Add dynamic lights

This commit is contained in:
Magnus Norddahl 2019-12-07 15:09:58 +01:00
parent 372733da8c
commit 90f5eee6c6
3 changed files with 197 additions and 19 deletions

View file

@ -256,7 +256,7 @@ void PolyTriangleThreadData::PushStreamData(const StreamData &data, const PolyPu
PushConstants = &constants; PushConstants = &constants;
/*int numLights = 0; numPolyLights = 0;
if (constants.uLightIndex >= 0) if (constants.uLightIndex >= 0)
{ {
const FVector4 &lightRange = lights[constants.uLightIndex]; const FVector4 &lightRange = lights[constants.uLightIndex];
@ -268,7 +268,7 @@ void PolyTriangleThreadData::PushStreamData(const StreamData &data, const PolyPu
int modulatedEnd = static_cast<int>(lightRange.Y) + start; int modulatedEnd = static_cast<int>(lightRange.Y) + start;
for (int i = modulatedStart; i < modulatedEnd; i += 4) for (int i = modulatedStart; i < modulatedEnd; i += 4)
{ {
if (numLights == maxPolyLights) if (numPolyLights == maxPolyLights)
break; break;
auto &lightpos = lights[i]; auto &lightpos = lights[i];
@ -279,7 +279,7 @@ void PolyTriangleThreadData::PushStreamData(const StreamData &data, const PolyPu
uint32_t g = (int)clamp(lightcolor.Y * 255.0f, 0.0f, 255.0f); uint32_t g = (int)clamp(lightcolor.Y * 255.0f, 0.0f, 255.0f);
uint32_t b = (int)clamp(lightcolor.Z * 255.0f, 0.0f, 255.0f); uint32_t b = (int)clamp(lightcolor.Z * 255.0f, 0.0f, 255.0f);
auto& polylight = polyLights[numLights++]; auto& polylight = polyLights[numPolyLights++];
polylight.x = lightpos.X; polylight.x = lightpos.X;
polylight.y = lightpos.Y; polylight.y = lightpos.Y;
polylight.z = lightpos.Z; polylight.z = lightpos.Z;
@ -290,7 +290,6 @@ void PolyTriangleThreadData::PushStreamData(const StreamData &data, const PolyPu
} }
} }
} }
drawargs.SetLights(polyLights, numLights);*/
} }
void PolyTriangleThreadData::PushMatrices(const VSMatrix &modelMatrix, const VSMatrix &normalModelMatrix, const VSMatrix &textureMatrix) void PolyTriangleThreadData::PushMatrices(const VSMatrix &modelMatrix, const VSMatrix &normalModelMatrix, const VSMatrix &textureMatrix)

View file

@ -115,6 +115,13 @@ public:
virtual void Load(PolyTriangleThreadData *thread, const void *vertices, int index) = 0; virtual void Load(PolyTriangleThreadData *thread, const void *vertices, int index) = 0;
}; };
struct PolyLight
{
uint32_t color;
float x, y, z;
float radius;
};
class PolyTriangleThreadData class PolyTriangleThreadData
{ {
public: public:
@ -196,7 +203,7 @@ public:
float WorldZ[MAXWIDTH]; float WorldZ[MAXWIDTH];
uint32_t FragColor[MAXWIDTH]; uint32_t FragColor[MAXWIDTH];
uint16_t lightarray[MAXWIDTH]; uint16_t lightarray[MAXWIDTH];
//uint32_t dynlights[MAXWIDTH]; uint32_t dynlights[MAXWIDTH];
} scanline; } scanline;
static PolyTriangleThreadData *Get(DrawerThread *thread); static PolyTriangleThreadData *Get(DrawerThread *thread);
@ -230,15 +237,9 @@ public:
const unsigned int *elements = nullptr; const unsigned int *elements = nullptr;
const FVector4 *lights = nullptr; const FVector4 *lights = nullptr;
/*struct PolyLight
{
uint32_t color;
float x, y, z;
float radius;
};
enum { maxPolyLights = 16 }; enum { maxPolyLights = 16 };
PolyLight polyLights[maxPolyLights];*/ PolyLight polyLights[maxPolyLights];
int numPolyLights = 0;
PolyMainVertexShader mainVertexShader; PolyMainVertexShader mainVertexShader;

