#include "jitintern.h" void JitCompiler::EmitPARAM() { using namespace asmjit; int index = NumParam++; ParamOpcodes.Push(pc); X86Gp stackPtr, tmp; X86Xmm tmp2; switch (B) { case REGT_NIL: cc.mov(x86::ptr(params, index * sizeof(VMValue) + offsetof(VMValue, a)), (int64_t)0); cc.mov(x86::byte_ptr(params, index * sizeof(VMValue) + offsetof(VMValue, Type)), (int)REGT_NIL); break; case REGT_INT: cc.mov(x86::dword_ptr(params, index * sizeof(VMValue) + offsetof(VMValue, i)), regD[C]); cc.mov(x86::byte_ptr(params, index * sizeof(VMValue) + offsetof(VMValue, Type)), (int)REGT_INT); break; case REGT_INT | REGT_ADDROF: stackPtr = cc.newIntPtr(); cc.mov(stackPtr, frameD); cc.add(stackPtr, (int)(C * sizeof(int32_t))); cc.mov(x86::ptr(params, index * sizeof(VMValue) + offsetof(VMValue, a)), stackPtr); cc.mov(x86::byte_ptr(params, index * sizeof(VMValue) + offsetof(VMValue, Type)), (int)REGT_POINTER); break; case REGT_INT | REGT_KONST: cc.mov(x86::dword_ptr(params, index * sizeof(VMValue) + offsetof(VMValue, i)), konstd[C]); cc.mov(x86::byte_ptr(params, index * sizeof(VMValue) + offsetof(VMValue, Type)), (int)REGT_INT); break; case REGT_STRING: cc.mov(x86::ptr(params, index * sizeof(VMValue) + offsetof(VMValue, sp)), regS[C]); cc.mov(x86::byte_ptr(params, index * sizeof(VMValue) + offsetof(VMValue, Type)), (int)REGT_STRING); break; case REGT_STRING | REGT_ADDROF: cc.mov(x86::ptr(params, index * sizeof(VMValue) + offsetof(VMValue, a)), regS[C]); cc.mov(x86::byte_ptr(params, index * sizeof(VMValue) + offsetof(VMValue, Type)), (int)REGT_POINTER); break; case REGT_STRING | REGT_KONST: tmp = cc.newIntPtr(); cc.mov(tmp, ToMemAddress(&konsts[C])); cc.mov(x86::ptr(params, index * sizeof(VMValue) + offsetof(VMValue, sp)), tmp); cc.mov(x86::byte_ptr(params, index * sizeof(VMValue) + offsetof(VMValue, Type)), (int)REGT_STRING); break; case REGT_POINTER: cc.mov(x86::ptr(params, index * sizeof(VMValue) + offsetof(VMValue, a)), regA[C]); cc.mov(x86::byte_ptr(params, index * sizeof(VMValue) + offsetof(VMValue, Type)), (int)REGT_POINTER); break; case REGT_POINTER | REGT_ADDROF: stackPtr = cc.newIntPtr(); cc.mov(stackPtr, frameA); cc.add(stackPtr, (int)(C * sizeof(void*))); cc.mov(x86::ptr(params, index * sizeof(VMValue) + offsetof(VMValue, a)), stackPtr); cc.mov(x86::byte_ptr(params, index * sizeof(VMValue) + offsetof(VMValue, Type)), (int)REGT_POINTER); break; case REGT_POINTER | REGT_KONST: tmp = cc.newIntPtr(); cc.mov(tmp, ToMemAddress(konsta[C].v)); cc.mov(x86::ptr(params, index * sizeof(VMValue) + offsetof(VMValue, a)), tmp); cc.mov(x86::byte_ptr(params, index * sizeof(VMValue) + offsetof(VMValue, Type)), (int)REGT_POINTER); break; case REGT_FLOAT: cc.movsd(x86::qword_ptr(params, index * sizeof(VMValue) + offsetof(VMValue, f)), regF[C]); cc.mov(x86::byte_ptr(params, index * sizeof(VMValue) + offsetof(VMValue, Type)), (int)REGT_FLOAT); break; case REGT_FLOAT | REGT_MULTIREG2: cc.movsd(x86::qword_ptr(params, index * sizeof(VMValue) + offsetof(VMValue, f)), regF[C]); cc.mov(x86::byte_ptr(params, index * sizeof(VMValue) + offsetof(VMValue, Type)), (int)REGT_FLOAT); index = NumParam++; ParamOpcodes.Push(pc); cc.movsd(x86::qword_ptr(params, index * sizeof(VMValue) + offsetof(VMValue, f)), regF[C + 1]); cc.mov(x86::byte_ptr(params, index * sizeof(VMValue) + offsetof(VMValue, Type)), (int)REGT_FLOAT); break; case REGT_FLOAT | REGT_MULTIREG3: cc.movsd(x86::qword_ptr(params, index * sizeof(VMValue) + offsetof(VMValue, f)), regF[C]); cc.mov(x86::byte_ptr(params, index * sizeof(VMValue) + offsetof(VMValue, Type)), (int)REGT_FLOAT); index = NumParam++; ParamOpcodes.Push(pc); cc.movsd(x86::qword_ptr(params, index * sizeof(VMValue) + offsetof(VMValue, f)), regF[C + 1]); cc.mov(x86::byte_ptr(params, index * sizeof(VMValue) + offsetof(VMValue, Type)), (int)REGT_FLOAT); index = NumParam++; ParamOpcodes.Push(pc); cc.movsd(x86::qword_ptr(params, index * sizeof(VMValue) + offsetof(VMValue, f)), regF[C + 2]); cc.mov(x86::byte_ptr(params, index * sizeof(VMValue) + offsetof(VMValue, Type)), (int)REGT_FLOAT); break; case REGT_FLOAT | REGT_ADDROF: stackPtr = cc.newIntPtr(); cc.mov(stackPtr, frameF); cc.add(stackPtr, (int)(C * sizeof(double))); cc.mov(x86::ptr(params, index * sizeof(VMValue) + offsetof(VMValue, a)), stackPtr); cc.mov(x86::byte_ptr(params, index * sizeof(VMValue) + offsetof(VMValue, Type)), (int)REGT_POINTER); break; case REGT_FLOAT | REGT_KONST: tmp = cc.newIntPtr(); tmp2 = cc.newXmmSd(); cc.mov(tmp, ToMemAddress(konstf + C)); cc.movsd(tmp2, asmjit::x86::qword_ptr(tmp)); cc.movsd(x86::qword_ptr(params, index * sizeof(VMValue) + offsetof(VMValue, f)), tmp2); cc.mov(x86::byte_ptr(params, index * sizeof(VMValue) + offsetof(VMValue, Type)), (int)REGT_FLOAT); break; default: I_FatalError("Unknown REGT value passed to EmitPARAM\n"); break; } } void JitCompiler::EmitPARAMI() { int index = NumParam++; ParamOpcodes.Push(pc); cc.mov(asmjit::x86::dword_ptr(params, index * sizeof(VMValue) + offsetof(VMValue, i)), (int)ABCs); cc.mov(asmjit::x86::byte_ptr(params, index * sizeof(VMValue) + offsetof(VMValue, Type)), (int)REGT_INT); } void JitCompiler::EmitRESULT() { // This instruction is just a placeholder to indicate where a return // value should be stored. It does nothing on its own and should not // be executed. } void JitCompiler::EmitCALL() { EmitDoCall(regA[A]); } void JitCompiler::EmitCALL_K() { auto ptr = cc.newIntPtr(); cc.mov(ptr, ToMemAddress(konsta[A].o)); EmitDoCall(ptr); } void JitCompiler::EmitTAIL() { EmitDoTail(regA[A]); } void JitCompiler::EmitTAIL_K() { auto ptr = cc.newIntPtr(); cc.mov(ptr, ToMemAddress(konsta[A].o)); EmitDoTail(ptr); } void JitCompiler::EmitDoCall(asmjit::X86Gp ptr) { using namespace asmjit; if (NumParam < B) I_FatalError("OP_CALL parameter count does not match the number of preceding OP_PARAM instructions"); StoreInOuts(B); FillReturns(pc + 1, C); X86Gp paramsptr; if (B != NumParam) { paramsptr = cc.newIntPtr(); cc.lea(paramsptr, x86::ptr(params, (int)((NumParam - B) * sizeof(VMValue)))); } else { paramsptr = params; } auto result = cc.newInt32(); auto call = CreateCall(&JitCompiler::DoCall); call->setRet(0, result); call->setArg(0, stack); call->setArg(1, ptr); call->setArg(2, Imm(B)); call->setArg(3, Imm(C)); call->setArg(4, paramsptr); call->setArg(5, callReturns); call->setArg(6, exceptInfo); auto noexception = cc.newLabel(); auto exceptResult = cc.newInt32(); cc.mov(exceptResult, x86::dword_ptr(exceptInfo, 0 * 4)); cc.cmp(exceptResult, (int)-1); cc.je(noexception); X86Gp vReg = cc.newInt32(); cc.mov(vReg, 0); cc.ret(vReg); cc.bind(noexception); LoadInOuts(B); LoadReturns(pc + 1, C); NumParam -= B; ParamOpcodes.Resize(ParamOpcodes.Size() - B); } void JitCompiler::EmitDoTail(asmjit::X86Gp ptr) { // Whereas the CALL instruction uses its third operand to specify how many return values // it expects, TAIL ignores its third operand and uses whatever was passed to this Exec call. // Note: this is not a true tail call, but then again, it isn't in the vmexec implementation either.. using namespace asmjit; if (NumParam < B) I_FatalError("OP_TAIL parameter count does not match the number of preceding OP_PARAM instructions"); StoreInOuts(B); // Is REGT_ADDROF even allowed for (true) tail calls? X86Gp paramsptr; if (B != NumParam) { paramsptr = cc.newIntPtr(); cc.lea(paramsptr, x86::ptr(params, (int)((NumParam - B) * sizeof(VMValue)))); } else { paramsptr = params; } auto result = cc.newInt32(); auto call = CreateCall(&JitCompiler::DoCall); call->setRet(0, result); call->setArg(0, stack); call->setArg(1, ptr); call->setArg(2, Imm(B)); call->setArg(3, numret); call->setArg(4, paramsptr); call->setArg(5, ret); call->setArg(6, exceptInfo); cc.ret(result); NumParam -= B; ParamOpcodes.Resize(ParamOpcodes.Size() - B); } void JitCompiler::StoreInOuts(int b) { using namespace asmjit; for (unsigned int i = ParamOpcodes.Size() - b; i < ParamOpcodes.Size(); i++) { asmjit::X86Gp stackPtr; switch (ParamOpcodes[i]->b) { case REGT_INT | REGT_ADDROF: stackPtr = cc.newIntPtr(); cc.mov(stackPtr, frameD); cc.add(stackPtr, (int)(C * sizeof(int32_t))); cc.mov(x86::dword_ptr(stackPtr), regD[C]); break; case REGT_STRING | REGT_ADDROF: // We don't have to do anything in this case. String values are never moved to virtual registers. break; case REGT_POINTER | REGT_ADDROF: stackPtr = cc.newIntPtr(); cc.mov(stackPtr, frameA); cc.add(stackPtr, (int)(C * sizeof(void*))); cc.mov(x86::ptr(stackPtr), regA[C]); break; case REGT_FLOAT | REGT_ADDROF: stackPtr = cc.newIntPtr(); cc.mov(stackPtr, frameF); cc.add(stackPtr, (int)(C * sizeof(double))); cc.movsd(x86::qword_ptr(stackPtr), regF[C]); break; default: break; } } } void JitCompiler::LoadInOuts(int b) { for (unsigned int i = ParamOpcodes.Size() - b; i < ParamOpcodes.Size(); i++) { const