ainvb_lo, 16)); \ ainvb_hi = _mm_or_si128(ainvb_hi, _mm_slli_epi32(ainvb_hi, 16)); \ invainvb_lo = _mm_or_si128(invainvb_lo, _mm_slli_epi32(invainvb_lo, 16)); \ invainvb_hi = _mm_or_si128(invainvb_hi, _mm_slli_epi32(invainvb_hi, 16)); \ __m128i p00 = _mm_i32gather_epi32((const int *)baseptr, _mm_add_epi32(y0, coloffsets0), 4); \ __m128i p01 = _mm_i32gather_epi32((const int *)baseptr, _mm_add_epi32(y1, coloffsets0), 4); \ __m128i p10 = _mm_i32gather_epi32((const int *)baseptr, _mm_add_epi32(y0, coloffsets1), 4); \ __m128i p11 = _mm_i32gather_epi32((const int *)baseptr, _mm_add_epi32(y1, coloffsets1), 4); \ __m128i p00_lo = _mm_mullo_epi16(_mm_unpacklo_epi8(p00, _mm_setzero_si128()), ab_lo); \ __m128i p01_lo = _mm_mullo_epi16(_mm_unpacklo_epi8(p01, _mm_setzero_si128()), invab_lo); \ __m128i p10_lo = _mm_mullo_epi16(_mm_unpacklo_epi8(p10, _mm_setzero_si128()), ainvb_lo); \ __m128i p11_lo = _mm_mullo_epi16(_mm_unpacklo_epi8(p11, _mm_setzero_si128()), invainvb_lo); \ __m128i p00_hi = _mm_mullo_epi16(_mm_unpackhi_epi8(p00, _mm_setzero_si128()), ab_hi); \ __m128i p01_hi = _mm_mullo_epi16(_mm_unpackhi_epi8(p01, _mm_setzero_si128()), invab_hi); \ __m128i p10_hi = _mm_mullo_epi16(_mm_unpackhi_epi8(p10, _mm_setzero_si128()), ainvb_hi); \ __m128i p11_hi = _mm_mullo_epi16(_mm_unpackhi_epi8(p11, _mm_setzero_si128()), invainvb_hi); \ __m128i fg_lo = _mm_srli_epi16(_mm_adds_epu16(_mm_adds_epu16(_mm_adds_epu16(p00_lo, p01_lo), _mm_adds_epu16(p10_lo, p11_lo)), m127), 8); \ __m128i fg_hi = _mm_srli_epi16(_mm_adds_epu16(_mm_adds_epu16(_mm_adds_epu16(p00_hi, p01_hi), _mm_adds_epu16(p10_hi, p11_hi)), m127), 8); \ fg = _mm_packus_epi16(fg_lo, fg_hi); \ } #define VEC_SAMPLE_BILINEAR4_COLUMN(fg, col0, col1, texturefracx, texturefracy, one, height) { \ __m128i m127 = _mm_set1_epi16(127); \ fg = _mm_setzero_si128(); \ for (int i = 0; i < 4; i++) \ { \ uint32_t frac_y0 = (texturefracy[i] >> FRACBITS) * height[i]; \ uint32_t frac_y1 = ((texturefracy[i] + one[i]) >> FRACBITS) * height[i]; \ uint32_t y0 = (frac_y0 >> FRACBITS); \ uint32_t y1 = (frac_y1 >> FRACBITS); \ \ uint32_t inv_b = texturefracx[i]; \ uint32_t inv_a = (frac_y1 >> (FRACBITS - 4)) & 15; \ \ __m128i ab_invab = _mm_load_si128(SampleBgra::samplertable + inv_b * 32 + inv_a * 2); \ __m128i ainvb_invainvb = _mm_load_si128(SampleBgra::samplertable + inv_b * 32 + inv_a * 2 + 1); \ \ __m128i gather = _mm_set_epi32(col1[i][y1], col1[i][y0], col0[i][y1], col0[i][y0]); \ __m128i p0 = _mm_unpacklo_epi8(gather, _mm_setzero_si128()); \ __m128i p1 = _mm_unpackhi_epi8(gather, _mm_setzero_si128()); \ \ __m128i tmp = _mm_adds_epu16(_mm_mullo_epi16(p0, ab_invab), _mm_mullo_epi16(p1, ainvb_invainvb)); \ __m128i color = _mm_srli_epi16(_mm_adds_epu16(_mm_adds_epu16(_mm_srli_si128(tmp, 8), tmp), m127), 8); \ \ fg = _mm_or_si128(_mm_srli_si128(fg, 4), _mm_slli_si128(_mm_packus_epi16(color, _mm_setzero_si128()), 12)); \ } \ } #define VEC_SAMPLE_MIP_NEAREST4_COLUMN(fg, col0, col1, mipfrac, texturefracy, height0, height1) { \ uint32_t y0[4], y1[4]; \ for (int i = 0; i < 4; i++) \ { \ y0[i] = (texturefracy[i] >> FRACBITS) * height0[i]; \ y1[i] = (texturefracy[i] >> FRACBITS) * height1[i]; \ } \ __m128i p0 = _mm_set_epi32(col0[y0[3]], col0[y0[2]], col0[y0[1]], col0[y0[0]]); \ __m128i p1 = _mm_set_epi32(col1[y1[3]], col1[y1[2]], col1[y1[1]], col1[y1[0]]); \ __m128i t = _mm_loadu_si128((const __m128i*)mipfrac); \ __m128i inv_t = _mm_sub_epi32(_mm_set1_epi32(256), mipfrac); \ __m128i p0_lo = _mm_unpacklo_epi8(p0, _mm_setzero_si128()); \ __m128i p0_hi = _mm_unpackhi_epi8(p0, _mm_setzero_si128()); \ __m128i p1_lo = _mm_unpacklo_epi8(p1, _mm_setzero_si128()); \ __m128i p1_hi = _mm_unpackhi_epi8(p1, _mm_setzero_si128()); \ __m128i fg_lo = _mm_srli_epi16(_mm_adds_epu16(_mm_mullo_epi16(p0_lo, t), _mm_mullo_epi16(p1_lo, inv_t)), 8); \ __m128i fg_hi = _mm_srli_epi16(_mm_adds_epu16(_mm_mullo_epi16(p0_hi, t), _mm_mullo_epi16(p1_hi, inv_t)), 8); \ fg = _mm_packus_epi16(fg_lo, fg_hi); \ } #define VEC_SAMPLE_BILINEAR4_SPAN(fg, texture, xfrac, yfrac, xstep, ystep, xbits, ybits) { \ int xshift = (32 - xbits); \ int yshift = (32 - ybits); \ int xmask = (1 << xshift) - 1; \ int ymask = (1 << yshift) - 1; \ \ __m128i m127 = _mm_set1_epi16(127); \ fg = _mm_setzero_si128(); \ for (int i = 0; i < 4; i++) \ { \ uint32_t x = xfrac >> xbits; \ uint32_t y = yfrac >> ybits; \ \ uint32_t p00 = texture[(y & ymask) + ((x & xmask) << yshift)]; \ uint32_t p01 = texture[((y + 1) & ymask) + ((x & xmask) << yshift)]; \ uint32_t p10 = texture[(y & ymask) + (((x + 1) & xmask) << yshift)]; \ uint32_t p11 = texture[((y + 1) & ymask) + (((x + 1) & xmask) << yshift)]; \ \ uint32_t inv_b = (xfrac >> (xbits - 4)) & 15; \ uint32_t inv_a = (yfrac >> (ybits - 4)) & 15; \ \ __m128i ab_invab = _mm_load_si128(SampleBgra::samplertable + inv_b * 32 + inv_a * 2); \ __m128i ainvb_invainvb = _mm_load_si128(SampleBgra::samplertable + inv_b * 32 + inv_a * 2 + 1); \ \ __m128i p0 = _mm_unpacklo_epi8(_mm_set_epi32(0, 0, p01, p00), _mm_setzero_si128()); \ __m128i p1 = _mm_unpacklo_epi8(_mm_set_epi32(0, 0, p11, p10), _mm_setzero_si128()); \ \ __m128i tmp = _mm_adds_epu16(_mm_mullo_epi16(p0, ab_invab), _mm_mullo_epi16(p1, ainvb_invainvb)); \ __m128i color = _mm_srli_epi16(_mm_adds_epu16(_mm_adds_epu16(_mm_srli_si128(tmp, 8), tmp), m127), 8); \ \ fg = _mm_or_si128(_mm_srli_si128(fg, 4), _mm_slli_si128(_mm_packus_epi16(color, _mm_setzero_si128()), 12)); \ \ xfrac += xstep; \ yfrac += ystep; \ } \ } // Calculate constants for a simple shade with gamma correction #define AVX_LINEAR_SHADE_SIMPLE_INIT(light) \ __m256 mlight_hi = _mm256_set_ps(1.0f, light * (1.0f/256.0f), light * (1.0f/256.0f), light * (1.0f/256.0f), 1.0f, light * (1.0f/256.0f), light * (1.0f/256.0f), light * (1.0f/256.0f)); \ mlight_hi = _mm256_mul_ps(mlight_hi, mlight_hi); \ __m256 mlight_lo = mlight_hi; \ __m256 mrcp_255 = _mm256_set1_ps(1.0f/255.0f); \ __m256 m255 = _mm256_set1_ps(255.0f); // Calculate constants for a simple shade with different light levels for each pixel and gamma correction #define AVX_LINEAR_SHADE_SIMPLE_INIT4(light3, light2, light1, light0) \ __m256 mlight_hi = _mm256_set_ps(1.0f, light1 * (1.0f/256.0f), light1 * (1.0f/256.0f), light1 * (1.0f/256.0f), 1.0f, light0 * (1.0f/256.0f), light0 * (1.0f/256.0f), light0 * (1.0f/256.0f)); \ __m256 mlight_lo = _mm256_set_ps(1.0f, light3 * (1.0f/256.0f), light3 * (1.0f/256.0f), light3 * (1.0f/256.0f), 1.0f, light2 * (1.0f/256.0f), light2 * (1.0f/256.0f), light2 * (1.0f/256.0f)); \ mlight_hi = _mm256_mul_ps(mlight_hi, mlight_hi); \ mlight_lo = _mm256_mul_ps(mlight_lo, mlight_lo); \ __m256 mrcp_255 = _mm256_set1_ps(1.0f/255.0f); \ __m256 m255 = _mm256_set1_ps(255.0f); // Simple shade 4 pixels with gamma correction #define AVX_LINEAR_SHADE_SIMPLE(fg) { \ __m256i fg_16 = _mm256_set_m128i(_mm_unpackhi_epi8(fg, _mm_setzero_si128()), _mm_unpacklo_epi8(fg, _mm_setzero_si128())); \ __m256 fg_hi = _mm256_cvtepi32_ps(_mm256_unpackhi_epi16(fg_16, _mm256_setzero_si256())); \ __m256 fg_lo = _mm256_cvtepi32_ps(_mm256_unpacklo_epi16(fg_16, _mm256_setzero_si256())); \ fg_hi = _mm256_mul_ps(fg_hi, mrcp_255); \ fg_hi = _mm256_mul_ps(fg_hi, fg_hi); \ fg_hi = _mm256_mul_ps(fg_hi, mlight_hi); \ fg_hi = _mm256_sqrt_ps(fg_hi); \ fg_hi = _mm256_mul_ps(fg_hi, m255); \ fg_lo = _mm256_mul_ps(fg_lo, mrcp_255); \ fg_lo = _mm256_mul_ps(fg_lo, fg_lo); \ fg_lo = _mm256_mul_ps(fg_lo, mlight_lo); \ fg_lo = _mm256_sqrt_ps(fg_lo); \ fg_lo = _mm256_mul_ps(fg_lo, m255); \ fg_16 = _mm256_packus_epi32(_mm256_cvtps_epi32(fg_lo), _mm256_cvtps_epi32(fg_hi)); \ fg = _mm_packus_epi16(_mm256_extractf128_si256(fg_16, 0), _mm256_extractf128_si256(fg_16, 1)); \ } // Calculate constants for a complex shade with gamma correction #define AVX_LINEAR_SHADE_INIT(light, shade_constants) \ __m256 mlight_hi = _mm256_set_ps(1.0f, light * (1.0f/256.0f), light * (1.0f/256.0f), light * (1.0f/256.0f), 1.0f, light * (1.0f/256.0f), light * (1.0f/256.0f), light * (1.0f/256.0f)); \ mlight_hi = _mm256_mul_ps(mlight_hi, mlight_hi); \ __m256 mlight_lo = mlight_hi; \ __m256 mrcp_255 = _mm256_set1_ps(1.0f/255.0f); \ __m256 m255 = _mm256_set1_ps(255.0f); \ __m256 color = _mm256_set_ps( \ 1.0f, shade_constants.light_red * (1.0f/256.0f), shade_constants.light_green * (1.0f/256.0f), shade_constants.light_blue * (1.0f/256.0f), \ 1.0f, shade_constants.light_red * (1.0f/256.0f), shade_constants.light_green * (1.0f/256.0f), shade_constants.light_blue * (1.0f/256.0f)); \ __m256 fade = _mm256_set_ps( \ 0.0f, shade_constants.fade_red * (1.0f/256.0f), shade_constants.fade_green * (1.0f/256.0f), shade_constants.fade_blue * (1.0f/256.0f), \ 0.0f, shade_constants.fade_red * (1.0f/256.0f), shade_constants.fade_green * (1.0f/256.0f), shade_constants.fade_blue * (1.0f/256.0f)); \ __m256 fade_amount_hi = _mm256_mul_ps(fade, _mm256_sub_ps(_mm256_set1_ps(1.0f), mlight_hi)); \ __m256 fade_amount_lo = _mm256_mul_ps(fade, _mm256_sub_ps(_mm256_set1_ps(1.0f), mlight_lo)); \ __m256 inv_desaturate = _mm256_set1_ps((256 - shade_constants.desaturate) * (1.0f/256.0f)); \ __m128 ss_desaturate = _mm_set_ss(shade_constants.desaturate * (1.0f/256.0f)); \ __m128 intensity_weight = _mm_set_ps(0.0f, 77.0f/256.0f, 143.0f/256.0f, 37.0f/256.0f); // Calculate constants for a complex shade with different light levels for each pixel and gamma correction #define AVX_LINEAR_SHADE_INIT4(light3, light2, light1, light0, shade_constants) \ __m256 mlight_hi = _mm256_set_ps(1.0f, light1 * (1.0f/256.0f), light1 * (1.0f/256.0f), light1 * (1.0f/256.0f), 1.0f, light0 * (1.0f/256.0f), light0 * (1.0f/256.0f), light0 * (1.0f/256.0f)); \ __m256 mlight_lo = _mm256_set_ps(1.0f, light3 * (1.0f/256.0f), light3 * (1.0f/256.0f), light3 * (1.0f/256.0f), 1.0f, light2 * (1.0f/256.0f), light2 * (1.0f/256.0f), light2 * (1.0f/256.0f)); \ mlight_hi = _mm256_mul_ps(mlight_hi, mlight_hi); \ mlight_lo = _mm256_mul_ps(mlight_lo, mlight_lo); \ __m256 mrcp_255 = _mm256_set1_ps(1.0f/255.0f); \ __m256 m255 = _mm256_set1_ps(255.0f); \ __m256 color = _mm256_set_ps( \ 1.0f, shade_constants.light_red * (1.0f/256.0f), shade_constants.light_green * (1.0f/256.0f), shade_constants.light_blue * (1.0f/256.0f), \ 1.0f, shade_constants.light_red * (1.0f/256.0f), shade_constants.light_green * (1.0f/256.0f), shade_constants.light_blue * (1.0f/256.0f)); \ __m256 fade = _mm256_set_ps( \ 0.0f, shade_constants.fade_red * (1.0f/256.0f), shade_constants.fade_green * (1.0f/256.0f), shade_constants.fade_blue * (1.0f/256.0f), \ 0.0f, shade_constants.fade_red * (1.0f/256.0f), shade_constants.fade_green * (1.0f/256.0f), shade_constants.fade_blue * (1.0f/256.0f)); \ __m256 fade_amount_hi = _mm256_mul_ps(fade, _mm256_sub_ps(_mm256_set1_ps(1.0f), mlight_hi)); \ __m256 fade_amount_lo = _mm256_mul_ps(fade, _mm256_sub_ps(_mm256_set1_ps(1.0f), mlight_lo)); \ __m256 inv_desaturate = _mm256_set1_ps((256 - shade_constants.desaturate) * (1.0f/256.0f)); \ __m128 ss_desaturate = _mm_set_ss(shade_constants.desaturate * (1.0f/256.0f)); \ __m128 intensity_weight = _mm_set_ps(0.0f, 77.0f/256.0f, 143.0f/256.0f, 37.0f/256.0f); // Complex shade 4 pixels with gamma correction #define AVX_LINEAR_SHADE(fg, shade_constants) { \ __m256i fg_16 = _mm256_set_m128i(_mm_unpackhi_epi8(fg, _mm_setzero_si128()), _mm_unpacklo_epi8(fg, _mm_setzero_si128())); \ __m256 fg_hi = _mm256_cvtepi32_ps(_mm256_unpackhi_epi16(fg_16, _mm256_setzero_si256())); \ __m256 fg_lo = _mm256_cvtepi32_ps(_mm256_unpacklo_epi16(fg_16, _mm256_setzero_si256())); \ fg_hi = _mm256_mul_ps(fg_hi, mrcp_255); \ fg_hi = _mm256_mul_ps(fg_hi, fg_hi); \ fg_lo = _mm256_mul_ps(fg_lo, mrcp_255); \ fg_lo = _mm256_mul_ps(fg_lo, fg_lo); \ \ __m128 intensity_hi0 = _mm_mul_ps(_mm256_extractf128_ps(fg_hi, 0), intensity_weight); \ __m128 intensity_hi1 = _mm_mul_ps(_mm256_extractf128_ps(fg_hi, 1), intensity_weight); \ intensity_hi0 = _mm_mul_ss(_mm_add_ss(_mm_add_ss(intensity_hi0, _mm_shuffle_ps(intensity_hi0, intensity_hi0, _MM_SHUFFLE(1,1,1,1))), _mm_shuffle_ps(intensity_hi0, intensity_hi0, _MM_SHUFFLE(2,2,2,2))), ss_desaturate); \ intensity_hi0 = _mm_shuffle_ps(intensity_hi0, intensity_hi0, _MM_SHUFFLE(0,0,0,0)); \ intensity_hi1 = _mm_mul_ss(_mm_add_ss(_mm_add_ss(intensity_hi1, _mm_shuffle_ps(intensity_hi1, intensity_hi1, _MM_SHUFFLE(1,1,1,1))), _mm_shuffle_ps(intensity_hi1, intensity_hi1, _MM_SHUFFLE(2,2,2,2))), ss_desaturate); \ intensity_hi1 = _mm_shuffle_ps(intensity_hi1, intensity_hi1, _MM_SHUFFLE(0,0,0,0)); \ __m256 intensity_hi = _mm256_set_m128(intensity_hi1, intensity_hi0); \ \ fg_hi = _mm256_add_ps(_mm256_mul_ps(fg_hi, inv_desaturate), intensity_hi); \ fg_hi = _mm256_add_ps(_mm256_mul_ps(fg_hi, mlight_hi), fade_amount_hi); \ fg_hi = _mm256_mul_ps(fg_hi, color); \ \ __m128 intensity_lo0 = _mm_mul_ps(_mm256_extractf128_ps(fg_lo, 0), intensity_weight); \ __m128 intensity_lo1 = _mm_mul_ps(_mm256_extractf128_ps(fg_lo, 1), intensity_weight); \ intensity_lo0 = _mm_mul_ss(_mm_add_ss(_mm_add_ss(intensity_lo0, _mm_shuffle_ps(intensity_lo0, intensity_lo0, _MM_SHUFFLE(1,1,1,1))), _mm_shuffle_ps(intensity_lo0, intensity_lo0, _MM_SHUFFLE(2,2,2,2))), ss_desaturate); \ intensity_lo0 = _mm_shuffle_ps(intensity_lo0, intensity_lo0, _MM_SHUFFLE(0,0,0,0)); \ intensity_lo1 = _mm_mul_ss(_mm_add_ss(_mm_add_ss(intensity_lo1, _mm_shuffle_ps(intensity_lo1, intensity_lo1, _MM_SHUFFLE(1,1,1,1))), _mm_shuffle_ps(intensity_lo1, intensity_lo1, _MM_SHUFFLE(2,2,2,2))), ss_desaturate); \ intensity_lo1 = _mm_shuffle_ps(intensity_lo1, intensity_lo1, _MM_SHUFFLE(0,0,0,0)); \ __m256 intensity_lo = _mm256_set_m128(intensity_lo1, intensity_lo0); \ \ fg_lo = _mm256_add_ps(_mm256_mul_ps(fg_lo, inv_desaturate), intensity_lo); \ fg_lo = _mm256_add_ps(_mm256_mul_ps(fg_lo, mlight_lo), fade_amount_lo); \ fg_lo = _mm256_mul_ps(fg_lo, color); \ \ fg_hi = _mm256_sqrt_ps(fg_hi); \ fg_hi = _mm256_mul_ps(fg_hi, m255); \ fg_lo = _mm256_sqrt_ps(fg_lo); \ fg_lo = _mm256_mul_ps(fg_lo, m255); \ fg_16 = _mm256_packus_epi32(_mm256_cvtps_epi32(fg_lo), _mm256_cvtps_epi32(fg_hi)); \ fg = _mm_packus_epi16(_mm256_extractf128_si256(fg_16, 0), _mm256_extractf128_si256(fg_16, 1)); \ } /* // Complex shade 8 pixels #define AVX_SHADE(fg, shade_constants) { \ __m256i fg_hi = _mm256_unpackhi_epi8(fg, _mm256_setzero_si256()); \ __m256i fg_lo = _mm256_unpacklo_epi8(fg, _mm256_setzero_si256()); \ \ __m256i intensity_hi = _mm256_mullo_epi16(fg_hi, _mm256_set_epi16(0, 77, 143, 37, 0, 77, 143, 37, 0, 77, 143, 37, 0, 77, 143, 37)); \ __m256i intensity_lo = _mm256_mullo_epi16(fg_lo, _mm256_set_epi16(0, 77, 