Separate WildMidi mixing from event handling

- In order to use ZDoom's own MIDI sequencer event handling must be
  completely separate from mixing, but WildMidi had them intertwined
  because it wasn't designed for external sequencers.
- Also remove all 'long's defining the output buffers to avoid having
  something that's 32 bits wide on Windows and 64 bits wide on Linux.
This commit is contained in:
Randy Heit 2015-12-28 20:33:41 -06:00
parent a2ebf771d3
commit 635b496165
3 changed files with 473 additions and 459 deletions

View File

@ -269,23 +269,23 @@ _WM_init_reverb(int rate, float room_x, float room_y, float listen_x,
double a1 = -2 * cs;
double a2 = 1 - (alpha / A);
rtn_rvb->coeff[j][i][0] = (signed long int) ((b0 / a0) * 1024.0);
rtn_rvb->coeff[j][i][1] = (signed long int) ((b1 / a0) * 1024.0);
rtn_rvb->coeff[j][i][2] = (signed long int) ((b2 / a0) * 1024.0);
rtn_rvb->coeff[j][i][3] = (signed long int) ((a1 / a0) * 1024.0);
rtn_rvb->coeff[j][i][4] = (signed long int) ((a2 / a0) * 1024.0);
rtn_rvb->coeff[j][i][0] = (signed int) ((b0 / a0) * 1024.0);
rtn_rvb->coeff[j][i][1] = (signed int) ((b1 / a0) * 1024.0);
rtn_rvb->coeff[j][i][2] = (signed int) ((b2 / a0) * 1024.0);
rtn_rvb->coeff[j][i][3] = (signed int) ((a1 / a0) * 1024.0);
rtn_rvb->coeff[j][i][4] = (signed int) ((a2 / a0) * 1024.0);
}
}
/* init the reverb buffers */
rtn_rvb->l_buf_size = (int) ((float) rate * (MAXL_DST / 340.29));
rtn_rvb->l_buf = (long*)malloc(
sizeof(signed long int) * (rtn_rvb->l_buf_size + 1));
rtn_rvb->l_buf = (int*)malloc(
sizeof(signed int) * (rtn_rvb->l_buf_size + 1));
rtn_rvb->l_out = 0;
rtn_rvb->r_buf_size = (int) ((float) rate * (MAXR_DST / 340.29));
rtn_rvb->r_buf = (long*)malloc(
sizeof(signed long int) * (rtn_rvb->r_buf_size + 1));
rtn_rvb->r_buf = (int*)malloc(
sizeof(signed int) * (rtn_rvb->r_buf_size + 1));
rtn_rvb->r_out = 0;
for (i = 0; i < 4; i++) {
@ -313,17 +313,17 @@ void _WM_free_reverb(struct _rvb *rvb) {
free(rvb);
}
void _WM_do_reverb(struct _rvb *rvb, signed long int *buffer, int size) {
void _WM_do_reverb(struct _rvb *rvb, signed int *buffer, int size) {
int i, j, k;
signed long int l_buf_flt = 0;
signed long int r_buf_flt = 0;
signed long int l_rfl = 0;
signed long int r_rfl = 0;
signed int l_buf_flt = 0;
signed int r_buf_flt = 0;
signed int l_rfl = 0;
signed int r_rfl = 0;
int vol_div = 64;
for (i = 0; i < size; i += 2) {
signed long int tmp_l_val = 0;
signed long int tmp_r_val = 0;
signed int tmp_l_val = 0;
signed int tmp_r_val = 0;
/*
add the initial reflections
from each speaker, 4 to go the left, 4 go to the right buffers

View File

@ -29,14 +29,14 @@
struct _rvb {
/* filter data */
signed long int l_buf_flt_in[8][6][2];
signed long int l_buf_flt_out[8][6][2];
signed long int r_buf_flt_in[8][6][2];
signed long int r_buf_flt_out[8][6][2];
signed long int coeff[8][6][5];
signed int l_buf_flt_in[8][6][2];
signed int l_buf_flt_out[8][6][2];
signed int r_buf_flt_in[8][6][2];
signed int r_buf_flt_out[8][6][2];
signed int coeff[8][6][5];
/* buffer data */
signed long int *l_buf;
signed long int *r_buf;
signed int *l_buf;
signed int *r_buf;
int l_buf_size;
int r_buf_size;
int l_out;
@ -52,6 +52,6 @@ struct _rvb {
extern void _WM_reset_reverb (struct _rvb *rvb);
extern struct _rvb *_WM_init_reverb(int rate, float room_x, float room_y, float listen_x, float listen_y);
extern void _WM_free_reverb (struct _rvb *rvb);
extern void _WM_do_reverb (struct _rvb *rvb, signed long int *buffer, int size);
extern void _WM_do_reverb (struct _rvb *rvb, signed int *buffer, int size);
