Replaced the bicubic interpolation filter with a simple sharpening filter

This commit is contained in:
Magnus Norddahl 2016-06-27 10:49:15 +02:00
parent 6c037fa249
commit 8f38d3af99
5 changed files with 117 additions and 169 deletions

View File

@ -1190,7 +1190,6 @@ set (PCH_SOURCES
textures/texturemanager.cpp
textures/tgatexture.cpp
textures/warptexture.cpp
textures/bicubic_interpolation.cpp
thingdef/olddecorations.cpp
thingdef/thingdef.cpp
thingdef/thingdef_codeptr.cpp

View File

@ -103,7 +103,9 @@ CVAR(Bool, r_mipmap, true, CVAR_ARCHIVE | CVAR_GLOBALCONFIG);
/////////////////////////////////////////////////////////////////////////////
#ifndef NO_SSE
__m128i SampleBgra::samplertable[256 * 2];
#endif
DrawerCommandQueue *DrawerCommandQueue::Instance()
{
@ -113,6 +115,7 @@ DrawerCommandQueue *DrawerCommandQueue::Instance()
DrawerCommandQueue::DrawerCommandQueue()
{
#ifndef NO_SSE
for (int inv_b = 0; inv_b < 16; inv_b++)
{
for (int inv_a = 0; inv_a < 16; inv_a++)
@ -132,6 +135,7 @@ DrawerCommandQueue::DrawerCommandQueue()
_mm_store_si128(SampleBgra::samplertable + inv_b * 32 + inv_a * 2 + 1, ainvb_invainvb);
}
}
#endif
}
DrawerCommandQueue::~DrawerCommandQueue()

View File

@ -1,107 +0,0 @@
#include "doomtype.h"
#include "bicubic_interpolation.h"
void BicubicInterpolation::ScaleImage(uint32_t *dest_data, int dest_width, int dest_height, const uint32_t *src_data, int src_width, int src_height)
{
if (dest_width <= 0 || dest_height <= 0 || src_width <= 0 || src_height <= 0)
return;
// Scale factor as a rational number r = n / d
int n = dest_width;
int d = src_width;
const unsigned char *src_ptr = (const unsigned char *)src_data;
unsigned char *dest_ptr = (unsigned char *)dest_data;
scale(n, d, src_width, src_width * 4, src_height, src_ptr + 0, dest_width, dest_width * 4, dest_height, dest_ptr + 0);
scale(n, d, src_width, src_width * 4, src_height, src_ptr + 1, dest_width, dest_width * 4, dest_height, dest_ptr + 1);
scale(n, d, src_width, src_width * 4, src_height, src_ptr + 2, dest_width, dest_width * 4, dest_height, dest_ptr + 2);
scale(n, d, src_width, src_width * 4, src_height, src_ptr + 3, dest_width, dest_width * 4, dest_height, dest_ptr + 3);
}
void BicubicInterpolation::scale(int n, int d, int in_width, int in_pitch, int in_height, const unsigned char *f, int out_width, int out_pitch, int out_height, unsigned char *g)
{
// Implementation of Michael J. Aramini's Efficient Image Magnification by Bicubic Spline Interpolation
int dimension_size = (out_width > out_height) ? out_width : out_height;
L_vector.resize(dimension_size);
for (int i=0;i<4;i++)
c_vector[i].resize(dimension_size);
h_vector.resize(in_width);
int larger_out_dimension;
int j, k, l, m, index;
int *L = &L_vector[0];
float x;
float *c[4] = { &c_vector[0][0], &c_vector[1][0], &c_vector[2][0], &c_vector[3][0] };
float *h = &h_vector[0];
larger_out_dimension = (out_width > out_height) ? out_width : out_height;
for (k = 0; k < larger_out_dimension; k++)
L[k] = (k * d) / n;
for (k = 0; k < n; k++)
{
x = (float)((k * d) % n) / (float)n;
c[0][k] = C0(x);
c[1][k] = C1(x);
c[2][k] = C2(x);
c[3][k] = C3(x);
}
for (k = n; k < larger_out_dimension; k++)
for (l = 0; l < 4; l++)
c[l][k] = c[l][k % n];
for (k = 0; k < out_height; k++)
{
for (j = 0; j < in_width; j++)
{
h[j] = 0.0f;
for (l = 0; l < 4; l++)
{
index = L[k] + l - 1;
if ((index >= 0) && (index < in_height))
h[j] += f[index*in_pitch+j*4] * c[3 - l][k];
}
}
for (m = 0; m < out_width; m++)
{
x = 0.5f;
for (l = 0; l < 4; l++)
{
index = L[m] + l - 1;
if ((index >= 0) && (index < in_width))
x += h[index] * c[3 - l][m];
}
if (x <= 0.0f)
g[k*out_pitch+m*4] = 0;
else if (x >= 255)
g[k*out_pitch+m*4] = 255;
else
g[k*out_pitch+m*4] = (unsigned char)x;
}
}
}
inline float BicubicInterpolation::C0(float t)
{
return -a * t * t * t + a * t * t;
}
inline float BicubicInterpolation::C1(float t)
{
return -(a + 2.0f) * t * t * t + (2.0f * a + 3.0f) * t * t - a * t;
}
inline float BicubicInterpolation::C2(float t)
{
return (a + 2.0f) * t * t * t - (a + 3.0f) * t * t + 1.0f;
}
inline float BicubicInterpolation::C3(float t)
{
return a * t * t * t - 2.0f * a * t * t + a * t;
}