143, 37, 0, 77, 143, 37, 0, 77, 143, 37, 0, 77, 143, 37)); \ __m256i intensity = _mm256_mullo_epi16(_mm256_srli_epi16(_mm256_hadd_epi16(_mm256_hadd_epi16(intensity_lo, intensity_hi), _mm256_setzero_si256()), 8), desaturate); \ intensity = _mm256_unpacklo_epi16(intensity, intensity); \ intensity_hi = _mm256_unpackhi_epi32(intensity, intensity); \ intensity_lo = _mm256_unpacklo_epi32(intensity, intensity); \ \ fg_hi = _mm256_srli_epi16(_mm256_adds_epu16(_mm256_mullo_epi16(fg_hi, inv_desaturate), intensity_hi), 8); \ fg_hi = _mm256_srli_epi16(_mm256_adds_epu16(_mm256_mullo_epi16(fg_hi, mlight), fade_amount), 8); \ fg_hi = _mm256_srli_epi16(_mm256_mullo_epi16(fg_hi, color), 8); \ \ fg_lo = _mm256_srli_epi16(_mm256_adds_epu16(_mm256_mullo_epi16(fg_lo, inv_desaturate), intensity_lo), 8); \ fg_lo = _mm256_srli_epi16(_mm256_adds_epu16(_mm256_mullo_epi16(fg_lo, mlight), fade_amount), 8); \ fg_lo = _mm256_srli_epi16(_mm256_mullo_epi16(fg_lo, color), 8); \ \ fg = _mm256_packus_epi16(fg_lo, fg_hi); \ } */ // Normal premultiplied alpha blend using the alpha from fg #define VEC_ALPHA_BLEND(fg,bg) { \ __m128i fg_hi = _mm_unpackhi_epi8(fg, _mm_setzero_si128()); \ __m128i fg_lo = _mm_unpacklo_epi8(fg, _mm_setzero_si128()); \ __m128i bg_hi = _mm_unpackhi_epi8(bg, _mm_setzero_si128()); \ __m128i bg_lo = _mm_unpacklo_epi8(bg, _mm_setzero_si128()); \ __m128i m255 = _mm_set1_epi16(255); \ __m128i inv_alpha_hi = _mm_sub_epi16(m255, _mm_shufflehi_epi16(_mm_shufflelo_epi16(fg_hi, _MM_SHUFFLE(3,3,3,3)), _MM_SHUFFLE(3,3,3,3))); \ __m128i inv_alpha_lo = _mm_sub_epi16(m255, _mm_shufflehi_epi16(_mm_shufflelo_epi16(fg_lo, _MM_SHUFFLE(3,3,3,3)), _MM_SHUFFLE(3,3,3,3))); \ inv_alpha_hi = _mm_add_epi16(inv_alpha_hi, _mm_srli_epi16(inv_alpha_hi, 7)); \ inv_alpha_lo = _mm_add_epi16(inv_alpha_lo, _mm_srli_epi16(inv_alpha_lo, 7)); \ bg_hi = _mm_mullo_epi16(bg_hi, inv_alpha_hi); \ bg_hi = _mm_srli_epi16(bg_hi, 8); \ bg_lo = _mm_mullo_epi16(bg_lo, inv_alpha_lo); \ bg_lo = _mm_srli_epi16(bg_lo, 8); \ bg = _mm_packus_epi16(bg_lo, bg_hi); \ fg = _mm_adds_epu8(fg, bg); \ } // Calculates the final alpha values to be used when combined with the source texture alpha channel FORCEINLINE uint32_t calc_blend_bgalpha(uint32_t fg, uint32_t dest_alpha) { uint32_t alpha = fg >> 24; alpha += alpha >> 7; uint32_t inv_alpha = 256 - alpha; return (dest_alpha * alpha + 256 * inv_alpha + 128) >> 8; } #define VEC_CALC_BLEND_ALPHA_VARS() __m128i msrc_alpha, mdest_alpha, m256, m255, m128; #define VEC_CALC_BLEND_ALPHA_INIT(src_alpha, dest_alpha) \ msrc_alpha = _mm_set1_epi16(src_alpha); \ mdest_alpha = _mm_set1_epi16(dest_alpha * 255 / 256); \ m256 = _mm_set1_epi16(256); \ m255 = _mm_set1_epi16(255); \ m128 = _mm_set1_epi16(128); // Calculates the final alpha values to be used when combined with the source texture alpha channel #define VEC_CALC_BLEND_ALPHA(fg) \ __m128i