#endif /* __REVERB_H */

View File

@ -182,7 +182,7 @@ struct _mdi {
unsigned long int patch_count;
signed short int amp;
signed long int *mix_buffer;
signed int *mix_buffer;
unsigned long int mix_buffer_size;
struct _rvb *reverb;
@ -3203,20 +3203,216 @@ _end: free(sysex_store);
return NULL;
}
static int *WM_Mix_Linear(midi * handle, int * buffer, unsigned long int count)
{
struct _mdi *mdi = (struct _mdi *)handle;
unsigned long int data_pos;
signed int premix, left_mix, right_mix;
signed int vol_mul;
struct _note *note_data = NULL;
do {
note_data = mdi->note;
left_mix = right_mix = 0;
if (__builtin_expect((note_data != NULL), 1)) {
while (note_data) {
/*
* ===================
* resample the sample
* ===================
*/
data_pos = note_data->sample_pos >> FPBITS;
vol_mul = ((note_data->vol_lvl
* (note_data->env_level >> 12)) >> FPBITS);
premix = (note_data->sample->data[data_pos]
+ ((note_data->sample->data[data_pos + 1]
- note_data->sample->data[data_pos])
* (signed long int) (note_data->sample_pos
& FPMASK)>> FPBITS)) * vol_mul
/ 1024;
left_mix += premix
* mdi->channel[note_data->noteid >> 8].left_adjust;
right_mix += premix
* mdi->channel[note_data->noteid >> 8].right_adjust;
/*
* ========================
* sample position checking
* ========================
*/
note_data->sample_pos += note_data->sample_inc;
if (__builtin_expect(
(note_data->sample_pos > note_data->sample->loop_end),
0)) {
if (note_data->modes & SAMPLE_LOOP) {
note_data->sample_pos =
note_data->sample->loop_start
+ ((note_data->sample_pos
- note_data->sample->loop_start)
% note_data->sample->loop_size);
} else if (__builtin_expect(
(note_data->sample_pos
>= note_data->sample->data_length),
0)) {
if (__builtin_expect((note_data->replay == NULL), 1)) {
goto KILL_NOTE;
}
goto RESTART_NOTE;
}
}
if (__builtin_expect((note_data->env_inc == 0), 0)) {
note_data = note_data->next;
continue;
}
note_data->env_level += note_data->env_inc;
if (__builtin_expect((note_data->env_level > 4194304), 0)) {
note_data->env_level =
note_data->sample->env_target[note_data->env];
}
if (__builtin_expect(
((note_data->env_inc < 0)
&& (note_data->env_level
> note_data->sample->env_target[note_data->env]))
|| ((note_data->env_inc > 0)
&& (note_data->env_level
< note_data->sample->env_target[note_data->env])),
1)) {
note_data = note_data->next;
continue;
}
note_data->env_level =
note_data->sample->env_target[note_data->env];
switch (note_data->env) {
case 0:
#if 0
if (!(note_data->modes & SAMPLE_ENVELOPE)) {
note_data->env_inc = 0;
note_data = note_data->next;
continue;
}
#endif
break;
case 2:
if (note_data->modes & SAMPLE_SUSTAIN) {
note_data->env_inc = 0;
note_data = note_data->next;
continue;
} else if (note_data->modes & SAMPLE_CLAMPED) {
note_data->env = 5;
if (note_data->env_level
> note_data->sample->env_target[5]) {
note_data->env_inc =
-note_data->sample->env_rate[5];
} else {
note_data->env_inc =
note_data->sample->env_rate[5];
}
continue;
}
break;
case 5:
if (__builtin_expect((note_data->env_level == 0), 1)) {
goto KILL_NOTE;
}
/* sample release */
if (note_data->modes & SAMPLE_LOOP)
note_data->modes ^= SAMPLE_LOOP;
note_data->env_inc = 0;
note_data = note_data->next;
continue;
case 6:
if (__builtin_expect((note_data->replay != NULL), 1)) {
RESTART_NOTE: note_data->active = 0;
{
struct _note *prev_note = NULL;
struct _note *nte_array = mdi->note;
if (nte_array != note_data) {
do {
prev_note = nte_array;
nte_array = nte_array->next;
} while (nte_array != note_data);
}
if (prev_note) {
prev_note->next = note_data->replay;
} else {
