/* ** gl_scene.cpp ** manages the rendering of the player's view ** **--------------------------------------------------------------------------- ** Copyright 2004-2005 Christoph Oelckers ** All rights reserved. ** ** Redistribution and use in source and binary forms, with or without ** modification, are permitted provided that the following conditions ** are met: ** ** 1. Redistributions of source code must retain the above copyright ** notice, this list of conditions and the following disclaimer. ** 2. Redistributions in binary form must reproduce the above copyright ** notice, this list of conditions and the following disclaimer in the ** documentation and/or other materials provided with the distribution. ** 3. The name of the author may not be used to endorse or promote products ** derived from this software without specific prior written permission. ** 4. When not used as part of GZDoom or a GZDoom derivative, this code will be ** covered by the terms of the GNU Lesser General Public License as published ** by the Free Software Foundation; either version 2.1 of the License, or (at ** your option) any later version. ** 5. Full disclosure of the entire project's source code, except for third ** party libraries is mandatory. (NOTE: This clause is non-negotiable!) ** ** THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR ** IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES ** OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. ** IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, ** INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT ** NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, ** DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY ** THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT ** (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF ** THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. **--------------------------------------------------------------------------- ** */ #include "gl/system/gl_system.h" #include "gi.h" #include "m_png.h" #include "m_random.h" #include "st_stuff.h" #include "dobject.h" #include "doomstat.h" #include "g_level.h" #include "r_data/r_interpolate.h" #include "r_utility.h" #include "d_player.h" #include "p_effect.h" #include "sbar.h" #include "po_man.h" #include "r_utility.h" #include "a_hexenglobal.h" #include "p_local.h" #include "gl/gl_functions.h" #include "gl/system/gl_interface.h" #include "gl/system/gl_framebuffer.h" #include "gl/system/gl_cvars.h" #include "gl/renderer/gl_lightdata.h" #include "gl/renderer/gl_renderstate.h" #include "gl/data/gl_data.h" #include "gl/data/gl_vertexbuffer.h" #include "gl/dynlights/gl_dynlight.h" #include "gl/dynlights/gl_lightbuffer.h" #include "gl/models/gl_models.h" #include "gl/scene/gl_clipper.h" #include "gl/scene/gl_drawinfo.h" #include "gl/scene/gl_portal.h" #include "gl/shaders/gl_shader.h" #include "gl/textures/gl_material.h" #include "gl/utility/gl_clock.h" #include "gl/utility/gl_convert.h" #include "gl/utility/gl_templates.h" //========================================================================== // // CVARs // //========================================================================== CVAR(Bool, gl_texture, true, 0) CVAR(Bool, gl_no_skyclear, false, CVAR_ARCHIVE|CVAR_GLOBALCONFIG) CVAR(Float, gl_mask_threshold, 0.5f,CVAR_ARCHIVE|CVAR_GLOBALCONFIG) CVAR(Float, gl_mask_sprite_threshold, 0.5f,CVAR_ARCHIVE|CVAR_GLOBALCONFIG) EXTERN_CVAR (Int, screenblocks) EXTERN_CVAR (Bool, cl_capfps) EXTERN_CVAR (Bool, r_deathcamera) extern int viewpitch; DWORD gl_fixedcolormap; area_t in_area; TArray currentmapsection; void gl_ParseDefs(); //----------------------------------------------------------------------------- // // R_FrustumAngle // //----------------------------------------------------------------------------- angle_t FGLRenderer::FrustumAngle() { float tilt= fabs(mAngles.Pitch); // If the pitch is larger than this you can look all around at a FOV of 90° if (tilt>46.0f) return 0xffffffff; // ok, this is a gross hack that barely works... // but at least it doesn't overestimate too much... double floatangle=2.0+(45.0+((tilt/1.9)))*mCurrentFoV*48.0/BaseRatioSizes[WidescreenRatio][3]/90.0; angle_t a1 = FLOAT_TO_ANGLE(floatangle); if (a1>=ANGLE_180) return 0xffffffff; return a1; } //----------------------------------------------------------------------------- // // Sets the area the camera is in // //----------------------------------------------------------------------------- void FGLRenderer::SetViewArea() { // The render_sector is better suited to represent the current position in GL viewsector = R_PointInSubsector(viewx, viewy)->render_sector; // keep the view within the render sector's floor and ceiling fixed_t theZ = viewsector->ceilingplane.ZatPoint (viewx, viewy) - 4*FRACUNIT; if (viewz > theZ) { viewz = theZ; } theZ = viewsector->floorplane.ZatPoint (viewx, viewy) + 4*FRACUNIT; if (viewz < theZ) { viewz = theZ; } // Get the heightsec state from the render sector, not the current one! if (viewsector->heightsec && !