VMOP ¶m = *ParamOpcodes[i]; if (param.op == OP_PARAM && (param.b & REGT_ADDROF)) { LoadCallResult(param); } } } void JitCompiler::LoadReturns(const VMOP *retval, int numret) { for (int i = 0; i < numret; ++i) { if (retval[i].op != OP_RESULT) I_FatalError("Expected OP_RESULT to follow OP_CALL\n"); LoadCallResult(retval[i]); } } void JitCompiler::LoadCallResult(const VMOP &opdata) { int type = opdata.b; int regnum = opdata.c; switch (type & REGT_TYPE) { case REGT_INT: cc.mov(regD[regnum], asmjit::x86::dword_ptr(frameD, regnum * sizeof(int32_t))); break; case REGT_FLOAT: cc.movsd(regF[regnum], asmjit::x86::qword_ptr(frameF, regnum * sizeof(double))); break; case REGT_STRING: // We don't have to do anything in this case. String values are never moved to virtual registers. break; case REGT_POINTER: cc.mov(regA[regnum], asmjit::x86::ptr(frameA, regnum * sizeof(void*))); break; default: I_FatalError("Unknown OP_RESULT/OP_PARAM type encountered in LoadCallResult\n"); break; } } void JitCompiler::FillReturns(const VMOP *retval, int numret) { using namespace asmjit; for (int i = 0; i < numret; ++i) { if (retval[i].op != OP_RESULT) { I_FatalError("Expected OP_RESULT to follow OP_CALL\n"); } int type = retval[i].b; int regnum = retval[i].c; if (type & REGT_KONST) { I_FatalError("OP_RESULT with REGT_KONST is not allowed\n"); } auto regPtr = cc.newIntPtr(); switch (type & REGT_TYPE) { case REGT_INT: cc.mov(regPtr, frameD); cc.add(regPtr, (int)(regnum * sizeof(int32_t))); break; case REGT_FLOAT: cc.mov(regPtr, frameF); cc.add(regPtr, (int)(regnum * sizeof(double))); break; case REGT_STRING: cc.mov(regPtr, frameS); cc.add(regPtr, (int)(regnum * sizeof(FString))); break; case REGT_POINTER: cc.mov(regPtr, frameA); cc.add(regPtr, (int)(regnum * sizeof(void*))); break; default: I_FatalError("Unknown OP_RESULT type encountered in FillReturns\n"); break; } cc.mov(x86::ptr(callReturns, i * sizeof(VMReturn) + offsetof(VMReturn, Location)), regPtr); cc.mov(x86::byte_ptr(callReturns, i * sizeof(VMReturn) + offsetof(VMReturn, RegType)), type); } } int JitCompiler::DoCall(VMFrameStack *stack, VMFunction *call, int b, int c, VMValue *param, VMReturn *returns, JitExceptionInfo *exceptinfo) { try { int numret; if (call->VarFlags & VARF_Native) { try { VMCycles[0].Unclock(); numret = static_cast(call)->NativeCall(param, call->DefaultArgs, b, returns, c); VMCycles[0].Clock(); } catch (CVMAbortException &err) { err.MaybePrintMessage(); err.stacktrace.AppendFormat("Called from %s\n", call->PrintableName.GetChars()); throw; } } else { VMCalls[0]++; VMScriptFunction *script = static_cast(call); VMFrame *newf = stack->AllocFrame(script); VMFillParams(param, newf, b); try { numret = VMExec(stack, script->Code, returns, c); } catch (...) { stack->PopFrame(); throw; } stack->PopFrame(); } return numret; } catch (...) { // To do: store full exception in exceptinfo exceptinfo->reason = X_OTHER; return 0; } }