mdi->note = note_data->replay;
}
note_data->replay->next = note_data->next;
note_data = note_data->replay;
note_data->active = 1;
}
} else {
KILL_NOTE: note_data->active = 0;
{
struct _note *prev_note = NULL;
struct _note *nte_array = mdi->note;
if (nte_array != note_data) {
do {
prev_note = nte_array;
nte_array = nte_array->next;
} while ((nte_array != note_data)
&& (nte_array));
}
if (prev_note) {
prev_note->next = note_data->next;
} else {
mdi->note = note_data->next;
}
note_data = note_data->next;
}
}
continue;
}
note_data->env++;
if (note_data->is_off == 1) {
do_note_off_extra(note_data);
}
if (note_data->env_level
> note_data->sample->env_target[note_data->env]) {
note_data->env_inc =
-note_data->sample->env_rate[note_data->env];
} else {
note_data->env_inc =
note_data->sample->env_rate[note_data->env];
}
note_data = note_data->next;
continue;
}
/*
* =========================
* mix the channels together
* =========================
*/
left_mix /= 1024;
right_mix /= 1024;
}
*buffer++ = left_mix;
*buffer++ = right_mix;
} while (--count);
return buffer;
}
static int WM_GetOutput_Linear(midi * handle, char * buffer,
unsigned long int size) {
unsigned long int buffer_used = 0;
unsigned long int i;
struct _mdi *mdi = (struct _mdi *) handle;
unsigned long int real_samples_to_mix = 0;
unsigned long int data_pos;
signed long int premix, left_mix, right_mix;
signed long int vol_mul;
struct _note *note_data = NULL;
unsigned long int count;
struct _event *event = mdi->current_event;
signed long int *tmp_buffer;
signed long int *out_buffer;
int *tmp_buffer;
int *out_buffer;
int left_mix, right_mix;
_WM_Lock(&mdi->lock);
@ -3229,7 +3425,7 @@ static int WM_GetOutput_Linear(midi * handle, char * buffer,
} else {
mdi->mix_buffer_size = size / 2;
}
mdi->mix_buffer = (long*)realloc(mdi->mix_buffer, mdi->mix_buffer_size * sizeof(signed long int));
mdi->mix_buffer = (int*)realloc(mdi->mix_buffer, mdi->mix_buffer_size * sizeof(signed int));
}
tmp_buffer = mdi->mix_buffer;
@ -3269,196 +3465,7 @@ static int WM_GetOutput_Linear(midi * handle, char * buffer,
}
/* do mixing here */
count = real_samples_to_mix;
do {
note_data = mdi->note;
left_mix = right_mix = 0;
if (__builtin_expect((note_data != NULL), 1)) {
while (note_data) {
/*
* ===================
* resample the sample
* ===================
*/
data_pos = note_data->sample_pos >> FPBITS;
vol_mul = ((note_data->vol_lvl
* (note_data->env_level >> 12)) >> FPBITS);
premix = (note_data->sample->data[data_pos]
+ ((note_data->sample->data[data_pos + 1]
- note_data->sample->data[data_pos])
* (signed long int) (note_data->sample_pos
& FPMASK)>> FPBITS)) * vol_mul
/ 1024;
left_mix += premix
* mdi->channel[note_data->noteid >> 8].left_adjust;
right_mix += premix
* mdi->channel[note_data->noteid >> 8].right_adjust;
/*
* ========================
* sample position checking
* ========================
*/
note_data->sample_pos += note_data->sample_inc;
if (__builtin_expect(
(note_data->sample_pos > note_data->sample->loop_end),
0)) {
if (note_data->modes & SAMPLE_LOOP) {
note_data->sample_pos =
note_data->sample->loop_start
+ ((note_data->sample_pos
- note_data->sample->loop_start)
% note_data->sample->loop_size);
} else if (__builtin_expect(
(note_data->sample_pos
>= note_data->sample->data_length),
0)) {
if (__builtin_expect((note_data->replay == NULL), 1)) {
goto KILL_NOTE;
}
goto RESTART_NOTE;
}
}
if (__builtin_expect((note_data->env_inc == 0), 0)) {
note_data = note_data->next;
continue;
}
note_data->env_level += note_data->env_inc;
if (__builtin_expect((note_data->env_level > 4194304), 0)) {