View File

@ -1,50 +0,0 @@
/*
** Bicubic Image Scaler
** Copyright (c) 2016 Magnus Norddahl
**
** This software is provided 'as-is', without any express or implied
** warranty. In no event will the authors be held liable for any damages
** arising from the use of this software.
**
** Permission is granted to anyone to use this software for any purpose,
** including commercial applications, and to alter it and redistribute it
** freely, subject to the following restrictions:
**
** 1. The origin of this software must not be misrepresented; you must not
** claim that you wrote the original software. If you use this software
** in a product, an acknowledgment in the product documentation would be
** appreciated but is not required.
** 2. Altered source versions must be plainly marked as such, and must not be
** misrepresented as being the original software.
** 3. This notice may not be removed or altered from any source distribution.
*/
#ifndef __BICUBIC_INTERPOLATION_H__
#define __BICUBIC_INTERPOLATION_H__
#pragma once
#include <vector>
// Bicubic image scaler
class BicubicInterpolation
{
public:
void ScaleImage(uint32_t *dest, int dest_width, int dest_height, const uint32_t *src, int src_width, int src_height);
private:
void scale(int n, int d, int in_width, int in_pitch, int in_height, const unsigned char *in_data, int out_width, int out_pitch, int out_height, unsigned char *out_data);
float a = -0.5f; // a is a spline parameter such that -1 <= a <= 0
inline float C0(float t);
inline float C1(float t);
inline float C2(float t);
inline float C3(float t);
std::vector<int> L_vector;
std::vector<float> c_vector[4];
std::vector<float> h_vector;
};
#endif