(viewsector->heightsec->MoreFlags & SECF_IGNOREHEIGHTSEC)) { in_area = viewz<=viewsector->heightsec->floorplane.ZatPoint(viewx,viewy) ? area_below : (viewz>viewsector->heightsec->ceilingplane.ZatPoint(viewx,viewy) && !(viewsector->heightsec->MoreFlags&SECF_FAKEFLOORONLY)) ? area_above:area_normal; } else { in_area=area_default; // depends on exposed lower sectors } } //----------------------------------------------------------------------------- // // resets the 3D viewport // //----------------------------------------------------------------------------- void FGLRenderer::ResetViewport() { int trueheight = static_cast(screen)->GetTrueHeight(); // ugh... glViewport(0, (trueheight-screen->GetHeight())/2, screen->GetWidth(), screen->GetHeight()); } //----------------------------------------------------------------------------- // // sets 3D viewport and initial state // //----------------------------------------------------------------------------- void FGLRenderer::SetViewport(GL_IRECT *bounds) { if (!bounds) { int height, width; // Special handling so the view with a visible status bar displays properly if (screenblocks >= 10) { height = SCREENHEIGHT; width = SCREENWIDTH; } else { height = (screenblocks*SCREENHEIGHT/10) & ~7; width = (screenblocks*SCREENWIDTH/10); } int trueheight = static_cast(screen)->GetTrueHeight(); // ugh... int bars = (trueheight-screen->GetHeight())/2; int vw = viewwidth; int vh = viewheight; glViewport(viewwindowx, trueheight-bars-(height+viewwindowy-((height-vh)/2)), vw, height); glScissor(viewwindowx, trueheight-bars-(vh+viewwindowy), vw, vh); } else { glViewport(bounds->left, bounds->top, bounds->width, bounds->height); glScissor(bounds->left, bounds->top, bounds->width, bounds->height); } glEnable(GL_SCISSOR_TEST); #ifdef _DEBUG glClearColor(0.0f, 0.0f, 0.0f, 0.0f); glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT | GL_STENCIL_BUFFER_BIT); #else glClear(GL_DEPTH_BUFFER_BIT | GL_STENCIL_BUFFER_BIT); #endif glEnable(GL_MULTISAMPLE); glEnable(GL_DEPTH_TEST); glEnable(GL_STENCIL_TEST); glStencilFunc(GL_ALWAYS,0,~0); // default stencil glStencilOp(GL_KEEP,GL_KEEP,GL_REPLACE); } //----------------------------------------------------------------------------- // // Setup the camera position // //----------------------------------------------------------------------------- void FGLRenderer::SetCameraPos(fixed_t viewx, fixed_t viewy, fixed_t viewz, angle_t viewangle) { float fviewangle=(float)(viewangle>>ANGLETOFINESHIFT)*360.0f/FINEANGLES; mAngles.Yaw = 270.0f-fviewangle; mViewVector = FVector2(cos(DEG2RAD(fviewangle)), sin(DEG2RAD(fviewangle))); mCameraPos = FVector3(FIXED2FLOAT(viewx), FIXED2FLOAT(viewy), FIXED2FLOAT(viewz)); R_SetViewAngle(); } //----------------------------------------------------------------------------- // // SetProjection // sets projection matrix // //----------------------------------------------------------------------------- static void setPerspective(GLdouble fovy, GLdouble aspect, GLdouble zNear, GLdouble zFar) { GLdouble m[4][4]; double sine, cotangent, deltaZ; double radians = fovy / 2 * M_PI / 180; deltaZ = zFar - zNear; sine = sin(radians); if ((deltaZ == 0) || (sine == 0) || (aspect == 0)) { return; } cotangent = cos(radians) / sine; memset(m, 0, sizeof(m)); m[0][0] = cotangent / aspect; m[1][1] = cotangent; m[2][2] = -(zFar + zNear) / deltaZ; m[2][3] = -1; m[3][2] = -2 * zNear * zFar / deltaZ; m[3][3] = 0; glLoadMatrixd(&m[0][0]); } void FGLRenderer::SetProjection(float fov, float ratio, float fovratio) { glMatrixMode(GL_PROJECTION); float fovy = 2 * RAD2DEG(atan(tan(DEG2RAD(fov) / 2) / fovratio)); setPerspective(fovy, ratio, 5.f, 65536.f); gl_RenderState.Set2DMode(false); } //----------------------------------------------------------------------------- // // Setup the modelview matrix // //----------------------------------------------------------------------------- void FGLRenderer::SetViewMatrix(bool mirror, bool planemirror) { if (gl.hasGLSL()) { glActiveTexture(GL_TEXTURE7); glMatrixMode(GL_TEXTURE); glLoadIdentity(); } glActiveTexture(GL_TEXTURE0); glMatrixMode(GL_TEXTURE); glLoadIdentity(); glMatrixMode(GL_MODELVIEW); glLoadIdentity(); float mult = mirror? -1:1; float planemult = planemirror? -1:1; glRotatef(GLRenderer->mAngles.Roll, 0.0f, 0.0f, 1.0f); glRotatef(GLRenderer->mAngles.Pitch, 1.0f, 0.0f, 0.0f); glRotatef(GLRenderer->mAngles.Yaw, 