#include "dobject.h" #include "sc_man.h" #include "c_console.h" #include "c_dispatch.h" #include "w_wad.h" #include "cmdlib.h" #include "m_alloc.h" #include "zcc_parser.h" #include "zcc_compile.h" #include "v_text.h" #include "gdtoa.h" #define DEFINING_CONST ((PSymbolConst *)(void *)1) //========================================================================== // // ZCCCompiler Constructor // //========================================================================== ZCCCompiler::ZCCCompiler(ZCC_AST &ast, DObject *_outer, PSymbolTable &_symbols) : Outer(_outer), Symbols(_symbols), AST(ast), ErrorCount(0), WarnCount(0) { // Group top-level nodes by type if (ast.TopNode != NULL) { ZCC_TreeNode *node = ast.TopNode; do { switch (node->NodeType) { case AST_Class: // if (AddNamedNode(static_cast(node)->ClassName, node)) { Classes.Push(static_cast(node)); } break; case AST_Struct: if (AddNamedNode(static_cast(node)->StructName, node)) { Structs.Push(static_cast(node)); } break; case AST_Enum: break; case AST_EnumTerminator:break; case AST_ConstantDef: if (AddNamedNode(static_cast(node)->Name, node)) { Constants.Push(static_cast(node)); } break; default: assert(0 && "Unhandled AST node type"); break; } node = node->SiblingNext; } while (node != ast.TopNode); } } //========================================================================== // // ZCCCompiler :: AddNamedNode // // Keeps track of definition nodes by their names. Ensures that all names // in this scope are unique. // //========================================================================== bool ZCCCompiler::AddNamedNode(FName name, ZCC_TreeNode *node) { ZCC_TreeNode **check = NamedNodes.CheckKey(name); if (check != NULL && *check != NULL) { Message(node, ERR_symbol_redefinition, "Attempt to redefine '%s'", name.GetChars()); Message(*check, ERR_original_definition, " Original definition is here"); return false; } else { NamedNodes.Insert(name, node); return true; } } //========================================================================== // // ZCCCompiler :: Message // // Prints a warning or error message, and increments the appropriate // counter. // //========================================================================== void ZCCCompiler::Message(ZCC_TreeNode *node, EZCCError errnum, const char *msg, ...) { FString composed; composed.Format("%s%s, line %d: ", errnum & ZCCERR_ERROR ? TEXTCOLOR_RED : TEXTCOLOR_ORANGE, node->SourceName->GetChars(), node->SourceLoc); va_list argptr; va_start(argptr, msg); composed.VAppendFormat(msg, argptr); va_end(argptr); composed += '\n'; PrintString(PRINT_HIGH, composed); if (errnum & ZCCERR_ERROR) { ErrorCount++; } else { WarnCount++; } } //========================================================================== // // ZCCCompiler :: Compile // // Compile everything defined at this level. // //========================================================================== int ZCCCompiler::Compile() { CompileConstants(); return ErrorCount; } //========================================================================== // // ZCCCompiler :: CompileConstants // // Make symbols from every constant defined at this level. // //========================================================================== void ZCCCompiler::CompileConstants() { for (unsigned i = 0; i < Constants.Size(); ++i) { ZCC_ConstantDef *def = Constants[i]; if (def->Symbol == NULL) { CompileConstant(def); } } } //========================================================================== // // ZCCCompiler :: CompileConstant // // For every constant definition, evaluate its value (which should result // in a constant), and create a symbol for it. Simplify() uses recursion // to resolve constants used before their declarations. // //========================================================================== PSymbolConst *ZCCCompiler::CompileConstant(ZCC_ConstantDef *def) { assert(def->Symbol == NULL); def->Symbol = DEFINING_CONST; // avoid recursion ZCC_Expression *val = Simplify(def->Value); def->Value = val; PSymbolConst *sym = NULL; if (val->NodeType == AST_ExprConstant) { ZCC_ExprConstant *cval = static_cast(val); if (cval->Type == TypeString) { sym = new PSymbolConstString(def->Name, *(cval->StringVal)); } else if (cval->Type->IsA(RUNTIME_CLASS(PInt))) { sym = new PSymbolConstNumeric(def->Name, cval->Type, cval->IntVal); } else if (cval->Type->IsA(RUNTIME_CLASS(PFloat))) { sym = new PSymbolConstNumeric(def->Name, cval->Type, cval->DoubleVal); } else { Message(def->Value, ERR_bad_const_def_type, "Bad type for constant definiton"); } } else { Message(def->Value, ERR_const_def_not_constant, "Constant definition requires a constant value"); } if (sym == NULL) { // Create a dummy constant so we don't make any undefined value warnings. sym = new PSymbolConstNumeric(def->Name, TypeError, 0); } def->Symbol = sym; PSymbol *addsym = Symbols.AddSymbol(sym); assert(NULL != addsym && "Symbol was redefined (but we shouldn't have even had the chance to do so)"); return sym; } //========================================================================== // // ZCCCompiler :: Simplify // // For an expression, // Evaluate operators whose arguments are both constants, replacing it // with a new constant. // For a binary operator with one constant argument, put it on the right- // hand operand, where permitted. // Perform automatic type promotion. // //========================================================================== ZCC_Expression *ZCCCompiler::Simplify(ZCC_Expression *root) { if (root->Operation == PEX_ID) { return IdentifyIdentifier(static_cast(root)); } else if (IsUnaryOp(root->Operation)) { return SimplifyUnary(static_cast(root)); } else if (IsBinaryOp(root->Operation)) { return SimplifyBinary(static_cast(root)); } return root; } //========================================================================== // // ZCCCompiler :: SimplifyUnary // //========================================================================== ZCC_Expression *ZCCCompiler::SimplifyUnary(ZCC_ExprUnary *unary) { unary->Operand = Simplify(unary->Operand); ZCC_OpProto *op = PromoteUnary(unary->Operation, unary->Operand); if (op == NULL) { // Oh, poo! unary->Type = TypeError; } else if (unary->Operand->Operation == PEX_ConstValue) { return op->EvalConst1(static_cast(unary->Operand)); } return unary; } //========================================================================== // // ZCCCompiler :: SimplifyBinary // //========================================================================== ZCC_Expression *ZCCCompiler::SimplifyBinary(ZCC_ExprBinary *binary) { binary->Left = Simplify(binary->Left); binary->Right = Simplify(binary->Right); ZCC_OpProto *op = PromoteBinary(binary->Operation, binary->Left, binary->Right); if (op == NULL) { binary->Type = TypeError; } else if (binary->Left->Operation == PEX_ConstValue && binary->Right->Operation == PEX_ConstValue) { return op->EvalConst2(static_cast(binary->Left), static_cast(binary->Right), AST.Strings); } return binary; } //========================================================================== // // ZCCCompiler :: PromoteUnary // // Converts the operand into a format preferred by the operator. // //========================================================================== ZCC_OpProto *ZCCCompiler::PromoteUnary(EZCCExprType op, ZCC_Expression *&expr) { if (expr->Type == TypeError) { return NULL; } const PType::Conversion *route[CONVERSION_ROUTE_SIZE]; int routelen = countof(route); ZCC_OpProto *proto = ZCC_OpInfo[op].FindBestProto(expr->Type, route, routelen); if (proto != NULL) { expr = ApplyConversion(expr, route, routelen); } return proto; } //========================================================================== // // ZCCCompiler :: PromoteBinary // // Converts the operands into a format (hopefully) compatible with the // operator. // //========================================================================== ZCC_OpProto *ZCCCompiler::PromoteBinary(EZCCExprType op, ZCC_Expression *&left, ZCC_Expression *&right) { // If either operand is of type 'error', the result is also 'error' if (left->Type == TypeError || right->Type == TypeError) { return NULL; } const PType::Conversion *route1[CONVERSION_ROUTE_SIZE], *route2[CONVERSION_ROUTE_SIZE]; int route1len = countof(route1), route2len = countof(route2); ZCC_OpProto *proto = ZCC_OpInfo[op].FindBestProto(left->Type, route1, route1len, right->Type, route2, route2len); if (proto != NULL) { left = ApplyConversion(left, route1, route1len); right = ApplyConversion(right, route2, route2len); } return proto; } //========================================================================== // // ZCCCompiler :: ApplyConversion // //========================================================================== ZCC_Expression *ZCCCompiler::ApplyConversion(ZCC_Expression *expr, const PType::Conversion **route, int routelen) { for (int i = 0; i < routelen; ++i) { if (expr->Operation != PEX_ConstValue) { expr = AddCastNode(route[i]->TargetType, expr); } else { route[i]->ConvertConstant(static_cast(expr), AST.Strings); } } return expr; } //========================================================================== // // ZCCCompiler :: AddCastNode // //========================================================================== ZCC_Expression *ZCCCompiler::AddCastNode(PType *type, ZCC_Expression *expr) { assert(expr->Operation != PEX_ConstValue && "Expression must not be constant"); // TODO: add a node here return expr; } //========================================================================== // // ZCCCompiler :: IdentifyIdentifier // // Returns a node that represents what the identifer stands for. // //========================================================================== ZCC_Expression *ZCCCompiler::IdentifyIdentifier(ZCC_ExprID *idnode) { // First things first: Check the symbol table. PSymbol *sym; if (NULL != (sym = Symbols.FindSymbol(idnode->Identifier, true))) { if (sym->IsKindOf(RUNTIME_CLASS(PSymbolConst))) { return NodeFromSymbolConst(static_cast(sym), idnode); } } else { // Check nodes that haven't had symbols created for them yet. ZCC_TreeNode **node = NamedNodes.CheckKey(idnode->Identifier); if (node != NULL && *node != NULL) { if ((*node)->NodeType == AST_ConstantDef) { ZCC_ConstantDef *def = static_cast(*node); PSymbolConst *sym = def->Symbol; if (sym == DEFINING_CONST) { Message(idnode, ERR_recursive_definition, "Definition of '%s' is infinitely recursive", FName(idnode->Identifier).GetChars()); sym = NULL; } else { assert(sym == NULL); sym = CompileConstant(def); } return NodeFromSymbolConst(sym, idnode); } } } // Identifier didn't refer to anything good, so type error it. idnode->Type = TypeError; idnode->Operation = PEX_Nil; idnode->NodeType = AST_Expression; return idnode; } //========================================================================== // // ZCCCompiler :: NodeFromSymoblConst // // Returns a new AST constant node with the symbol's content. // //========================================================================== ZCC_ExprConstant *ZCCCompiler::NodeFromSymbolConst(PSymbolConst *sym, ZCC_ExprID *idnode) { ZCC_ExprConstant *val = static_cast(AST.InitNode(sizeof(*val), AST_ExprConstant, idnode)); val->Operation = PEX_ConstValue; if (sym == NULL) { val->Type = TypeError; val->IntVal = 0; } else if (sym->IsKindOf(RUNTIME_CLASS(PSymbolConstString))) { val->StringVal = AST.Strings.Alloc(static_cast(sym)->Str); val->Type = TypeString; } else { val->Type = sym->ValueType; if (val->Type != TypeError) { assert(sym->IsKindOf(RUNTIME_CLASS(PSymbolConstNumeric))); if (sym->ValueType->IsKindOf(RUNTIME_CLASS(PInt))) { val->IntVal = static_cast(sym)->Value; } else { assert(sym->ValueType->IsKindOf(RUNTIME_CLASS(PFloat))); val->DoubleVal = static_cast(sym)->Float; } } } return val; }