View File

@ -45,7 +45,6 @@
#include "v_video.h"
#include "m_fixed.h"
#include "textures/textures.h"
#include "textures/bicubic_interpolation.h"
#include "v_palette.h"
typedef bool (*CheckFunc)(FileReader & file);
@ -383,19 +382,122 @@ int FTexture::MipmapLevels() const
void FTexture::GenerateBgraMipmaps()
{
BicubicInterpolation bicubic;
uint32_t *src = PixelsBgra.data();
uint32_t *dest = src + Width * Height;
int levels = MipmapLevels();
for (int i = 1; i < levels; i++)
struct Color4f
{
int w = MAX(Width >> i, 1);
int h = MAX(Height >> i, 1);
float a, r, g, b;
Color4f operator*(const Color4f &v) const { return Color4f{ a * v.a, r * v.r, g * v.g, b * v.b }; }
Color4f operator/(const Color4f &v) const { return Color4f{ a / v.a, r / v.r, g / v.g, b / v.b }; }
Color4f operator+(const Color4f &v) const { return Color4f{ a + v.a, r + v.r, g + v.g, b + v.b }; }
Color4f operator-(const Color4f &v) const { return Color4f{ a - v.a, r - v.r, g - v.g, b - v.b }; }
Color4f operator*(float s) const { return Color4f{ a * s, r * s, g * s, b * s }; }
Color4f operator/(float s) const { return Color4f{ a / s, r / s, g / s, b / s }; }
Color4f operator+(float s) const { return Color4f{ a + s, r + s, g + s, b + s }; }
Color4f operator-(float s) const { return Color4f{ a - s, r - s, g - s, b - s }; }
};
bicubic.ScaleImage(dest, h, w, src, Height, Width);
int levels = MipmapLevels();
std::vector<Color4f> image(PixelsBgra.size());
dest += w * h;
// Convert to normalized linear colorspace
{
for (int x = 0; x < Width; x++)
{
for (int y = 0; y < Height; y++)
{
uint32_t c8 = PixelsBgra[x * Height + y];
Color4f c;
c.a = std::pow(APART(c8) * (1.0f / 255.0f), 2.2f);
c.r = std::pow(RPART(c8) * (1.0f / 255.0f), 2.2f);
c.g = std::pow(GPART(c8) * (1.0f / 255.0f), 2.2f);
c.b = std::pow(BPART(c8) * (1.0f / 255.0f), 2.2f);
image[x * Height + y] = c;
}
}
}
// Generate mipmaps
{
std::vector<Color4f> smoothed(Width * Height);
Color4f *src = image.data();
Color4f *dest = src + Width * Height;
for (int i = 1; i < levels; i++)
{
int srcw = MAX(Width >> (i - 1), 1);
int srch = MAX(Height >> (i - 1), 1);
int w = MAX(Width >> i, 1);
int h = MAX(Height >> i, 1);
// Downscale
for (int x = 0; x < w; x++)
{
int sx0 = x * 2;
int sx1 = MIN((x + 1) * 2, srcw - 1);
for (int y = 0; y < h; y++)
{
int sy0 = y * 2;
int sy1 = MIN((y + 1) * 2, srch - 1);
Color4f src00 = src[sy0 + sx0 * srch];
Color4f src01 = src[sy1 + sx0 * srch];
Color4f src10 = src[sy0 + sx1 * srch];
Color4f src11 = src[sy1 + sx1 * srch];
Color4f c = (src00 + src01 + src10 + src11) * 0.25f;
dest[y + x * h] = src00;
}
}
// Sharpen filter with a 3x3 kernel:
for (int x = 0; x < w; x++)
{
for (int y = 0; y < h; y++)
{
Color4f c = { 0.0f, 0.0f, 0.0f, 0.0f };
for (int kx = -1; kx < 2; kx++)
{
for (int ky = -1; ky < 2; ky++)
{
int a = y + ky;
int b = x + kx;
if (a < 0) a = h - 1;
if (a == h) a = 0;
if (b < 0) b = w - 1;
if (b == h) b = 0;
c = c + dest[a + b * h];
}
}
c = c * (1.0f / 9.0f);
smoothed[y + x * h] = c;
}
}
float k = 0.04f;
for (int j = 0; j < w * h; j++)
dest[j] = dest[j] + (dest[j] - smoothed[j]) * k;
src = dest;
dest += w * h;
}
}
// Convert to bgra8 sRGB colorspace
{
Color4f *src = image.data() + Width * Height;
uint32_t *dest = PixelsBgra.data() + Width * Height;
for (int i = 1; i < levels; i++)
{
int w = MAX(Width >> i, 1);
int h = MAX(Height >> i, 1);
for (int j = 0; j < w * h; j++)
{
uint32_t a = (uint32_t)clamp(std::pow(src[j].a, 1.0f / 2.2f) * 255.0f + 0.5f, 0.0f, 255.0f);
uint32_t r = (uint32_t)clamp(std::pow(src[j].r, 1.0f / 2.2f) * 255.0f + 0.5f, 0.0f, 255.0f);
uint32_t g = (uint32_t)clamp(std::pow(src[j].g, 1.0f / 2.2f) * 255.0f + 0.5f, 0.0f, 255.0f);
uint32_t b = (uint32_t)clamp(std::pow(src[j].b, 1.0f / 2.2f) * 255.0f + 0.5f, 0.0f, 255.0f);
dest[j] = (a << 24) | (r << 16) | (g << 8) | b;
}
src += w * h;
dest += w * h;
}
}
}