0.0f, mult, 0.0f); glTranslatef( GLRenderer->mCameraPos.X * mult, -GLRenderer->mCameraPos.Z*planemult, -GLRenderer->mCameraPos.Y); glScalef(-mult, planemult, 1); } //----------------------------------------------------------------------------- // // SetupView // Setup the view rotation matrix for the given viewpoint // //----------------------------------------------------------------------------- void FGLRenderer::SetupView(fixed_t viewx, fixed_t viewy, fixed_t viewz, angle_t viewangle, bool mirror, bool planemirror) { SetCameraPos(viewx, viewy, viewz, viewangle); SetViewMatrix(mirror, planemirror); } //----------------------------------------------------------------------------- // // CreateScene // // creates the draw lists for the current scene // //----------------------------------------------------------------------------- void FGLRenderer::CreateScene() { // reset the portal manager GLPortal::StartFrame(); PO_LinkToSubsectors(); ProcessAll.Clock(); // clip the scene and fill the drawlists for(unsigned i=0;iglportal = NULL; gl_spriteindex=0; Bsp.Clock(); gl_RenderBSPNode (nodes + numnodes - 1); Bsp.Unclock(); // And now the crappy hacks that have to be done to avoid rendering anomalies: gl_drawinfo->HandleMissingTextures(); // Missing upper/lower textures gl_drawinfo->HandleHackedSubsectors(); // open sector hacks for deep water gl_drawinfo->ProcessSectorStacks(); // merge visplanes of sector stacks ProcessAll.Unclock(); } //----------------------------------------------------------------------------- // // RenderScene // // Draws the current draw lists for the non GLSL renderer // //----------------------------------------------------------------------------- void FGLRenderer::RenderScene(int recursion) { RenderAll.Clock(); glDepthMask(true); if (!gl_no_skyclear) GLPortal::RenderFirstSkyPortal(recursion); gl_RenderState.SetCameraPos(FIXED2FLOAT(viewx), FIXED2FLOAT(viewy), FIXED2FLOAT(viewz)); gl_RenderState.EnableFog(true); gl_RenderState.BlendFunc(GL_ONE,GL_ZERO); // First draw all single-pass stuff // Part 1: solid geometry. This is set up so that there are no transparent parts glDepthFunc(GL_LESS); gl_RenderState.EnableAlphaTest(false); glDisable(GL_POLYGON_OFFSET_FILL); // just in case int pass; if (mLightCount > 0 && gl_fixedcolormap == CM_DEFAULT && gl_lights && gl_dynlight_shader) { pass = GLPASS_ALL; } else if (gl_texture) { pass = GLPASS_PLAIN; } else { pass = GLPASS_BASE; } gl_RenderState.EnableTexture(gl_texture); gl_RenderState.EnableBrightmap(gl_fixedcolormap == CM_DEFAULT); gl_drawinfo->drawlists[GLDL_PLAIN].Sort(); gl_drawinfo->drawlists[GLDL_PLAIN].Draw(pass); gl_drawinfo->drawlists[GLDL_FOG].Sort(); gl_drawinfo->drawlists[GLDL_FOG].Draw(pass); gl_drawinfo->drawlists[GLDL_LIGHTFOG].Sort(); gl_drawinfo->drawlists[GLDL_LIGHTFOG].Draw(pass); gl_RenderState.EnableAlphaTest(true); // Part 2: masked geometry. This is set up so that only pixels with alpha>0.5 will show if (!gl_texture) { gl_RenderState.EnableTexture(true); gl_RenderState.SetTextureMode(TM_MASK); } if (pass == GLPASS_BASE) pass = GLPASS_BASE_MASKED; gl_RenderState.AlphaFunc(GL_GEQUAL,gl_mask_threshold); gl_drawinfo->drawlists[GLDL_MASKED].Sort(); gl_drawinfo->drawlists[GLDL_MASKED].Draw(pass); gl_drawinfo->drawlists[GLDL_FOGMASKED].Sort(); gl_drawinfo->drawlists[GLDL_FOGMASKED].Draw(pass); gl_drawinfo->drawlists[GLDL_LIGHTFOGMASKED].Sort(); gl_drawinfo->drawlists[GLDL_LIGHTFOGMASKED].Draw(pass); // And now the multipass stuff if (!gl_dynlight_shader && gl_lights) { // First pass: empty background with sector light only // Part 1: solid geometry. This is set up so that there are no transparent parts // remove any remaining texture bindings and shaders whick may get in the way. gl_RenderState.EnableTexture(false); gl_RenderState.EnableBrightmap(false); gl_RenderState.Apply(); gl_drawinfo->drawlists[GLDL_LIGHT].Draw(GLPASS_BASE); gl_RenderState.EnableTexture(true); // Part 2: masked geometry. This is set up so that only pixels with alpha>0.5 will show // This creates a blank surface that only fills the nontransparent parts of the texture gl_RenderState.SetTextureMode(TM_MASK); gl_RenderState.EnableBrightmap(true); gl_drawinfo->drawlists[GLDL_LIGHTBRIGHT].Draw(GLPASS_BASE_MASKED); gl_drawinfo->drawlists[GLDL_LIGHTMASKED].Draw(GLPASS_BASE_MASKED); gl_RenderState.EnableBrightmap(false); gl_RenderState.SetTextureMode(TM_MODULATE); // second pass: draw lights (on fogged surfaces they are added to the textures!) glDepthMask(false); if (mLightCount && !gl_fixedcolormap) { if (gl_SetupLightTexture()) { gl_RenderState.BlendFunc(GL_ONE, GL_ONE); glDepthFunc(GL_EQUAL); gl_RenderState.SetSoftLightLevel(255); for(int