note_data->env_level =
note_data->sample->env_target[note_data->env];
}
if (__builtin_expect(
((note_data->env_inc < 0)
&& (note_data->env_level
> note_data->sample->env_target[note_data->env]))
|| ((note_data->env_inc > 0)
&& (note_data->env_level
< note_data->sample->env_target[note_data->env])),
1)) {
note_data = note_data->next;
continue;
}
note_data->env_level =
note_data->sample->env_target[note_data->env];
switch (note_data->env) {
case 0:
#if 0
if (!(note_data->modes & SAMPLE_ENVELOPE)) {
note_data->env_inc = 0;
note_data = note_data->next;
continue;
}
#endif
break;
case 2:
if (note_data->modes & SAMPLE_SUSTAIN) {
note_data->env_inc = 0;
note_data = note_data->next;
continue;
} else if (note_data->modes & SAMPLE_CLAMPED) {
note_data->env = 5;
if (note_data->env_level
> note_data->sample->env_target[5]) {
note_data->env_inc =
-note_data->sample->env_rate[5];
} else {
note_data->env_inc =
note_data->sample->env_rate[5];
}
continue;
}
break;
case 5:
if (__builtin_expect((note_data->env_level == 0), 1)) {
goto KILL_NOTE;
}
/* sample release */
if (note_data->modes & SAMPLE_LOOP)
note_data->modes ^= SAMPLE_LOOP;
note_data->env_inc = 0;
note_data = note_data->next;
continue;
case 6:
if (__builtin_expect((note_data->replay != NULL), 1)) {
RESTART_NOTE: note_data->active = 0;
{
struct _note *prev_note = NULL;
struct _note *nte_array = mdi->note;
if (nte_array != note_data) {
do {
prev_note = nte_array;
nte_array = nte_array->next;
} while (nte_array != note_data);
}
if (prev_note) {
prev_note->next = note_data->replay;
} else {
mdi->note = note_data->replay;
}
note_data->replay->next = note_data->next;
note_data = note_data->replay;
note_data->active = 1;
}
} else {
KILL_NOTE: note_data->active = 0;
{
struct _note *prev_note = NULL;
struct _note *nte_array = mdi->note;
if (nte_array != note_data) {
do {
prev_note = nte_array;
nte_array = nte_array->next;
} while ((nte_array != note_data)
&& (nte_array));
}
if (prev_note) {
prev_note->next = note_data->next;
} else {
mdi->note = note_data->next;
}
note_data = note_data->next;
}
}
continue;
}
note_data->env++;
if (note_data->is_off == 1) {
do_note_off_extra(note_data);
}
if (note_data->env_level
> note_data->sample->env_target[note_data->env]) {
note_data->env_inc =
-note_data->sample->env_rate[note_data->env];
} else {
note_data->env_inc =
note_data->sample->env_rate[note_data->env];
}
note_data = note_data->next;
continue;
}
/*
* =========================
* mix the channels together
* =========================
*/
left_mix /= 1024;
right_mix /= 1024;
}
*tmp_buffer++ = left_mix;
*tmp_buffer++ = right_mix;
} while (--count);
tmp_buffer = WM_Mix_Linear(handle, tmp_buffer, real_samples_to_mix);
buffer_used += real_samples_to_mix * 4;
size -= (real_samples_to_mix << 2);
@ -3503,25 +3510,254 @@ static int WM_GetOutput_Linear(midi * handle, char * buffer,
return buffer_used;
}
static int *WM_Mix_Gauss(midi * handle, int * buffer, unsigned long int count)
{
struct _mdi *mdi = (struct _mdi *)handle;
unsigned long int data_pos;
signed int premix, left_mix, right_mix;
signed int vol_mul;
struct _note *note_data = NULL;
signed short int *sptr;
double y, xd;
double *gptr, *gend;
int left, right, temp_n;
int ii, jj;
do {
note_data = mdi->note;
left_mix = right_mix = 0;
if (__builtin_expect((note_data != NULL), 1)) {
while (note_data) {
/*
* ===================
* resample the sample
* ===================
*/
data_pos = note_data->sample_pos >> FPBITS;
vol_mul = ((note_data->vol_lvl
* (note_data->env_level >> 12)) >> FPBITS);
