Optimize capped sky rendering by writing 4 pixels at a time in 5 bands (solid, fade, texture, fade, solid)

This commit is contained in:
Magnus Norddahl 2016-12-04 13:57:54 +01:00 committed by Christoph Oelckers
parent 0cff443945
commit 0ed0c47a45

View file

@ -2201,59 +2201,126 @@ void R_DrawSingleSkyCol1(uint32_t solid_top, uint32_t solid_bottom)
void R_DrawSingleSkyCol4(uint32_t solid_top, uint32_t solid_bottom)
{
for (int col = 0; col < 4; col++)
uint8_t *dest = dc_dest;
int count = dc_count;
int pitch = dc_pitch;
const uint8_t *source0[4] = { bufplce[0], bufplce[1], bufplce[2], bufplce[3] };
int textureheight0 = bufheight[0];
const uint32_t *palette = (const uint32_t *)GPalette.BaseColors;
int32_t frac[4] = { (int32_t)vplce[0], (int32_t)vplce[1], (int32_t)vplce[2], (int32_t)vplce[3] };
int32_t fracstep[4] = { (int32_t)vince[0], (int32_t)vince[1], (int32_t)vince[2], (int32_t)vince[3] };
uint8_t output[4];
int start_fade = 2; // How fast it should fade out
int solid_top_r = RPART(solid_top);
int solid_top_g = GPART(solid_top);
int solid_top_b = BPART(solid_top);
int solid_bottom_r = RPART(solid_bottom);
int solid_bottom_g = GPART(solid_bottom);
int solid_bottom_b = BPART(solid_bottom);
uint32_t solid_top_fill = RGB32k.RGB[(solid_top_r >> 3)][(solid_top_g >> 3)][(solid_top_b >> 3)];
uint32_t solid_bottom_fill = RGB32k.RGB[(solid_bottom_r >> 3)][(solid_bottom_g >> 3)][(solid_bottom_b >> 3)];
solid_top_fill = (solid_top_fill << 24) | (solid_top_fill << 16) | (solid_top_fill << 8) | solid_top_fill;
solid_bottom_fill = (solid_bottom_fill << 24) | (solid_bottom_fill << 16) | (solid_bottom_fill << 8) | solid_bottom_fill;
// Find bands for top solid color, top fade, center textured, bottom fade, bottom solid color:
int fade_length = (1 << (24 - start_fade));
int start_fadetop_y = (-frac[0]) / fracstep[0];
int end_fadetop_y = (fade_length - frac[0]) / fracstep[0];
int start_fadebottom_y = ((2 << 24) - fade_length - frac[0]) / fracstep[0];
int end_fadebottom_y = ((2 << 24) - frac[0]) / fracstep[0];
for (int col = 1; col < 4; col++)
{
uint8_t *dest = dc_dest + col;
int count = dc_count;
int pitch = dc_pitch;
const uint8_t *source0 = bufplce[col];
int textureheight0 = bufheight[0];
start_fadetop_y = MIN(start_fadetop_y, (-frac[0]) / fracstep[0]);
end_fadetop_y = MAX(end_fadetop_y, (fade_length - frac[0]) / fracstep[0]);
start_fadebottom_y = MIN(start_fadebottom_y, ((2 << 24) - fade_length - frac[0]) / fracstep[0]);
end_fadebottom_y = MAX(end_fadebottom_y, ((2 << 24) - frac[0]) / fracstep[0]);
}
start_fadetop_y = clamp(start_fadetop_y, 0, count);
end_fadetop_y = clamp(end_fadetop_y, 0, count);
start_fadebottom_y = clamp(start_fadebottom_y, 0, count);
end_fadebottom_y = clamp(end_fadebottom_y, 0, count);
int32_t frac = vplce[col];
int32_t fracstep = vince[col];
// Top solid color:
for (int index = 0; index < start_fadetop_y; index++)
{
*((uint32_t*)dest) = solid_top_fill;
dest += pitch;
for (int col = 0; col < 4; col++)
frac[col] += fracstep[col];
}
int start_fade = 2; // How fast it should fade out
int solid_top_r = RPART(solid_top);
int solid_top_g = GPART(solid_top);
int solid_top_b = BPART(solid_top);
int solid_bottom_r = RPART(solid_bottom);