i=GLDL_FIRSTLIGHT; i<=GLDL_LASTLIGHT; i++) { gl_drawinfo->drawlists[i].Draw(GLPASS_LIGHT); } gl_RenderState.BlendEquation(GL_FUNC_ADD); } else gl_lights=false; } // third pass: modulated texture gl_RenderState.ResetColor(); gl_RenderState.BlendFunc(GL_DST_COLOR, GL_ZERO); gl_RenderState.EnableFog(false); glDepthFunc(GL_LEQUAL); if (gl_texture) { gl_RenderState.EnableAlphaTest(false); gl_drawinfo->drawlists[GLDL_LIGHT].Sort(); gl_drawinfo->drawlists[GLDL_LIGHT].Draw(GLPASS_TEXTURE); gl_RenderState.EnableAlphaTest(true); gl_drawinfo->drawlists[GLDL_LIGHTBRIGHT].Sort(); gl_drawinfo->drawlists[GLDL_LIGHTBRIGHT].Draw(GLPASS_TEXTURE); gl_drawinfo->drawlists[GLDL_LIGHTMASKED].Sort(); gl_drawinfo->drawlists[GLDL_LIGHTMASKED].Draw(GLPASS_TEXTURE); } // fourth pass: additive lights gl_RenderState.EnableFog(true); if (gl_lights && mLightCount && !gl_fixedcolormap) { gl_RenderState.BlendFunc(GL_ONE, GL_ONE); glDepthFunc(GL_EQUAL); if (gl_SetupLightTexture()) { for(int i=0; idrawlists[i].Draw(GLPASS_LIGHT_ADDITIVE); } gl_RenderState.BlendEquation(GL_FUNC_ADD); } else gl_lights=false; } } gl_RenderState.BlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA); // Draw decals (not a real pass) glDepthFunc(GL_LEQUAL); glEnable(GL_POLYGON_OFFSET_FILL); glPolygonOffset(-1.0f, -128.0f); glDepthMask(false); for(int i=0; idrawlists[i].Draw(GLPASS_DECALS); } gl_RenderState.SetTextureMode(TM_MODULATE); glDepthMask(true); // Push bleeding floor/ceiling textures back a little in the z-buffer // so they don't interfere with overlapping mid textures. glPolygonOffset(1.0f, 128.0f); // flood all the gaps with the back sector's flat texture // This will always be drawn like GLDL_PLAIN or GLDL_FOG, depending on the fog settings glDepthMask(false); // don't write to Z-buffer! gl_RenderState.EnableFog(true); gl_RenderState.EnableAlphaTest(false); gl_RenderState.BlendFunc(GL_ONE,GL_ZERO); gl_drawinfo->DrawUnhandledMissingTextures(); gl_RenderState.EnableAlphaTest(true); glDepthMask(true); glPolygonOffset(0.0f, 0.0f); glDisable(GL_POLYGON_OFFSET_FILL); RenderAll.Unclock(); } //----------------------------------------------------------------------------- // // RenderTranslucent // // Draws the current draw lists for the non GLSL renderer // //----------------------------------------------------------------------------- void FGLRenderer::RenderTranslucent() { RenderAll.Clock(); glDepthMask(false); gl_RenderState.SetCameraPos(FIXED2FLOAT(viewx), FIXED2FLOAT(viewy), FIXED2FLOAT(viewz)); // final pass: translucent stuff gl_RenderState.EnableAlphaTest(true); gl_RenderState.AlphaFunc(GL_GEQUAL,gl_mask_sprite_threshold); gl_RenderState.BlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA); gl_RenderState.EnableBrightmap(true); gl_drawinfo->drawlists[GLDL_TRANSLUCENTBORDER].Draw(GLPASS_TRANSLUCENT); gl_drawinfo->drawlists[GLDL_TRANSLUCENT].DrawSorted(); gl_RenderState.EnableBrightmap(false); glDepthMask(true); gl_RenderState.AlphaFunc(GL_GEQUAL,0.5f); RenderAll.Unclock(); } //----------------------------------------------------------------------------- // // gl_drawscene - this function renders the scene from the current // viewpoint, including mirrors and skyboxes and other portals // It is assumed that the GLPortal::EndFrame returns with the // stencil, z-buffer and the projection matrix intact! // //----------------------------------------------------------------------------- EXTERN_CVAR(Bool, gl_draw_sync) void FGLRenderer::DrawScene(bool toscreen) { static int recursion=0; CreateScene(); GLRenderer->mCurrentPortal = NULL; // this must be reset before any portal recursion takes place. // Up to this point in the main draw call no rendering is performed so we can wait // with swapping the render buffer until now. if (!gl_draw_sync && toscreen) { All.Unclock(); static_cast(screen)->Swap(); All.Clock(); } RenderScene(recursion); // Handle all portals after rendering the opaque objects but before // doing all translucent stuff recursion++; GLPortal::EndFrame(); recursion--; RenderTranslucent(); } static void FillScreen() { gl_RenderState.EnableAlphaTest(false); gl_RenderState.EnableTexture(false); gl_RenderState.Apply(); if (!gl_usevbo) { glBegin(GL_TRIANGLE_STRIP); glVertex2f(0.0f, 0.0f); glVertex2f(0.0f, (float)SCREENHEIGHT); glVertex2f((float)SCREENWIDTH, 0.0f); glVertex2f((float)SCREENWIDTH, (float)SCREENHEIGHT); glEnd(); } else { FFlatVertex *ptr = GLRenderer->mVBO->GetBuffer(); ptr->Set(0, 0, 0, 0, 0); ptr++; ptr->Set(0, (float)SCREENHEIGHT, 0, 0, 0); ptr++; ptr->Set((float)SCREENWIDTH, 0, 0, 0, 0); ptr++; ptr->Set((float)SCREENWIDTH, (float)SCREENHEIGHT, 0, 0, 0); ptr++; unsigned int offset; unsigned int count = GLRenderer->mVBO->GetCount(ptr, &offset); glDrawArrays(GL_TRIANGLE_FAN, offset, count); } } //========================================================================== // // Draws a blend over the entire view // //========================================================================== void FGLRenderer::DrawBlend(sector_t * viewsector) { float blend[4]={0,0,0,0}; PalEntry blendv=0; float extra_red; float extra_green; float extra_blue; player_t *player = NULL; if (players[consoleplayer].camera != NULL) { player=players[consoleplayer].camera->player; } // don't draw sector based blends when an invulnerability colormap is active if (!gl_fixedcolormap) { if (!viewsector->e->XFloor.ffloors.Size()) { if (viewsector->heightsec && !