/* check to see if we're near one of the ends */
left = data_pos;
right = (note_data->sample->data_length >> FPBITS) - left
- 1;
temp_n = (right << 1) - 1;
if (temp_n <= 0)
temp_n = 1;
if (temp_n > (left << 1) + 1)
temp_n = (left << 1) + 1;
/* use Newton if we can't fill the window */
if (temp_n < gauss_n) {
xd = note_data->sample_pos & FPMASK;
xd /= (1L << FPBITS);
xd += temp_n >> 1;
y = 0;
sptr = note_data->sample->data
+ (note_data->sample_pos >> FPBITS)
- (temp_n >> 1);
for (ii = temp_n; ii;) {
for (jj = 0; jj <= ii; jj++)
y += sptr[jj] * newt_coeffs[ii][jj];
y *= xd - --ii;
}
y += *sptr;
} else { /* otherwise, use Gauss as usual */
y = 0;
gptr = &gauss_table[(note_data->sample_pos & FPMASK) *
(gauss_n + 1)];
gend = gptr + gauss_n;
sptr = note_data->sample->data
+ (note_data->sample_pos >> FPBITS)
- (gauss_n >> 1);
do {
y += *(sptr++) * *(gptr++);
} while (gptr <= gend);
}
premix = (long) (y * vol_mul / 1024);
left_mix += premix
* mdi->channel[note_data->noteid >> 8].left_adjust;
right_mix += premix
* mdi->channel[note_data->noteid >> 8].right_adjust;
/*
* ========================
* sample position checking
* ========================
*/
note_data->sample_pos += note_data->sample_inc;
if (__builtin_expect(
(note_data->sample_pos > note_data->sample->loop_end),
0)) {
if (note_data->modes & SAMPLE_LOOP) {
note_data->sample_pos =
note_data->sample->loop_start
+ ((note_data->sample_pos
- note_data->sample->loop_start)
% note_data->sample->loop_size);
} else if (__builtin_expect(
(note_data->sample_pos
>= note_data->sample->data_length),
0)) {
if (__builtin_expect((note_data->replay == NULL), 1)) {
goto KILL_NOTE;
}
goto RESTART_NOTE;
}
}
if (__builtin_expect((note_data->env_inc == 0), 0)) {
note_data = note_data->next;
continue;
}
note_data->env_level += note_data->env_inc;
if (__builtin_expect((note_data->env_level > 4194304), 0)) {
note_data->env_level =
note_data->sample->env_target[note_data->env];
}
if (__builtin_expect(
((note_data->env_inc < 0)
&& (note_data->env_level
> note_data->sample->env_target[note_data->env]))
|| ((note_data->env_inc > 0)
&& (note_data->env_level
< note_data->sample->env_target[note_data->env])),
1)) {
note_data = note_data->next;
continue;
}
note_data->env_level =
note_data->sample->env_target[note_data->env];
switch (note_data->env) {
case 0:
#if 0
if (!(note_data->modes & SAMPLE_ENVELOPE)) {
note_data->env_inc = 0;
note_data = note_data->next;
continue;
}
#endif
break;
case 2:
if (note_data->modes & SAMPLE_SUSTAIN) {
note_data->env_inc = 0;
note_data = note_data->next;
continue;
} else if (note_data->modes & SAMPLE_CLAMPED) {
note_data->env = 5;
if (note_data->env_level
> note_data->sample->env_target[5]) {
note_data->env_inc =
-note_data->sample->env_rate[5];
} else {
note_data->env_inc =
note_data->sample->env_rate[5];
}
continue;
}
break;
case 5:
if (__builtin_expect((note_data->env_level == 0), 1)) {
goto KILL_NOTE;
}
/* sample release */
if (note_data->modes & SAMPLE_LOOP)
note_data->modes ^= SAMPLE_LOOP;
note_data->env_inc = 0;
note_data = note_data->next;
continue;
case 6:
if (__builtin_expect((note_data->replay != NULL), 1)) {
RESTART_NOTE: note_data->active = 0;
{
struct _note *prev_note = NULL;
struct _note *nte_array = mdi->note;
if (nte_array != note_data) {
do {
prev_note = nte_array;
nte_array = nte_array->next;
} while (nte_array != note_data);
}
if (prev_note) {
prev_note->next = note_data->replay;
} else {
mdi->note = note_data->replay;
}
note_data->replay->next = note_data->next;
note_data = note_data->replay;
note_data->active = 1;
}
} else {