View file

@ -88,6 +88,145 @@ static void WriteW(int y, int x0, int x1, const TriDrawTriangleArgs* args, PolyT
} }
#endif #endif
static void WriteDynLightArray(int y, int x0, int x1, const TriDrawTriangleArgs* args, PolyTriangleThreadData* thread)
{
int num_lights = thread->numPolyLights;
PolyLight* lights = thread->polyLights;
float worldnormalX = thread->mainVertexShader.vWorldNormal.X;
float worldnormalY = thread->mainVertexShader.vWorldNormal.Y;
float worldnormalZ = thread->mainVertexShader.vWorldNormal.Z;
uint32_t* dynlights = thread->scanline.dynlights;
float* worldposX = thread->scanline.WorldX;
float* worldposY = thread->scanline.WorldY;
float* worldposZ = thread->scanline.WorldZ;
int sseend = x0;
#ifndef NO_SSE
int ssecount = ((x1 - x0) & ~3);
sseend = x0 + ssecount;
__m128 mworldnormalX = _mm_set1_ps(worldnormalX);
__m128 mworldnormalY = _mm_set1_ps(worldnormalY);
__m128 mworldnormalZ = _mm_set1_ps(worldnormalZ);
for (int x = x0; x < sseend; x += 4)
{
__m128i litlo = _mm_setzero_si128();
//__m128i litlo = _mm_shuffle_epi32(_mm_unpacklo_epi8(_mm_cvtsi32_si128(dynlightcolor), _mm_setzero_si128()), _MM_SHUFFLE(1, 0, 1, 0));
__m128i lithi = litlo;
for (int i = 0; i < num_lights; i++)
{
__m128 lightposX = _mm_set1_ps(lights[i].x);
__m128 lightposY = _mm_set1_ps(lights[i].y);
__m128 lightposZ = _mm_set1_ps(lights[i].z);
__m128 light_radius = _mm_set1_ps(lights[i].radius);
__m128i light_color = _mm_shuffle_epi32(_mm_unpacklo_epi8(_mm_cvtsi32_si128(lights[i].color), _mm_setzero_si128()), _MM_SHUFFLE(1, 0, 1, 0));
__m128 is_attenuated = _mm_cmplt_ps(light_radius, _mm_setzero_ps());
light_radius = _mm_andnot_ps(_mm_set1_ps(-0.0f), light_radius); // clear sign bit
// L = light-pos
// dist = sqrt(dot(L, L))
// distance_attenuation = 1 - MIN(dist * (1/radius), 1)
__m128 Lx = _mm_sub_ps(lightposX, _mm_loadu_ps(&worldposX[x]));
__m128 Ly = _mm_sub_ps(lightposY, _mm_loadu_ps(&worldposY[x]));
__m128 Lz = _mm_sub_ps(lightposZ, _mm_loadu_ps(&worldposZ[x]));
__m128 dist2 = _mm_add_ps(_mm_mul_ps(Lx, Lx), _mm_add_ps(_mm_mul_ps(Ly, Ly), _mm_mul_ps(Lz, Lz)));
__m128 rcp_dist = _mm_rsqrt_ps(dist2);
__m128 dist = _mm_mul_ps(dist2, rcp_dist);
__m128 distance_attenuation = _mm_sub_ps(_mm_set1_ps(256.0f), _mm_min_ps(_mm_mul_ps(dist, light_radius), _mm_set1_ps(256.0f)));
// The simple light type
__m128 simple_attenuation = distance_attenuation;
// The point light type
// diffuse = max(dot(N,normalize(L)),0) * attenuation
Lx = _mm_mul_ps(Lx, rcp_dist);
Ly = _mm_mul_ps(Ly, rcp_dist);
Lz = _mm_mul_ps(Lz, rcp_dist);