(viewsector->MoreFlags&SECF_IGNOREHEIGHTSEC)) { switch (in_area) { default: case area_normal: blendv = viewsector->heightsec->midmap; break; case area_above: blendv = viewsector->heightsec->topmap; break; case area_below: blendv = viewsector->heightsec->bottommap; break; } } } else { TArray & lightlist = viewsector->e->XFloor.lightlist; for (unsigned int i = 0; i < lightlist.Size(); i++) { fixed_t lightbottom; if (i < lightlist.Size() - 1) lightbottom = lightlist[i + 1].plane.ZatPoint(viewx, viewy); else lightbottom = viewsector->floorplane.ZatPoint(viewx, viewy); if (lightbottom < viewz && (!lightlist[i].caster || !(lightlist[i].caster->flags&FF_FADEWALLS))) { // 3d floor 'fog' is rendered as a blending value blendv = lightlist[i].blend; // If this is the same as the sector's it doesn't apply! if (blendv == viewsector->ColorMap->Fade) blendv = 0; // a little hack to make this work for Legacy maps. if (blendv.a == 0 && blendv != 0) blendv.a = 128; break; } } } if (blendv.a == 0) { blendv = R_BlendForColormap(blendv); if (blendv.a == 255) { // The calculated average is too dark so brighten it according to the palettes's overall brightness int maxcol = MAX(MAX(framebuffer->palette_brightness, blendv.r), MAX(blendv.g, blendv.b)); blendv.r = blendv.r * 255 / maxcol; blendv.g = blendv.g * 255 / maxcol; blendv.b = blendv.b * 255 / maxcol; } } if (blendv.a == 255) { extra_red = blendv.r / 255.0f; extra_green = blendv.g / 255.0f; extra_blue = blendv.b / 255.0f; // If this is a multiplicative blend do it separately and add the additive ones on top of it. blendv = 0; // black multiplicative blends are ignored if (extra_red || extra_green || extra_blue) { gl_RenderState.BlendFunc(GL_DST_COLOR, GL_ZERO); gl_RenderState.SetColor(extra_red, extra_green, extra_blue, 1.0f); FillScreen(); } } else if (blendv.a) { V_AddBlend(blendv.r / 255.f, blendv.g / 255.f, blendv.b / 255.f, blendv.a / 255.0f, blend); } } else if (!gl.hasGLSL()) { float r, g, b; bool inverse = false; const float BLACK_THRESH = 0.05f; const float WHITE_THRESH = 0.95f; // for various reasons (performance and keeping the lighting code clean) // we no longer do colormapped textures on pre GL 3.0 hardware and instead do // just a fullscreen overlay to emulate the inverse invulnerability effect or similar fullscreen blends. if (gl_fixedcolormap >= CM_FIRSTSPECIALCOLORMAP && gl_fixedcolormap < CM_MAXCOLORMAP) { FSpecialColormap *scm = &SpecialColormaps[gl_fixedcolormap - CM_FIRSTSPECIALCOLORMAP]; if (scm->ColorizeEnd[0] < BLACK_THRESH && scm->ColorizeEnd[1] < BLACK_THRESH && scm->ColorizeEnd[2] < BLACK_THRESH) { r = scm->ColorizeStart[0]; g = scm->ColorizeStart[1]; b = scm->ColorizeStart[2]; inverse = true; } else { r = scm->ColorizeEnd[0]; g = scm->ColorizeEnd[1]; b = scm->ColorizeEnd[2]; } } else if (gl_enhanced_nightvision) { if (gl_fixedcolormap == CM_LITE) { r = 0.375f, g = 1.0f, b = 0.375f; } else if (gl_fixedcolormap >= CM_TORCH) { int flicker = gl_fixedcolormap - CM_TORCH; r = (0.8f + (7 - flicker) / 70.0f); if (r > 1.0f) r = 1.0f; g = r; b = g * 0.75f; } else r = g = b = 1.f; } if (inverse) { gl_RenderState.BlendFunc(GL_ONE_MINUS_DST_COLOR, GL_ZERO); gl_RenderState.ResetColor(); FillScreen(); } if (r < WHITE_THRESH || g < WHITE_THRESH || b < WHITE_THRESH) { gl_RenderState.BlendFunc(GL_DST_COLOR, GL_ZERO); gl_RenderState.SetColor(r, g, b, 1.0f); FillScreen(); } } // This mostly duplicates the code in shared_sbar.cpp // When I was writing this the original was called too late so that I // couldn't get the blend in time. However, since then I made some changes // here that would get lost if I switched back so I won't do it. if (player) { V_AddPlayerBlend(player, blend, 0.5, 175); } if (players[consoleplayer].camera != NULL) { // except for fadeto effects player_t *player = (players[consoleplayer].camera->player != NULL) ? players[consoleplayer].camera->player : &players[consoleplayer]; V_AddBlend (player->BlendR, player->BlendG, player->BlendB, player->BlendA, blend); } if (blend[3]>0.0f) { gl_RenderState.BlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA); gl_RenderState.SetColor(blend[0], blend[1], blend[2], blend[3]); FillScreen(); } } //----------------------------------------------------------------------------- // // Draws player sprites and color blend // //----------------------------------------------------------------------------- void FGLRenderer::EndDrawScene(sector_t * viewsector) { // [BB] HUD models need to be rendered here. Make sure that // DrawPlayerSprites is only called once. Either to draw // HUD models or to draw the weapon sprites. const bool renderHUDModel = gl_IsHUDModelForPlayerAvailable( players[consoleplayer].camera->player ); if ( renderHUDModel ) { // [BB] The HUD model should be drawn over everything else already drawn. glClear(GL_DEPTH_BUFFER_BIT); DrawPlayerSprites (viewsector, true); } glDisable(GL_STENCIL_TEST); glDisable(GL_POLYGON_SMOOTH); gl_RenderState.EnableFog(false); framebuffer->Begin2D(false); ResetViewport(); // [BB] Only draw the sprites if we didn't render a HUD model before. if ( renderHUDModel == false ) { DrawPlayerSprites (viewsector, false); } gl_RenderState.SetFixedColormap(CM_DEFAULT); gl_RenderState.SetSoftLightLevel(-1); DrawTargeterSprites(); DrawBlend(viewsector); // Restore standard rendering state gl_RenderState.BlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA); gl_RenderState.ResetColor(); gl_RenderState.EnableTexture(true); gl_RenderState.EnableAlphaTest(true); glDisable(GL_SCISSOR_TEST); } //----------------------------------------------------------------------------- // // R_RenderView - renders one view - either the screen or a camera texture // //----------------------------------------------------------------------------- void FGLRenderer::ProcessScene(bool toscreen) { FDrawInfo::StartDrawInfo(); iter_dlightf = iter_dlight = draw_dlight = draw_dlightf = 0; GLPortal::BeginScene(); int mapsection = R_PointInSubsector(viewx, viewy)->mapsection; memset(¤tmapsection[0], 0, currentmapsection.Size()); currentmapsection[mapsection>>3] |= 1 << (mapsection & 7); DrawScene(toscreen); FDrawInfo::EndDrawInfo(); } //----------------------------------------------------------------------------- // // gl_SetFixedColormap // //----------------------------------------------------------------------------- void FGLRenderer::SetFixedColormap (player_t *player) { gl_fixedcolormap=CM_DEFAULT; // check for special colormaps player_t * cplayer = player->camera->player; if (cplayer) { if (cplayer->extralight == INT_MIN) { gl_fixedcolormap=CM_FIRSTSPECIALCOLORMAP + INVERSECOLORMAP; extralight=0; } else if (cplayer->fixedcolormap != NOFIXEDCOLORMAP) { gl_fixedcolormap = CM_FIRSTSPECIALCOLORMAP + cplayer->fixedcolormap; } else if (cplayer->fixedlightlevel != -1) { for(AInventory * in = cplayer->mo->Inventory; in; in = in->Inventory) { PalEntry color = in->GetBlend (); // Need special handling for light amplifiers if (in->IsKindOf(RUNTIME_CLASS(APowerTorch))) { gl_fixedcolormap = cplayer->fixedlightlevel + CM_TORCH; } else if (in->IsKindOf(RUNTIME_CLASS(APowerLightAmp))) { gl_fixedcolormap = CM_LITE; } } } } gl_RenderState.SetFixedColormap(gl_fixedcolormap); } //----------------------------------------------------------------------------- // // Renders one viewpoint in a scene // //----------------------------------------------------------------------------- sector_t * FGLRenderer::RenderViewpoint (AActor * camera, GL_IRECT * bounds, float fov, float ratio, float fovratio, bool mainview, bool toscreen) { sector_t * retval; R_SetupFrame (camera); SetViewArea(); mAngles.Pitch = clamp((float)((double)(int)(viewpitch))/ANGLE_1, -90, 90); // Scroll the sky mSky1Pos = (float)fmod(gl_frameMS * level.skyspeed1, 1024.f) * 90.f/256.f; mSky2Pos = (float)fmod(gl_frameMS * level.skyspeed2, 1024.f) * 90.f/256.f; if (camera->player && camera->player-players==consoleplayer && ((camera->player->cheats & CF_CHASECAM) || (r_deathcamera && camera->health <= 0)) && camera==camera->player->mo) { mViewActor=NULL; } else { mViewActor=camera; } retval = viewsector; SetViewport(bounds); mCurrentFoV = fov; SetProjection(fov, ratio, fovratio); // switch to perspective mode and set up clipper SetCameraPos(viewx, viewy, viewz, viewangle); SetViewMatrix(false, false); clipper.Clear(); angle_t a1 = FrustumAngle(); clipper.SafeAddClipRangeRealAngles(viewangle+a1, viewangle-a1); ProcessScene(toscreen); gl_frameCount++; // This counter must be increased right before the interpolations are restored. interpolator.RestoreInterpolations (); return retval; } //----------------------------------------------------------------------------- // // renders the view // //----------------------------------------------------------------------------- void