fg_alpha_hi, fg_alpha_lo, bg_alpha_hi, bg_alpha_lo; { \ __m128i alpha_hi = _mm_shufflehi_epi16(_mm_shufflelo_epi16(_mm_unpackhi_epi8(fg, _mm_setzero_si128()), _MM_SHUFFLE(3, 3, 3, 3)), _MM_SHUFFLE(3, 3, 3, 3)); \ __m128i alpha_lo = _mm_shufflehi_epi16(_mm_shufflelo_epi16(_mm_unpacklo_epi8(fg, _mm_setzero_si128()), _MM_SHUFFLE(3, 3, 3, 3)), _MM_SHUFFLE(3, 3, 3, 3)); \ alpha_hi = _mm_add_epi16(alpha_hi, _mm_srli_epi16(alpha_hi, 7)); \ alpha_lo = _mm_add_epi16(alpha_lo, _mm_srli_epi16(alpha_lo, 7)); \ bg_alpha_hi = _mm_srli_epi16(_mm_adds_epu16(_mm_adds_epu16(_mm_mullo_epi16(mdest_alpha, alpha_hi), _mm_mullo_epi16(m255, _mm_sub_epi16(m256, alpha_hi))), m128), 8); \ bg_alpha_hi = _mm_add_epi16(bg_alpha_hi, _mm_srli_epi16(bg_alpha_hi, 7)); \ bg_alpha_lo = _mm_srli_epi16(_mm_adds_epu16(_mm_adds_epu16(_mm_mullo_epi16(mdest_alpha, alpha_lo), _mm_mullo_epi16(m255, _mm_sub_epi16(m256, alpha_lo))), m128), 8); \ bg_alpha_lo = _mm_add_epi16(bg_alpha_lo, _mm_srli_epi16(bg_alpha_lo, 7)); \ fg_alpha_hi = msrc_alpha; \ fg_alpha_lo = msrc_alpha; \ } #define SSE_SHADE_VARS() __m128i mlight_hi, mlight_lo, color, fade, fade_amount_hi, fade_amount_lo, inv_desaturate; // Calculate constants for a simple shade #define SSE_SHADE_SIMPLE_INIT(light) \ mlight_hi = _mm_set_epi16(256, light, light, light, 256, light, light, light); \ mlight_lo = mlight_hi; // Calculate constants for a simple shade with different light levels for each pixel #define SSE_SHADE_SIMPLE_INIT4(light3, light2, light1, light0) \ mlight_hi = _mm_set_epi16(256, light1, light1, light1, 256, light0, light0, light0); \ mlight_lo = _mm_set_epi16(256, light3, light3, light3, 256, light2, light2, light2); // Simple shade 4 pixels #define SSE_SHADE_SIMPLE(fg) { \ __m128i fg_hi = _mm_unpackhi_epi8(fg, _mm_setzero_si128()); \ __m128i fg_lo = _mm_unpacklo_epi8(fg, _mm_setzero_si128()); \ fg_hi = _mm_mullo_epi16(fg_hi, mlight_hi); \ fg_hi = _mm_srli_epi16(fg_hi, 8); \ fg_lo = _mm_mullo_epi16(fg_lo, mlight_lo); \ fg_lo = _mm_srli_epi16(fg_lo, 8); \ fg = _mm_packus_epi16(fg_lo, fg_hi); \ } // Calculate constants for a complex shade #define SSE_SHADE_INIT(light, shade_constants) \ mlight_hi = _mm_set_epi16(256, light, light, light, 256, light, light, light); \ mlight_lo = mlight_hi; \ color = _mm_set_epi16( \ 256, shade_constants.light_red, shade_constants.light_green, shade_constants.light_blue, \ 256, shade_constants.light_red, shade_constants.light_green, shade_constants.light_blue); \ fade = _mm_set_epi16( \ 0, shade_constants.fade_red, shade_constants.fade_green, shade_constants.fade_blue, \ 0, shade_constants.fade_red, shade_constants.fade_green, shade_constants.fade_blue); \ fade_amount_hi = _mm_mullo_epi16(fade, _mm_subs_epu16(_mm_set1_epi16(256), mlight_hi)); \ fade_amount_lo = fade_amount_hi; \ inv_desaturate = _mm_set1_epi16(256 - shade_constants.desaturate); \ // Calculate constants for a complex shade with different