__m128 dotNL = _mm_add_ps(_mm_add_ps(_mm_mul_ps(mworldnormalX, Lx), _mm_mul_ps(mworldnormalY, Ly)), _mm_mul_ps(mworldnormalZ, Lz));
__m128 point_attenuation = _mm_mul_ps(_mm_max_ps(dotNL, _mm_setzero_ps()), distance_attenuation);
__m128i attenuation = _mm_cvtps_epi32(_mm_or_ps(_mm_and_ps(is_attenuated, point_attenuation), _mm_andnot_ps(is_attenuated, simple_attenuation)));
attenuation = _mm_shufflehi_epi16(_mm_shufflelo_epi16(attenuation, _MM_SHUFFLE(2, 2, 0, 0)), _MM_SHUFFLE(2, 2, 0, 0));
__m128i attenlo = _mm_shuffle_epi32(attenuation, _MM_SHUFFLE(1, 1, 0, 0));
__m128i attenhi = _mm_shuffle_epi32(attenuation, _MM_SHUFFLE(3, 3, 2, 2));
litlo = _mm_add_epi16(litlo, _mm_srli_epi16(_mm_mullo_epi16(light_color, attenlo), 8));
lithi = _mm_add_epi16(lithi, _mm_srli_epi16(_mm_mullo_epi16(light_color, attenhi), 8));
}
_mm_storeu_si128((__m128i*)&dynlights[x], _mm_packus_epi16(litlo, lithi));
}
#endif
for (int x = x0; x < x1; x++)
{
uint32_t lit_r = 0;
uint32_t lit_g = 0;
uint32_t lit_b = 0;
for (int i = 0; i < num_lights; i++)
{
float lightposX = lights[i].x;
float lightposY = lights[i].y;
float lightposZ = lights[i].z;
float light_radius = lights[i].radius;
uint32_t light_color = lights[i].color;
bool is_attenuated = light_radius < 0.0f;
if (is_attenuated)
light_radius = -light_radius;
// L = light-pos
// dist = sqrt(dot(L, L))
// distance_attenuation = 1 - MIN(dist * (1/radius), 1)
float Lx = lightposX - worldposX[x];
float Ly = lightposY - worldposY[x];
float Lz = lightposZ - worldposZ[x];
float dist2 = Lx * Lx + Ly * Ly + Lz * Lz;
#ifdef NO_SSE
//float rcp_dist = 1.0f / sqrt(dist2);
float rcp_dist = 1.0f / (dist2 * 0.01f);
#else
float rcp_dist = _mm_cvtss_f32(_mm_rsqrt_ss(_mm_set_ss(dist2)));
#endif
float dist = dist2 * rcp_dist;
float distance_attenuation = 256.0f - MIN(dist * light_radius, 256.0f);
// The simple light type
float simple_attenuation = distance_attenuation;
// The point light type
// diffuse = max(dot(N,normalize(L)),0) * attenuation
Lx *= rcp_dist;
Ly *= rcp_dist;
Lz *= rcp_dist;
float dotNL = worldnormalX * Lx + worldnormalY * Ly + worldnormalZ * Lz;
float point_attenuation = MAX(dotNL, 0.0f) * distance_attenuation;
uint32_t attenuation = (uint32_t)(is_attenuated ? (int32_t)point_attenuation : (int32_t)simple_attenuation);
lit_r += (RPART(light_color) * attenuation) >> 8;
lit_g += (GPART(light_color) * attenuation) >> 8;
lit_b += (BPART(light_color) * attenuation) >> 8;
}
lit_r = MIN<uint32_t>(lit_r, 255);
lit_g = MIN<uint32_t>(lit_g, 255);
lit_b = MIN<uint32_t>(lit_b, 255);
dynlights[x] = MAKEARGB(255, lit_r, lit_g, lit_b);
// Palette version:
// dynlights[x] = RGB256k.All[((lit_r >> 2) << 12) | ((lit_g >> 2) << 6) | (lit_b >> 2)];
}
}
static void WriteLightArray(int y, int x0, int x1, const TriDrawTriangleArgs* args, PolyTriangleThreadData* thread) static void WriteLightArray(int y, int x0, int x1, const TriDrawTriangleArgs* args, PolyTriangleThreadData* thread)