FGLRenderer::RenderView (player_t* player) { OpenGLFrameBuffer* GLTarget = static_cast(screen); AActor *&LastCamera = GLTarget->LastCamera; if (player->camera != LastCamera) { // If the camera changed don't interpolate // Otherwise there will be some not so nice effects. R_ResetViewInterpolation(); LastCamera=player->camera; } gl_RenderState.SetVertexBuffer(mVBO); GLRenderer->mVBO->Reset(); // reset statistics counters ResetProfilingData(); // Get this before everything else if (cl_capfps || r_NoInterpolate) r_TicFrac = FRACUNIT; else r_TicFrac = I_GetTimeFrac (&r_FrameTime); gl_frameMS = I_MSTime(); P_FindParticleSubsectors (); // prepare all camera textures that have been used in the last frame FCanvasTextureInfo::UpdateAll(); // I stopped using BaseRatioSizes here because the information there wasn't well presented. #define RMUL (1.6f/1.333333f) // 4:3 16:9 16:10 17:10 5:4 static float ratios[]={RMUL*1.333333f, RMUL*1.777777f, RMUL*1.6f, RMUL*1.7f, RMUL*1.25f}; // now render the main view float fovratio; float ratio = ratios[WidescreenRatio]; if (!(WidescreenRatio&4)) { fovratio = 1.6f; } else { fovratio = ratio; } SetFixedColormap (player); // Check if there's some lights. If not some code can be skipped. TThinkerIterator it(STAT_DLIGHT); GLRenderer->mLightCount = ((it.Next()) != NULL); sector_t * viewsector = RenderViewpoint(player->camera, NULL, FieldOfView * 360.0f / FINEANGLES, ratio, fovratio, true, true); EndDrawScene(viewsector); All.Unclock(); } //=========================================================================== // // Render the view to a savegame picture // //=========================================================================== void FGLRenderer::WriteSavePic (player_t *player, FILE *file, int width, int height) { GL_IRECT bounds; bounds.left=0; bounds.top=0; bounds.width=width; bounds.height=height; glFlush(); SetFixedColormap(player); gl_RenderState.SetVertexBuffer(mVBO); GLRenderer->mVBO->Reset(); // Check if there's some lights. If not some code can be skipped. TThinkerIterator it(STAT_DLIGHT); GLRenderer->mLightCount = ((it.Next()) != NULL); sector_t *viewsector = RenderViewpoint(players[consoleplayer].camera, &bounds, FieldOfView * 360.0f / FINEANGLES, 1.6f, 1.6f, true, false); glDisable(GL_STENCIL_TEST); gl_RenderState.SetFixedColormap(CM_DEFAULT); gl_RenderState.SetSoftLightLevel(-1); screen->Begin2D(false); DrawBlend(viewsector); glFlush(); byte * scr = (byte *)M_Malloc(width * height * 3); glReadPixels(0,0,width, height,GL_RGB,GL_UNSIGNED_BYTE,scr); M_CreatePNG (file, scr + ((height-1) * width * 3), NULL, SS_RGB, width, height, -width*3); M_Free(scr); } //=========================================================================== // // // //=========================================================================== struct FGLInterface : public FRenderer { bool UsesColormap() const; void PrecacheTexture(FTexture *tex, int cache); void RenderView(player_t *player); void WriteSavePic (player_t *player, FILE *file, int width, int height); void StateChanged(AActor *actor); void StartSerialize(FArchive &arc); void EndSerialize(FArchive &arc); void RenderTextureView (FCanvasTexture *self, AActor *viewpoint, int fov); sector_t *FakeFlat(sector_t *sec, sector_t *tempsec, int *floorlightlevel, int *ceilinglightlevel, bool back); void SetFogParams(int _fogdensity, PalEntry _outsidefogcolor, int _outsidefogdensity, int _skyfog); void PreprocessLevel(); void CleanLevelData(); bool RequireGLNodes(); int GetMaxViewPitch(bool down); void ClearBuffer(int color); void Init(); }; //=========================================================================== // // The GL renderer has no use for colormaps so let's // not create them and save us some time. // //=========================================================================== bool FGLInterface::UsesColormap() const { return false; } //========================================================================== // // DFrameBuffer :: PrecacheTexture // //========================================================================== void FGLInterface::PrecacheTexture(FTexture *tex, int cache) { if (tex != NULL) { if (cache) { tex->PrecacheGL(); } else { tex->UncacheGL(); } } } //========================================================================== // // DFrameBuffer :: StateChanged // //========================================================================== void FGLInterface::StateChanged(AActor *actor) { gl_SetActorLights(actor); } //=========================================================================== // // notify the renderer that serialization of the curent level is about to start/end // //=========================================================================== void