/* ** Sky dome rendering ** Copyright(C) 2003-2016 Christoph Oelckers ** All rights reserved. ** ** This program is free software: you can redistribute it and/or modify ** it under the terms of the GNU Lesser General Public License as published by ** the Free Software Foundation, either version 3 of the License, or ** (at your option) any later version. ** ** This program is distributed in the hope that it will be useful, ** but WITHOUT ANY WARRANTY; without even the implied warranty of ** MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the ** GNU Lesser General Public License for more details. ** ** You should have received a copy of the GNU Lesser General Public License ** along with this program. If not, see http:**www.gnu.org/licenses/ ** ** Loosely based on the JDoom sky and the ZDoomGL 0.66.2 sky. */ #include #include "templates.h" #include "doomdef.h" #include "sbar.h" #include "r_data/r_translate.h" #include "poly_sky.h" #include "poly_portal.h" #include "r_sky.h" // for skyflatnum #include "g_levellocals.h" PolySkyDome::PolySkyDome() { CreateDome(); } void PolySkyDome::Render(const TriMatrix &worldToClip) { FTextureID sky1tex, sky2tex; if ((level.flags & LEVEL_SWAPSKIES) && !(level.flags & LEVEL_DOUBLESKY)) sky1tex = sky2texture; else sky1tex = sky1texture; sky2tex = sky2texture; FTexture *frontskytex = TexMan(sky1tex, true); FTexture *backskytex = nullptr; if (level.flags & LEVEL_DOUBLESKY) backskytex = TexMan(sky2tex, true); TriMatrix objectToWorld = TriMatrix::translate((float)ViewPos.X, (float)ViewPos.Y, (float)ViewPos.Z); objectToClip = worldToClip * objectToWorld; int rc = mRows + 1; PolyDrawArgs args; args.uniforms.light = 256; args.uniforms.flags = 0; args.uniforms.subsectorDepth = RenderPolyScene::SkySubsectorDepth; args.objectToClip = &objectToClip; args.stenciltestvalue = 255; args.stencilwritevalue = 1; args.SetColormap(&NormalLight); args.SetClipPlane(0.0f, 0.0f, 0.0f, 0.0f); RenderCapColorRow(args, frontskytex, 0, false); RenderCapColorRow(args, frontskytex, rc, true); args.SetTexture(frontskytex); uint32_t topcapcolor = frontskytex->GetSkyCapColor(false); uint32_t bottomcapcolor = frontskytex->GetSkyCapColor(true); for (int i = 1; i <= mRows; i++) { RenderRow(args, i, topcapcolor); RenderRow(args, rc + i, bottomcapcolor); } } void PolySkyDome::RenderRow(PolyDrawArgs &args, int row, uint32_t capcolor) { args.vinput = &mVertices[mPrimStart[row]]; args.vcount = mPrimStart[row + 1] - mPrimStart[row]; args.mode = TriangleDrawMode::Strip; args.ccw = false; args.uniforms.color = capcolor; args.blendmode = TriBlendMode::Skycap; PolyTriangleDrawer::draw(args); } void PolySkyDome::RenderCapColorRow(PolyDrawArgs &args, FTexture *skytex, int row, bool bottomCap) { uint32_t solid = skytex->GetSkyCapColor(bottomCap); if (!swrenderer::r_swtruecolor) solid = RGB32k.RGB[(RPART(solid) >> 3)][(GPART(solid) >> 3)][(BPART(solid) >> 3)]; args.vinput = &mVertices[mPrimStart[row]]; args.vcount = mPrimStart[row + 1] - mPrimStart[row]; args.mode = TriangleDrawMode::Fan; args.ccw = bottomCap; args.uniforms.color = solid; args.blendmode = TriBlendMode::Copy; PolyTriangleDrawer::draw(args); } void PolySkyDome::CreateDome() { mColumns = 16;// 128; mRows = 4; CreateSkyHemisphere(false); CreateSkyHemisphere(true); mPrimStart.Push(mVertices.Size()); } void PolySkyDome::CreateSkyHemisphere(bool zflip) { int r, c; mPrimStart.Push(mVertices.Size()); for (c = 0; c < mColumns; c++) { SkyVertex(1, c, zflip); } // The total number of triangles per hemisphere can be calculated // as follows: rows * columns * 2 + 2 (for the top cap). for (r = 0; r < mRows; r++) { mPrimStart.Push(mVertices.Size()); for (c = 0; c <= mColumns; c++) { SkyVertex(r + zflip, c, zflip); SkyVertex(r + 1 - zflip, c, zflip); } } } TriVertex PolySkyDome::SetVertexXYZ(float xx, float yy, float zz, float uu, float vv) { TriVertex v; v.x = xx; v.y = zz; v.z = yy; v.w = 1.0f; v.varying[0] = uu; v.varying[1] = vv; return v; } void PolySkyDome::SkyVertex(int r, int c, bool zflip) { static const FAngle maxSideAngle = 60.f; static const float scale = 10000.; FAngle topAngle = (c / (float)mColumns * 360.f); FAngle sideAngle = maxSideAngle * (float)(mRows - r) / (float)mRows; float height = sideAngle.Sin(); float realRadius = scale * sideAngle.Cos(); FVector2 pos = topAngle.ToVector(realRadius); float z = (!zflip) ? scale * height : -scale * height; float u, v; // And the texture coordinates. if (!zflip) // Flipped Y is for the lower hemisphere. { u = (-c / (float)mColumns); v = (r / (float)mRows); } else { u = (-c / (float)mColumns); v = 1.0f + ((mRows - r) / (float)mRows); } if (r != 4) z += 300; // And finally the vertex. TriVertex vert; vert = SetVertexXYZ(-pos.X, z - 1.f, pos.Y, u * 4.0f, v * 1.2f - 0.5f); mVertices.Push(vert); }