KILL_NOTE: note_data->active = 0;
{
struct _note *prev_note = NULL;
struct _note *nte_array = mdi->note;
if (nte_array != note_data) {
do {
prev_note = nte_array;
nte_array = nte_array->next;
} while ((nte_array != note_data)
&& (nte_array));
}
if (prev_note) {
prev_note->next = note_data->next;
} else {
mdi->note = note_data->next;
}
note_data = note_data->next;
}
}
continue;
}
note_data->env++;
if (note_data->is_off == 1) {
do_note_off_extra(note_data);
}
if (note_data->env_level
> note_data->sample->env_target[note_data->env]) {
note_data->env_inc =
-note_data->sample->env_rate[note_data->env];
} else {
note_data->env_inc =
note_data->sample->env_rate[note_data->env];
}
note_data = note_data->next;
continue;
}
/*
* =========================
* mix the channels together
* =========================
*/
left_mix /= 1024;
right_mix /= 1024;
}
*buffer++ = left_mix;
*buffer++ = right_mix;
} while (--count);
return buffer;
}
static int WM_GetOutput_Gauss(midi * handle, char * buffer,
unsigned long int size) {
unsigned long int buffer_used = 0;
unsigned long int i;
struct _mdi *mdi = (struct _mdi *) handle;
unsigned long int real_samples_to_mix = 0;
unsigned long int data_pos;
signed long int premix, left_mix, right_mix;
signed long int vol_mul;
struct _note *note_data = NULL;
unsigned long int count;
signed short int *sptr;
double y, xd;
double *gptr, *gend;
int left, right, temp_n;
int ii, jj;
struct _event *event = mdi->current_event;
signed long int *tmp_buffer;
signed long int *out_buffer;
signed int *tmp_buffer;
signed int *out_buffer;
signed int left_mix, right_mix;
_WM_Lock(&mdi->lock);
@ -3533,7 +3769,7 @@ static int WM_GetOutput_Gauss(midi * handle, char * buffer,
} else {
mdi->mix_buffer_size = size / 2;
}
mdi->mix_buffer = (long*)realloc(mdi->mix_buffer, mdi->mix_buffer_size * sizeof(signed long int));
mdi->mix_buffer = (int*)realloc(mdi->mix_buffer, mdi->mix_buffer_size * sizeof(signed int));
}
tmp_buffer = mdi->mix_buffer;
memset(tmp_buffer, 0, ((size / 2) * sizeof(signed long int)));
@ -3571,229 +3807,7 @@ static int WM_GetOutput_Gauss(midi * handle, char * buffer,
}
/* do mixing here */
count = real_samples_to_mix;
do {
note_data = mdi->note;
left_mix = right_mix = 0;
if (__builtin_expect((note_data != NULL), 1)) {
while (note_data) {
/*
* ===================
* resample the sample
* ===================
*/
data_pos = note_data->sample_pos >> FPBITS;
vol_mul = ((note_data->vol_lvl
* (note_data->env_level >> 12)) >> FPBITS);
/* check to see if we're near one of the ends */
left = data_pos;
right = (note_data->sample->data_length >> FPBITS) - left
- 1;
temp_n = (right << 1) - 1;
if (temp_n <= 0)
temp_n = 1;
if (temp_n > (left << 1) + 1)
temp_n = (left << 1) + 1;
/* use Newton if we can't fill the window */
if (temp_n < gauss_n) {
xd = note_data->sample_pos & FPMASK;
xd /= (1L << FPBITS);
xd += temp_n >> 1;
y = 0;
sptr = note_data->sample->data
+ (note_data->sample_pos >> FPBITS)
- (temp_n >> 1);
for (ii = temp_n; ii;) {
for (jj = 0; jj <= ii; jj++)
y += sptr[jj] * newt_coeffs[ii][jj];
y *= xd - --ii;
}
y += *sptr;
} else { /* otherwise, use Gauss as usual */
y = 0;
gptr = &gauss_table[(note_data->sample_pos & FPMASK) *
(gauss_n + 1)];
gend = gptr + gauss_n;
sptr = note_data->sample->data
+ (note_data->sample_pos >> FPBITS)
- (gauss_n >> 1);
do {
y += *(sptr++) * *(gptr++);
} while (gptr <= gend);
}
premix = (long) (y * vol_mul / 1024);
left_mix += premix
* mdi->channel[note_data->noteid >> 8].left_adjust;
right_mix += premix
* mdi->channel[note_data->noteid >> 8].right_adjust;
/*