FGLInterface::StartSerialize(FArchive &arc) { gl_DeleteAllAttachedLights(); arc << fogdensity << outsidefogdensity << skyfog; } void FGLInterface::EndSerialize(FArchive &arc) { gl_RecreateAllAttachedLights(); if (arc.IsLoading()) gl_InitPortals(); } //=========================================================================== // // Get max. view angle (renderer specific information so it goes here now) // //=========================================================================== EXTERN_CVAR(Float, maxviewpitch) int FGLInterface::GetMaxViewPitch(bool down) { return int(maxviewpitch); } //=========================================================================== // // // //=========================================================================== void FGLInterface::ClearBuffer(int color) { PalEntry pe = GPalette.BaseColors[color]; glClearColor(pe.r/255.f, pe.g/255.f, pe.b/255.f, 1.f); glClear(GL_COLOR_BUFFER_BIT); } //=========================================================================== // // Render the view to a savegame picture // //=========================================================================== void FGLInterface::WriteSavePic (player_t *player, FILE *file, int width, int height) { GLRenderer->WriteSavePic(player, file, width, height); } //=========================================================================== // // // //=========================================================================== void FGLInterface::RenderView(player_t *player) { GLRenderer->RenderView(player); } //=========================================================================== // // // //=========================================================================== void FGLInterface::Init() { gl_ParseDefs(); } //=========================================================================== // // Camera texture rendering // //=========================================================================== CVAR(Bool, gl_usefb, false , CVAR_ARCHIVE|CVAR_GLOBALCONFIG) extern TexFilter_s TexFilter[]; void FGLInterface::RenderTextureView (FCanvasTexture *tex, AActor *Viewpoint, int FOV) { FMaterial * gltex = FMaterial::ValidateTexture(tex); int width = gltex->TextureWidth(GLUSE_TEXTURE); int height = gltex->TextureHeight(GLUSE_TEXTURE); gl_fixedcolormap=CM_DEFAULT; gl_RenderState.SetFixedColormap(CM_DEFAULT); bool usefb; if (gl.flags & RFL_FRAMEBUFFER) { usefb = gl_usefb || width > screen->GetWidth() || height > screen->GetHeight(); } else usefb = false; if (!usefb) { glFlush(); } else { #if defined(_WIN32) && (defined(_MSC_VER) || defined(__INTEL_COMPILER)) __try #endif { GLRenderer->StartOffscreen(); gltex->BindToFrameBuffer(); } #if defined(_WIN32) && (defined(_MSC_VER) || defined(__INTEL_COMPILER)) __except(1) { usefb = false; gl_usefb = false; GLRenderer->EndOffscreen(); glFlush(); } #endif } GL_IRECT bounds; bounds.left=bounds.top=0; bounds.width=FHardwareTexture::GetTexDimension(gltex->GetWidth(GLUSE_TEXTURE)); bounds.height=FHardwareTexture::GetTexDimension(gltex->GetHeight(GLUSE_TEXTURE)); GLRenderer->RenderViewpoint(Viewpoint, &bounds, FOV, (float)width/height, (float)width/height, false, false); if (!usefb) { glFlush(); gltex->Bind(0, 0); glCopyTexSubImage2D(GL_TEXTURE_2D, 0, 0, 0, 0, 0, bounds.width, bounds.height); } else { GLRenderer->EndOffscreen(); } gltex->Bind(0, 0); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, TexFilter[gl_texture_filter].magfilter); tex->SetUpdated(); } //========================================================================== // // // //========================================================================== sector_t *FGLInterface::FakeFlat(sector_t *sec, sector_t *tempsec, int *floorlightlevel, int *ceilinglightlevel, bool back) { if (floorlightlevel != NULL) { *floorlightlevel = sec->GetFloorLight (); } if (ceilinglightlevel != NULL) { *ceilinglightlevel = sec->GetCeilingLight (); } return gl_FakeFlat(sec, tempsec, back); } //=========================================================================== // // // //=========================================================================== void FGLInterface::SetFogParams(int _fogdensity, PalEntry _outsidefogcolor, int _outsidefogdensity, int _skyfog) { gl_SetFogParams(_fogdensity, _outsidefogcolor, _outsidefogdensity, _skyfog); } void FGLInterface::PreprocessLevel() { gl_PreprocessLevel(); } void FGLInterface::CleanLevelData() { gl_CleanLevelData(); } bool FGLInterface::RequireGLNodes() { return true; } //=========================================================================== // // // //=========================================================================== FRenderer *gl_CreateInterface() { return new FGLInterface; }