{ {
float startX = x0 + (0.5f - args->v1->x); float startX = x0 + (0.5f - args->v1->x);
@ -713,22 +852,58 @@ static void RunShader(int x0, int x1, PolyTriangleThreadData* thread)
} }
} }
if (constants->uLightLevel >= 0.0f) if (constants->uLightLevel >= 0.0f && thread->numPolyLights > 0)
{
uint16_t* lightarray = thread->scanline.lightarray;
uint32_t* dynlights = thread->scanline.dynlights;
for (int x = x0; x < x1; x++)
{
uint32_t fg = fragcolor[x];
int lightshade = lightarray[x];
uint32_t dynlight = dynlights[x];
uint32_t a = APART(fg);
uint32_t r = MIN((RPART(fg) * (lightshade + RPART(dynlight))) >> 8, (uint32_t)255);
uint32_t g = MIN((GPART(fg) * (lightshade + GPART(dynlight))) >> 8, (uint32_t)255);
uint32_t b = MIN((BPART(fg) * (lightshade + BPART(dynlight))) >> 8, (uint32_t)255);
fragcolor[x] = MAKEARGB(a, r, g, b);
}
}
else if (constants->uLightLevel >= 0.0f)
{ {
uint16_t* lightarray = thread->scanline.lightarray; uint16_t* lightarray = thread->scanline.lightarray;
for (int x = x0; x < x1; x++) for (int x = x0; x < x1; x++)
{ {
uint32_t fg = fragcolor[x]; uint32_t fg = fragcolor[x];
int lightshade = lightarray[x]; int lightshade = lightarray[x];
fragcolor[x] = MAKEARGB(
APART(fg), uint32_t a = APART(fg);
(RPART(fg) * lightshade) >> 8, uint32_t r = (RPART(fg) * lightshade) >> 8;
(GPART(fg) * lightshade) >> 8, uint32_t g = (GPART(fg) * lightshade) >> 8;
(BPART(fg) * lightshade) >> 8); uint32_t b = (BPART(fg) * lightshade) >> 8;
fragcolor[x] = MAKEARGB(a, r, g, b);
} }
// To do: apply fog // To do: apply fog
} }
else if (thread->numPolyLights > 0)
{
uint32_t* dynlights = thread->scanline.dynlights;
for (int x = x0; x < x1; x++)
{
uint32_t fg = fragcolor[x];
uint32_t dynlight = dynlights[x];
uint32_t a = APART(fg);
uint32_t r = MIN((RPART(fg) * RPART(dynlight)) >> 8, (uint32_t)255);
uint32_t g = MIN((GPART(fg) * GPART(dynlight)) >> 8, (uint32_t)255);
uint32_t b = MIN((BPART(fg) * BPART(dynlight)) >> 8, (uint32_t)255);
fragcolor[x] = MAKEARGB(a, r, g, b);
}
}
} }
static void DrawSpan(int y, int x0, int x1, const TriDrawTriangleArgs* args, PolyTriangleThreadData* thread) static void DrawSpan(int y, int x0, int x1, const TriDrawTriangleArgs* args, PolyTriangleThreadData* thread)
@ -738,6 +913,9 @@ static void DrawSpan(int y, int x0, int x1, const TriDrawTriangleArgs* args, Pol
if (thread->PushConstants->uLightLevel >= 0.0f) if (thread->PushConstants->uLightLevel >= 0.0f)
WriteLightArray(y, x0, x1, args, thread); WriteLightArray(y, x0, x1, args, thread);
if (thread->numPolyLights > 0)
WriteDynLightArray(y, x0, x1, args, thread);
RunShader(x0, x1, thread); RunShader(x0, x1, thread);
if (thread->WriteColor) if (thread->WriteColor)