int solid_bottom_g = GPART(solid_bottom);
int solid_bottom_b = BPART(solid_bottom);
for (int index = 0; index < count; index++)
// Top fade:
for (int index = start_fadetop_y; index < end_fadetop_y; index++)
{
for (int col = 0; col < 4; col++)
{
uint32_t sample_index = (((((uint32_t)frac) << 8) >> FRACBITS) * textureheight0) >> FRACBITS;
uint8_t fg = source0[sample_index];
uint32_t sample_index = (((((uint32_t)frac[col]) << 8) >> FRACBITS) * textureheight0) >> FRACBITS;
uint8_t fg = source0[col][sample_index];
int alpha_top = MAX(MIN(frac >> (16 - start_fade), 256), 0);
int alpha_bottom = MAX(MIN(((2 << 24) - frac) >> (16 - start_fade), 256), 0);
uint32_t c = palette[fg];
int alpha_top = MAX(MIN(frac[col] >> (16 - start_fade), 256), 0);
int inv_alpha_top = 256 - alpha_top;
int c_red = RPART(c);
int c_green = GPART(c);
int c_blue = BPART(c);
c_red = (c_red * alpha_top + solid_top_r * inv_alpha_top) >> 8;
c_green = (c_green * alpha_top + solid_top_g * inv_alpha_top) >> 8;
c_blue = (c_blue * alpha_top + solid_top_b * inv_alpha_top) >> 8;
output[col] = RGB32k.RGB[(c_red >> 3)][(c_green >> 3)][(c_blue >> 3)];
if (alpha_top == 256 && alpha_bottom == 256)
{
*dest = fg;
}
else
{
int inv_alpha_top = 256 - alpha_top;
int inv_alpha_bottom = 256 - alpha_bottom;
const auto &c = GPalette.BaseColors[fg];
int c_red = c.r;
int c_green = c.g;
int c_blue = c.b;
c_red = (c_red * alpha_top + solid_top_r * inv_alpha_top) >> 8;
c_green = (c_green * alpha_top + solid_top_g * inv_alpha_top) >> 8;
c_blue = (c_blue * alpha_top + solid_top_b * inv_alpha_top) >> 8;
c_red = (c_red * alpha_bottom + solid_bottom_r * inv_alpha_bottom) >> 8;
c_green = (c_green * alpha_bottom + solid_bottom_g * inv_alpha_bottom) >> 8;
c_blue = (c_blue * alpha_bottom + solid_bottom_b * inv_alpha_bottom) >> 8;
*dest = RGB32k.RGB[(c_red >> 3)][(c_green >> 3)][(c_blue >> 3)];
}
frac += fracstep;
dest += pitch;
frac[col] += fracstep[col];
}
*((uint32_t*)dest) = *((uint32_t*)output);
dest += pitch;
}
// Textured center:
for (int index = end_fadetop_y; index < start_fadebottom_y; index++)
{
for (int col = 0; col < 4; col++)
{
uint32_t sample_index = (((((uint32_t)frac[col]) << 8) >> FRACBITS) * textureheight0) >> FRACBITS;
output[col] = source0[col][sample_index];
frac[col] += fracstep[col];
}
*((uint32_t*)dest) = *((uint32_t*)output);
dest += pitch;
}
// Fade bottom:
for (int index = start_fadebottom_y; index < end_fadebottom_y; index++)
{
for (int col = 0; col < 4; col++)
{
uint32_t sample_index = (((((uint32_t)frac[col]) << 8) >> FRACBITS) * textureheight0) >> FRACBITS;
uint8_t fg = source0[col][sample_index];
uint32_t c = palette[fg];
int alpha_bottom = MAX(MIN(((2 << 24) - frac[col]) >> (16 - start_fade), 256), 0);
int inv_alpha_bottom = 256 - alpha_bottom;
int c_red = RPART(c);
int c_green = GPART(c);
int c_blue = BPART(c);
c_red = (c_red * alpha_bottom + solid_bottom_r * inv_alpha_bottom) >> 8;
c_green = (c_green * alpha_bottom + solid_bottom_g * inv_alpha_bottom) >> 8;
c_blue = (c_blue * alpha_bottom + solid_bottom_b * inv_alpha_bottom) >> 8;
output[col] = RGB32k.RGB[(c_red >> 3)][(c_green >> 3)][(c_blue >> 3)];
frac[col] += fracstep[col];
}
*((uint32_t*)dest) = *((uint32_t*)output);
dest += pitch;
}
// Bottom solid color:
for (int index = end_fadebottom_y; index < count; index++)
{
*((uint32_t*)dest) = solid_bottom_fill;
dest += pitch;
}
}
@ -2321,66 +2388,146 @@ void R_DrawDoubleSkyCol1(uint32_t solid_top, uint32_t solid_bottom)
void R_DrawDoubleSkyCol4(uint32_t solid_top, uint32_t solid_bottom)
{
for (int col = 0; col < 4; col++)
uint8_t *dest = dc_dest;
int count = dc_count;
int pitch = dc_pitch;
const uint8_t *source0[4] = { bufplce[0], bufplce[1], bufplce[2], bufplce[3] };
const uint8_t *source1[4] = { bufplce2[0], bufplce2[1], bufplce2[2], bufplce2[3] };
int textureheight0 = bufheight[0];
uint32_t maxtextureheight1 = bufheight[1] - 1;
const uint32_t *palette = (const uint32_t *)GPalette.BaseColors;
int32_t frac[4] = { (int32_t)vplce[0], (int32_t)vplce[1], (int32_t)vplce[2], (int32_t)vplce[3] };
int32_t fracstep[4] = { (int32_t)vince[0], (int32_t)vince[1], (int32_t)vince[2], (int32_t)vince[3] };
uint8_t output[4];
int start_fade = 2; // How fast it should fade out
int solid_top_r = RPART(solid_top);
int solid_top_g = GPART(solid_top);
int solid_top_b = BPART(solid_top);
int solid_bottom_r = RPART(solid_bottom);
int solid_bottom_g = GPART(solid_bottom);
int solid_bottom_b = BPART(solid_bottom);
uint32_t solid_top_fill = RGB32k.RGB[(solid_top_r >> 3)][(solid_top_g >> 3)][(solid_top_b >> 3)];
uint32_t solid_bottom_fill = RGB32k.RGB[(solid_bottom_r >> 3)][(solid_bottom_g >> 3)][(solid_bottom_b >> 3)];
solid_top_fill = (solid_top_fill << 24) | (solid_top_fill << 16) | (solid_top_fill << 8) | solid_top_fill;
solid_bottom_fill = (solid_bottom_fill << 24) | (solid_bottom_fill << 16) | (solid_bottom_fill << 8) | solid_bottom_fill;
// Find bands for top solid color, top fade, center textured, bottom fade, bottom solid color:
int fade_length = (1 << (24 - start_fade));
int start_fadetop_y = (-frac[0]) / fracstep[0];
int end_fadetop_y = (fade_length - frac[0]) / fracstep[0];
int start_fadebottom_y = ((2 << 24) - fade_length - frac[0]) / fracstep[0];
int end_fadebottom_y = ((2 << 24) - frac[0]) / fracstep[0];
for (int col = 1; col < 4; col++)
{
uint8_t *dest = dc_dest + col;
int count = dc_count;
int pitch = dc_pitch;
const uint8_t *source0 = bufplce[col];
const uint8_t *source1 = bufplce2[col];
int textureheight0 = bufheight[0];
uint32_t maxtextureheight1 = bufheight[1] - 1;
start_fadetop_y = MIN(start_fadetop_y, (-frac[0]) / fracstep[0]);
end_fadetop_y = MAX(end_fadetop_y, (fade_length - frac[0]) / fracstep[0]);
start_fadebottom_y = MIN(start_fadebottom_y, ((2 << 24) - fade_length - frac[0]) / fracstep[0]);
end_fadebottom_y = MAX(end_fadebottom_y, ((2 << 24) - frac[0]) / fracstep[0]);
}
start_fadetop_y = clamp(start_fadetop_y, 0, count);
end_fadetop_y = clamp(end_fadetop_y, 0, count);
start_fadebottom_y = clamp(start_fadebottom_y, 0, count);
end_fadebottom_y = clamp(end_fadebottom_y, 0, count);
int32_t frac = vplce[col];
int32_t fracstep = vince[col];
// Top solid color:
for (int index = 0; index < start_fadetop_y; index++)
{
*((uint32_t*)dest) = solid_top_fill;
dest += pitch;
for (int col = 0; col < 4; col++)
frac[col] += fracstep[col];
}
int start_fade = 2; // How fast it should fade out
int solid_top_r = RPART(solid_top);
int solid_top_g = GPART(solid_top);
