#include "jitintern.h" void JitCompiler::EmitPARAM() { using namespace asmjit; int index = NumParam++; ParamOpcodes.Push(pc); X86Gp stackPtr, tmp; X86Xmm tmp2; switch (B) { case REGT_NIL: cc.mov(x86::ptr(params, index * sizeof(VMValue) + offsetof(VMValue, a)), (int64_t)0); cc.mov(x86::byte_ptr(params, index * sizeof(VMValue) + offsetof(VMValue, Type)), (int)REGT_NIL); break; case REGT_INT: cc.mov(x86::dword_ptr(params, index * sizeof(VMValue) + offsetof(VMValue, i)), regD[C]); cc.mov(x86::byte_ptr(params, index * sizeof(VMValue) + offsetof(VMValue, Type)), (int)REGT_INT); break; case REGT_INT | REGT_ADDROF: stackPtr = cc.newIntPtr(); cc.mov(stackPtr, frameD); cc.add(stackPtr, C * sizeof(int32_t)); cc.mov(x86::ptr(params, index * sizeof(VMValue) + offsetof(VMValue, a)), stackPtr); cc.mov(x86::byte_ptr(params, index * sizeof(VMValue) + offsetof(VMValue, Type)), (int)REGT_POINTER); break; case REGT_INT | REGT_KONST: cc.mov(x86::dword_ptr(params, index * sizeof(VMValue) + offsetof(VMValue, i)), konstd[C]); cc.mov(x86::byte_ptr(params, index * sizeof(VMValue) + offsetof(VMValue, Type)), (int)REGT_INT); break; //case REGT_STRING: //case REGT_STRING | REGT_ADDROF: //case REGT_STRING | REGT_KONST: case REGT_POINTER: cc.mov(x86::ptr(params, index * sizeof(VMValue) + offsetof(VMValue, a)), regA[C]); cc.mov(x86::byte_ptr(params, index * sizeof(VMValue) + offsetof(VMValue, Type)), (int)REGT_POINTER); break; case REGT_POINTER | REGT_ADDROF: stackPtr = cc.newIntPtr(); cc.mov(stackPtr, frameA); cc.add(stackPtr, C * sizeof(void*)); cc.mov(x86::ptr(params, index * sizeof(VMValue) + offsetof(VMValue, a)), stackPtr); cc.mov(x86::byte_ptr(params, index * sizeof(VMValue) + offsetof(VMValue, Type)), (int)REGT_POINTER); break; case REGT_POINTER | REGT_KONST: tmp = cc.newIntPtr(); cc.mov(tmp, ToMemAddress(konsta[C].v)); cc.mov(x86::ptr(params, index * sizeof(VMValue) + offsetof(VMValue, a)), tmp); cc.mov(x86::byte_ptr(params, index * sizeof(VMValue) + offsetof(VMValue, Type)), (int)REGT_POINTER); break; case REGT_FLOAT: cc.movsd(x86::qword_ptr(params, index * sizeof(VMValue) + offsetof(VMValue, f)), regF[C]); cc.mov(x86::byte_ptr(params, index * sizeof(VMValue) + offsetof(VMValue, Type)), (int)REGT_FLOAT); break; case REGT_FLOAT | REGT_MULTIREG2: cc.movsd(x86::qword_ptr(params, index * sizeof(VMValue) + offsetof(VMValue, f)), regF[C]); cc.mov(x86::byte_ptr(params, index * sizeof(VMValue) + offsetof(VMValue, Type)), (int)REGT_FLOAT); index = NumParam++; ParamOpcodes.Push(pc); cc.movsd(x86::qword_ptr(params, index * sizeof(VMValue) + offsetof(VMValue, f)), regF[C + 1]); cc.mov(x86::byte_ptr(params, index * sizeof(VMValue) + offsetof(VMValue, Type)), (int)REGT_FLOAT); break; case REGT_FLOAT | REGT_MULTIREG3: cc.movsd(x86::qword_ptr(params, index * sizeof(VMValue) + offsetof(VMValue, f)), regF[C]); cc.mov(x86::byte_ptr(params, index * sizeof(VMValue) + offsetof(VMValue, Type)), (int)REGT_FLOAT); index = NumParam++; ParamOpcodes.Push(pc); cc.movsd(x86::qword_ptr(params, index * sizeof(VMValue) + offsetof(VMValue, f)), regF[C + 1]); cc.mov(x86::byte_ptr(params, index * sizeof(VMValue) + offsetof(VMValue, Type)), (int)REGT_FLOAT); index = NumParam++; ParamOpcodes.Push(pc); cc.movsd(x86::qword_ptr(params, index * sizeof(VMValue) + offsetof(VMValue, f)), regF[C + 2]); cc.mov(x86::byte_ptr(params, index * sizeof(VMValue) + offsetof(VMValue, Type)), (int)REGT_FLOAT); break; case REGT_FLOAT | REGT_ADDROF: stackPtr = cc.newIntPtr(); cc.mov(stackPtr, frameF); cc.add(stackPtr, C * sizeof(double)); cc.mov(x86::ptr(params, index * sizeof(VMValue) + offsetof(VMValue, a)), stackPtr); cc.mov(x86::byte_ptr(params, index * sizeof(VMValue) + offsetof(VMValue, Type)), (int)REGT_POINTER); break; case REGT_FLOAT | REGT_KONST: tmp = cc.newIntPtr(); tmp2 = cc.newXmmSd(); cc.mov(tmp, ToMemAddress(konstf + C)); cc.movsd(tmp2, asmjit::x86::qword_ptr(tmp)); cc.movsd(x86::qword_ptr(params, index * sizeof(VMValue) + offsetof(VMValue, f)), tmp2); cc.mov(x86::byte_ptr(params, index * sizeof(VMValue) + offsetof(VMValue, Type)), (int)REGT_FLOAT); break; default: I_FatalError("Unknown REGT value passed to EmitPARAM\n"); break; } } void JitCompiler::EmitPARAMI() { int index = NumParam++; ParamOpcodes.Push(pc); cc.mov(asmjit::x86::dword_ptr(params, index * sizeof(VMValue) + offsetof(VMValue, i)), (int)ABCs); cc.mov(asmjit::x86::byte_ptr(params, index * sizeof(VMValue) + offsetof(VMValue, Type)), (int)REGT_INT); } void JitCompiler::EmitRESULT() { // This instruction is just a placeholder to indicate where a return // value should be stored. It does nothing on its own and should not // be executed. } void JitCompiler::EmitCALL() { EmitDoCall(regA[A]); } void JitCompiler::EmitCALL_K() { auto ptr = cc.newIntPtr(); cc.mov(ptr, ToMemAddress(konsta[A].o)); EmitDoCall(ptr); } void JitCompiler::EmitTAIL() { I_FatalError("EmitTAIL not implemented\n"); } void JitCompiler::EmitTAIL_K() { I_FatalError("EmitTAIL_K not implemented\n"); } void JitCompiler::EmitDoCall(asmjit::X86Gp ptr) { using namespace asmjit; if (NumParam < B) I_FatalError("OP_CALL parameter count does not match the number of preceding OP_PARAM instructions"); StoreInOuts(B); FillReturns(pc + 1, C); X86Gp paramsptr; if (B != NumParam) { paramsptr = cc.newIntPtr(); cc.mov(paramsptr, params); cc.add(paramsptr, (NumParam - B) * sizeof(VMValue)); } else { paramsptr = params; } auto result = cc.newInt32(); auto call = cc.call(ToMemAddress(&JitCompiler::DoCall), FuncSignature7()); call->setRet(0, result); call->setArg(0, stack); call->setArg(1, ptr); call->setArg(2, asmjit::Imm(B)); call->setArg(3, asmjit::Imm(C)); call->setArg(4, paramsptr); call->setArg(5, callReturns); call->setArg(6, exceptInfo); auto noexception = cc.newLabel(); auto exceptResult = cc.newInt32(); cc.mov(exceptResult, x86::dword_ptr(exceptInfo, 0 * 4)); cc.cmp(exceptResult, (int)-1); cc.je(noexception); X86Gp vReg = cc.newInt32(); cc.mov(vReg, 0); cc.ret(vReg); cc.bind(noexception); LoadReturns(pc - B, B, true); LoadReturns(pc + 1, C, false); NumParam -= B; ParamOpcodes.Resize(ParamOpcodes.Size() - B); } void JitCompiler::StoreInOuts(int b) { using namespace asmjit; for (unsigned int i = ParamOpcodes.Size() - b; i < ParamOpcodes.Size(); i++) { asmjit::X86Gp stackPtr; switch (ParamOpcodes[i]->b) { case REGT_INT | REGT_ADDROF: stackPtr = cc.newIntPtr(); cc.mov(stackPtr, frameD); cc.add(stackPtr, C * sizeof(int32_t)); cc.mov(x86::dword_ptr(stackPtr), regD[C]); break; //case