This also replaces DTA_ColormapStyle with proper implementations of its components. As implemented it was a very awkward mixture of various effects that already existed in a separate form. As a result of its implementation it required additional but completely redundant shader support which could be removed now. As a side effect of this change a new DTA_Desaturate option was added.
No more locking insanity! :)
There are no locking counters or other saveguards here that would complicate the implementation because there's precisely two places where this buffer must be locked - the RenderView functions of the regular and poly SW renderer which cannot be called recursively.
In its current form this is quite useless. What's really needed is to require a lock on the RenderBuffer for the 3D scene, but since this is not needed for the 2D stuff anymore it can be done far simpler.
This was a bad idea from the start and really only made sense with DirectDraw.
These days a FrameBuffer represents an abstract hardware canvas that shares nothing with a software canvas so having these classes linked together makes things needlessly complicated.
The software render buffer is now a canvas object owned by the FrameBuffer.
Note that this commit deactivates a few things in the software renderer, but from the looks of it none of those will be needed anymore if we set OpenGL 2 as minimum target.
This was done mainly to reduce the amount of occurences of the word FTexture but it immediately helped detect two small and mostly harmless bugs that were found due to the stricter type checks.
Now it is no longer necessary to provide specially set up textures for rendering shaded decals, they can use any PNG texture now that contains a proper red channel.
Handling of the alPh chunk has been removed as a result as it in no longer needed.
Until now each subclass of FTexture had to implement the entire span generation itself, presumably so that a few classes can use simpler structures.
This does not work if a texture can have more than one pixel buffer as is needed for alpha textures.
Even though it means that some classes will allocate more data now, it's the only way to do it properly.
In addition this removes a significant amount of mostly redundant code from the texture classes.
- added alpha texture processing to all converted classes
As of now this is not active and not tested.
Note that as part of the conversion even those textures that were working as alphatextures will not look correct until the higher level code gets adjusted.
* store the frame time in the current screen buffer from where all render code can access it.
* replace some uses of I_MSTime with I_FPSTime, because they should not use a per-frame timer. The only one left is the wipe code but even this doesn't look like it needs either a per-frame timer or a timer counting from the start of the playsim.
- moved timer definitions into their own header/source files. d_main is not the right place for this.
- removed some leftover cruft from the old timer code.
src/gl/scene/gl_sprite.cpp:685:34: warning: '&&' within '||' [-Wlogical-op-parentheses]
src/polyrenderer/scene/poly_sprite.cpp:297:34: warning: '&&' within '||' [-Wlogical-op-parentheses]
src/swrenderer/scene/r_opaque_pass.cpp:975:35: warning: '&&' within '||' [-Wlogical-op-parentheses]
src/sound/mididevices/music_timiditypp_mididevice.cpp:548:30: warning: comparison of integers of different signs: 'int' and 'size_t' (aka 'unsigned long') [-Wsign-compare]
- Revert "- Partially fixed the 3d floors + fogboundary issue. There's still an issue when a sprite appears in front of a fog boundary, but because this is already a huge visual improvement I am going to go ahead and push this."
This reverts commit 7e292fbfec.
It now works the following way:
(0) - Force off (ZDoom defaults)
(1) - Force on (Doom defaults)
(2) - Auto off (Prefer ZDoom defaults - if DEHACKED is detected with no ZSCRIPT it will turn on) (default)
(3) - Auto on (Prefer Doom defaults - if DECORATE is detected with no ZSCRIPT it will turn off)
For some files that had the Doom Source license attached but saw heavy external contributions over the years I added a special note to license all original ZDoom code under BSD.
This was very poorly done without ever addressing the issues a composite render style can bring, it merely dealt with the known legacy render styles.
The same, identical code was also present in two different places.
The oversight that AlterWeaponSprite overrode even forced styles was also fixed.
OpenGL is not implemented yet but with the problems eliminated should be doable now.
I have no idea why they were even in there, as they intentionally circumvented all GC related features - they declared themselves fixed if prone to getting collected, they all used OF_YesReallyDelete when destroying themselves and they never used any of the object creation or RTTI features, aside from a single assert in V_Init2.