light levels for each pixel #define SSE_SHADE_INIT4(light3, light2, light1, light0, shade_constants) \ mlight_hi = _mm_set_epi16(256, light1, light1, light1, 256, light0, light0, light0); \ mlight_lo = _mm_set_epi16(256, light3, light3, light3, 256, light2, light2, light2); \ color = _mm_set_epi16( \ 256, shade_constants.light_red, shade_constants.light_green, shade_constants.light_blue, \ 256, shade_constants.light_red, shade_constants.light_green, shade_constants.light_blue); \ fade = _mm_set_epi16( \ 0, shade_constants.fade_red, shade_constants.fade_green, shade_constants.fade_blue, \ 0, shade_constants.fade_red, shade_constants.fade_green, shade_constants.fade_blue); \ fade_amount_hi = _mm_mullo_epi16(fade, _mm_subs_epu16(_mm_set1_epi16(256), mlight_hi)); \ fade_amount_lo = _mm_mullo_epi16(fade, _mm_subs_epu16(_mm_set1_epi16(256), mlight_lo)); \ inv_desaturate = _mm_set1_epi16(256 - shade_constants.desaturate); \ // Complex shade 4 pixels #define SSE_SHADE(fg, shade_constants) { \ __m128i fg_hi = _mm_unpackhi_epi8(fg, _mm_setzero_si128()); \ __m128i fg_lo = _mm_unpacklo_epi8(fg, _mm_setzero_si128()); \ \ __m128i intensity_hi = _mm_mullo_epi16(fg_hi, _mm_set_epi16(0, 77, 143, 37, 0, 77, 143, 37)); \ uint16_t intensity_hi0 = ((_mm_extract_epi16(intensity_hi, 2) + _mm_extract_epi16(intensity_hi, 1) + _mm_extract_epi16(intensity_hi, 0)) >> 8) * shade_constants.desaturate; \ uint16_t intensity_hi1 = ((_mm_extract_epi16(intensity_hi, 6) + _mm_extract_epi16(intensity_hi, 5) + _mm_extract_epi16(intensity_hi, 4)) >> 8) * shade_constants.desaturate; \ intensity_hi = _mm_set_epi16(intensity_hi1, intensity_hi1, intensity_hi1, intensity_hi1, intensity_hi0, intensity_hi0, intensity_hi0, intensity_hi0); \ \ fg_hi = _mm_srli_epi16(_mm_adds_epu16(_mm_mullo_epi16(fg_hi, inv_desaturate), intensity_hi), 8); \ fg_hi = _mm_srli_epi16(_mm_adds_epu16(_mm_mullo_epi16(fg_hi, mlight_hi), fade_amount_hi), 8); \ fg_hi = _mm_srli_epi16(_mm_mullo_epi16(fg_hi, color), 8); \ \ __m128i intensity_lo = _mm_mullo_epi16(fg_lo, _mm_set_epi16(0, 77, 143, 37, 0, 77, 143, 37)); \ uint16_t intensity_lo0 = ((_mm_extract_epi16(intensity_lo, 2) + _mm_extract_epi16(intensity_lo, 1) + _mm_extract_epi16(intensity_lo, 0)) >> 8) * shade_constants.desaturate; \ uint16_t intensity_lo1 = ((_mm_extract_epi16(intensity_lo, 6) + _mm_extract_epi16(intensity_lo, 5) + _mm_extract_epi16(intensity_lo, 4)) >> 8) * shade_constants.desaturate; \ intensity_lo = _mm_set_epi16(intensity_lo1, intensity_lo1, intensity_lo1, intensity_lo1, intensity_lo0, intensity_lo0, intensity_lo0, intensity_lo0); \ \ fg_lo = _mm_srli_epi16(_mm_adds_epu16(_mm_mullo_epi16(fg_lo, inv_desaturate), intensity_lo), 8); \ fg_lo = _mm_srli_epi16(_mm_adds_epu16(_mm_mullo_epi16(fg_lo, mlight_lo), fade_amount_lo), 8); \ fg_lo = _mm_srli_epi16(_mm_mullo_epi16(fg_lo, color), 8); \ \ fg = _mm_packus_epi16(fg_lo, fg_hi); \ } #endif