REGT_STRING | REGT_ADDROF: // break; case REGT_POINTER | REGT_ADDROF: stackPtr = cc.newIntPtr(); cc.mov(stackPtr, frameA); cc.add(stackPtr, C * sizeof(void*)); cc.mov(x86::ptr(stackPtr), regA[C]); break; case REGT_FLOAT | REGT_ADDROF: stackPtr = cc.newIntPtr(); cc.mov(stackPtr, frameF); cc.add(stackPtr, C * sizeof(double)); cc.movsd(x86::qword_ptr(stackPtr), regF[C]); break; default: break; } } } void JitCompiler::LoadReturns(const VMOP *retval, int numret, bool inout) { for (int i = 0; i < numret; ++i) { if (!inout && retval[i].op != OP_RESULT) I_FatalError("Expected OP_RESULT to follow OP_CALL\n"); else if (inout && retval[i].op != OP_PARAMI) continue; else if (inout && retval[i].op != OP_PARAM) I_FatalError("Expected OP_PARAM to precede OP_CALL\n"); int type = retval[i].b; int regnum = retval[i].c; if (inout && !(type & REGT_ADDROF)) continue; switch (type & REGT_TYPE) { case REGT_INT: cc.mov(regD[regnum], asmjit::x86::dword_ptr(frameD, regnum * sizeof(int32_t))); break; case REGT_FLOAT: cc.movsd(regF[regnum], asmjit::x86::qword_ptr(frameF, regnum * sizeof(double))); break; /*case REGT_STRING: break;*/ case REGT_POINTER: cc.mov(regA[regnum], asmjit::x86::ptr(frameA, regnum * sizeof(void*))); break; default: I_FatalError("Unknown OP_RESULT type encountered in LoadReturns\n"); break; } } } void JitCompiler::FillReturns(const VMOP *retval, int numret) { using namespace asmjit; for (int i = 0; i < numret; ++i) { if (retval[i].op != OP_RESULT) { I_FatalError("Expected OP_RESULT to follow OP_CALL\n"); } int type = retval[i].b; int regnum = retval[i].c; if (type & REGT_KONST) { I_FatalError("OP_RESULT with REGT_KONST is not allowed\n"); } auto regPtr = cc.newIntPtr(); switch (type & REGT_TYPE) { case REGT_INT: cc.mov(regPtr, frameD); cc.add(regPtr, regnum * sizeof(int32_t)); break; case REGT_FLOAT: cc.mov(regPtr, frameF); cc.add(regPtr, regnum * sizeof(double)); break; /*case REGT_STRING: cc.mov(regPtr, frameS); cc.add(regPtr, regnum * sizeof(FString)); break;*/ case REGT_POINTER: cc.mov(regPtr, frameA); cc.add(regPtr, regnum * sizeof(void*)); break; default: I_FatalError("Unknown OP_RESULT type encountered in FillReturns\n"); break; } cc.mov(x86::ptr(callReturns, i * sizeof(VMReturn) + offsetof(VMReturn, Location)), regPtr); cc.mov(x86::byte_ptr(callReturns, i * sizeof(VMReturn) + offsetof(VMReturn, RegType)), type); } } int JitCompiler::DoCall(VMFrameStack *stack, VMFunction *call, int b, int c, VMValue *param, VMReturn *returns, JitExceptionInfo *exceptinfo) { try { int numret; if (call->VarFlags & VARF_Native) { try { VMCycles[0].Unclock(); numret = static_cast(call)->NativeCall(param, call->DefaultArgs, b, returns, c); VMCycles[0].Clock(); } catch (CVMAbortException &err) { err.MaybePrintMessage(); err.stacktrace.AppendFormat("Called from %s\n", call->PrintableName.GetChars()); throw; } } else { VMCalls[0]++; VMScriptFunction *script = static_cast(call); VMFrame *newf = stack->AllocFrame(script); VMFillParams(param, newf, b); try { numret = VMExec(stack, script->Code, returns, c); } catch (...) { stack->PopFrame(); throw; } stack->PopFrame(); } return numret; } catch (...) { // To do: store full exception in exceptinfo exceptinfo->reason = X_OTHER; return 0; } }