Essentially they were a drag on the system and OF_YesReallyDelete was effectively added just to deal with the canvases which were DObjects but not supposed to behave like them in the first place.
- added a few access functions for FActorInfo variables.
With PClassActor now empty the class descriptors can finally be converted back to static data outside the class hierarchy, like they were before the scripting merge, and untangle the game data from VM internals.
This allows using the UI scale or its own value, like all other scaling values.
In addition there is a choice between preserving equal pixel size or aspect ratio because the squashed non-corrected versions tend to look odd, but since proper scaling requires ununiform pixel sizes it is an option.
- changed how status bar sizes are being handled.
This has to recalculate all scaling and positioning factors, which can cause problems if the drawer leaves with some temporary values that do not reflect the status bar as a whole.
Changed it so that the status bar stores the base values and restores them after drawing is complete.
All our continuous integration targets have no problems with C99 isnan() macro but on Ubuntu 16.04 compilation fails
It appeared that some implementation of C++ Standard Library may undefine bunch of C macros to avoid conflicts with own declarations
- decided to ditch the widget system I had started to lay out. As it turns out that would make things far more complicated and slower than they need to be.
src/gl/scene/gl_clipper.h:150:23: warning: comparison of integers of different signs: 'int' and 'unsigned int' [-Wsign-compare]
src/gl/dynlights/gl_aabbtree.cpp:137:24: warning: using integer absolute value function 'abs' when argument is of floating point type [-Wabsolute-value]
src/gl/dynlights/gl_aabbtree.cpp:137:34: warning: using integer absolute value function 'abs' when argument is of floating point type [-Wabsolute-value]
src/gl/dynlights/gl_aabbtree.cpp:137:44: warning: using integer absolute value function 'abs' when argument is of floating point type [-Wabsolute-value]
src/gl/dynlights/gl_aabbtree.cpp:139:6: warning: using integer absolute value function 'abs' when argument is of floating point type [-Wabsolute-value]
src/gl/dynlights/gl_aabbtree.cpp:139:30: warning: using integer absolute value function 'abs' when argument is of floating point type [-Wabsolute-value]
src/gl/dynlights/gl_aabbtree.cpp:139:54: warning: using integer absolute value function 'abs' when argument is of floating point type [-Wabsolute-value]
src/gl/dynlights/gl_aabbtree.cpp:142:6: warning: using integer absolute value function 'abs' when argument is of floating point type [-Wabsolute-value]
src/gl/dynlights/gl_aabbtree.cpp:143:3: warning: using integer absolute value function 'abs' when argument is of floating point type [-Wabsolute-value]
src/gl/dynlights/gl_aabbtree.cpp:144:3: warning: using integer absolute value function 'abs' when argument is of floating point type [-Wabsolute-value]
src/gl/dynlights/gl_aabbtree.cpp:167:6: warning: using integer absolute value function 'abs' when argument is of floating point type [-Wabsolute-value]
src/gl/dynlights/gl_shadowmap.cpp:163:31: warning: '&&' within '||' [-Wlogical-op-parentheses]
src/p_saveg.cpp:367:16: warning: comparison of integers of different signs: 'unsigned int' and 'int' [-Wsign-compare]
src/p_saveg.cpp:402:60: warning: comparison of integers of different signs: 'int' and 'unsigned int' [-Wsign-compare]
src/p_setup.cpp:1553:39: warning: format specifies type 'ptrdiff_t' (aka 'long') but the argument has type 'int' [-Wformat]
src/scripting/zscript/zcc_compile.cpp:293:74: warning: field 'AST' will be initialized after field 'mVersion' [-Wreorder]
src/swrenderer/drawers/r_thread.cpp:113:21: warning: comparison of integers of different signs: 'int' and 'size_t' (aka 'unsigned long') [-Wsign-compare]
- consolidated the code to calculate a sprite's display angle for all 3 renderers.
As it turned out, they all differed in their feature support because they had always been updated independently by different people.
With no 3D floors this appears to be ok, but there are so many places where colormaps are being set in the software renderer that I cannot guarantee that I got all of them correct. This will need some testing.