* ========================
* sample position checking
* ========================
*/
note_data->sample_pos += note_data->sample_inc;
if (__builtin_expect(
(note_data->sample_pos > note_data->sample->loop_end),
0)) {
if (note_data->modes & SAMPLE_LOOP) {
note_data->sample_pos =
note_data->sample->loop_start
+ ((note_data->sample_pos
- note_data->sample->loop_start)
% note_data->sample->loop_size);
} else if (__builtin_expect(
(note_data->sample_pos
>= note_data->sample->data_length),
0)) {
if (__builtin_expect((note_data->replay == NULL), 1)) {
goto KILL_NOTE;
}
goto RESTART_NOTE;
}
}
if (__builtin_expect((note_data->env_inc == 0), 0)) {
note_data = note_data->next;
continue;
}
note_data->env_level += note_data->env_inc;
if (__builtin_expect((note_data->env_level > 4194304), 0)) {
note_data->env_level =
note_data->sample->env_target[note_data->env];
}
if (__builtin_expect(
((note_data->env_inc < 0)
&& (note_data->env_level
> note_data->sample->env_target[note_data->env]))
|| ((note_data->env_inc > 0)
&& (note_data->env_level
< note_data->sample->env_target[note_data->env])),
1)) {
note_data = note_data->next;
continue;
}
note_data->env_level =
note_data->sample->env_target[note_data->env];
switch (note_data->env) {
case 0:
#if 0
if (!(note_data->modes & SAMPLE_ENVELOPE)) {
note_data->env_inc = 0;
note_data = note_data->next;
continue;
}
#endif
break;
case 2:
if (note_data->modes & SAMPLE_SUSTAIN) {
note_data->env_inc = 0;
note_data = note_data->next;
continue;
} else if (note_data->modes & SAMPLE_CLAMPED) {
note_data->env = 5;
if (note_data->env_level
> note_data->sample->env_target[5]) {
note_data->env_inc =
-note_data->sample->env_rate[5];
} else {
note_data->env_inc =
note_data->sample->env_rate[5];
}
continue;
}
break;
case 5:
if (__builtin_expect((note_data->env_level == 0), 1)) {
goto KILL_NOTE;
}
/* sample release */
if (note_data->modes & SAMPLE_LOOP)
note_data->modes ^= SAMPLE_LOOP;
note_data->env_inc = 0;
note_data = note_data->next;
continue;
case 6:
if (__builtin_expect((note_data->replay != NULL), 1)) {
RESTART_NOTE: note_data->active = 0;
{
struct _note *prev_note = NULL;
struct _note *nte_array = mdi->note;
if (nte_array != note_data) {
do {
prev_note = nte_array;
nte_array = nte_array->next;
} while (nte_array != note_data);
}
if (prev_note) {
prev_note->next = note_data->replay;
} else {
mdi->note = note_data->replay;
}
note_data->replay->next = note_data->next;
note_data = note_data->replay;
note_data->active = 1;
}
} else {
KILL_NOTE: note_data->active = 0;
{
struct _note *prev_note = NULL;
struct _note *nte_array = mdi->note;
if (nte_array != note_data) {
do {
prev_note = nte_array;
nte_array = nte_array->next;
} while ((nte_array != note_data)
&& (nte_array));
}
if (prev_note) {
prev_note->next = note_data->next;
} else {
mdi->note = note_data->next;
}
note_data = note_data->next;
}
}
continue;
}
note_data->env++;
if (note_data->is_off == 1) {
do_note_off_extra(note_data);
}
if (note_data->env_level
> note_data->sample->env_target[note_data->env]) {
note_data->env_inc =
-note_data->sample->env_rate[note_data->env];
} else {
note_data->env_inc =
note_data->sample->env_rate[note_data->env];
}
note_data = note_data->next;
continue;
}
/*
* =========================
* mix the channels together
* =========================
*/
left_mix /= 1024;
right_mix /= 1024;
}
*tmp_buffer++ = left_mix;
*tmp_buffer++ = right_mix;
} while (--count);
tmp_buffer = WM_Mix_Gauss(handle, tmp_buffer, real_samples_to_mix);
buffer_used += real_samples_to_mix * 4;
size -= (real_samples_to_mix << 2);