int solid_top_b = BPART(solid_top);
int solid_bottom_r = RPART(solid_bottom);
int solid_bottom_g = GPART(solid_bottom);
int solid_bottom_b = BPART(solid_bottom);
for (int index = 0; index < count; index++)
// Top fade:
for (int index = start_fadetop_y; index < end_fadetop_y; index++)
{
for (int col = 0; col < 4; col++)
{
uint32_t sample_index = (((((uint32_t)frac) << 8) >> FRACBITS) * textureheight0) >> FRACBITS;
uint8_t fg = source0[sample_index];
uint32_t sample_index = (((((uint32_t)frac[col]) << 8) >> FRACBITS) * textureheight0) >> FRACBITS;
uint8_t fg = source0[col][sample_index];
if (fg == 0)
{
uint32_t sample_index2 = MIN(sample_index, maxtextureheight1);
fg = source1[sample_index2];
fg = source1[col][sample_index2];
}
output[col] = fg;
int alpha_top = MAX(MIN(frac >> (16 - start_fade), 256), 0);
int alpha_bottom = MAX(MIN(((2 << 24) - frac) >> (16 - start_fade), 256), 0);
uint32_t c = palette[fg];
int alpha_top = MAX(MIN(frac[col] >> (16 - start_fade), 256), 0);
int inv_alpha_top = 256 - alpha_top;
int c_red = RPART(c);
int c_green = GPART(c);
int c_blue = BPART(c);
c_red = (c_red * alpha_top + solid_top_r * inv_alpha_top) >> 8;
c_green = (c_green * alpha_top + solid_top_g * inv_alpha_top) >> 8;
c_blue = (c_blue * alpha_top + solid_top_b * inv_alpha_top) >> 8;
output[col] = RGB32k.RGB[(c_red >> 3)][(c_green >> 3)][(c_blue >> 3)];
if (alpha_top == 256 && alpha_bottom == 256)
{
*dest = fg;
}
else
{
int inv_alpha_top = 256 - alpha_top;
int inv_alpha_bottom = 256 - alpha_bottom;
const auto &c = GPalette.BaseColors[fg];
int c_red = c.r;
int c_green = c.g;
int c_blue = c.b;
c_red = (c_red * alpha_top + solid_top_r * inv_alpha_top) >> 8;
c_green = (c_green * alpha_top + solid_top_g * inv_alpha_top) >> 8;
c_blue = (c_blue * alpha_top + solid_top_b * inv_alpha_top) >> 8;
c_red = (c_red * alpha_bottom + solid_bottom_r * inv_alpha_bottom) >> 8;
c_green = (c_green * alpha_bottom + solid_bottom_g * inv_alpha_bottom) >> 8;
c_blue = (c_blue * alpha_bottom + solid_bottom_b * inv_alpha_bottom) >> 8;
*dest = RGB32k.RGB[(c_red >> 3)][(c_green >> 3)][(c_blue >> 3)];
}
frac += fracstep;
dest += pitch;
frac[col] += fracstep[col];
}
*((uint32_t*)dest) = *((uint32_t*)output);
dest += pitch;
}
// Textured center:
for (int index = end_fadetop_y; index < start_fadebottom_y; index++)
{
for (int col = 0; col < 4; col++)
{
uint32_t sample_index = (((((uint32_t)frac[col]) << 8) >> FRACBITS) * textureheight0) >> FRACBITS;
uint8_t fg = source0[col][sample_index];
if (fg == 0)
{
uint32_t sample_index2 = MIN(sample_index, maxtextureheight1);
fg = source1[col][sample_index2];
}
output[col] = fg;
frac[col] += fracstep[col];
}
*((uint32_t*)dest) = *((uint32_t*)output);
dest += pitch;
}
// Fade bottom:
for (int index = start_fadebottom_y; index < end_fadebottom_y; index++)
{
for (int col = 0; col < 4; col++)
{
uint32_t sample_index = (((((uint32_t)frac[col]) << 8) >> FRACBITS) * textureheight0) >> FRACBITS;
uint8_t fg = source0[col][sample_index];
if (fg == 0)
{
uint32_t sample_index2 = MIN(sample_index, maxtextureheight1);
fg = source1[col][sample_index2];
}
output[col] = fg;
uint32_t c = palette[fg];
int alpha_bottom = MAX(MIN(((2 << 24) - frac[col]) >> (16 - start_fade), 256), 0);
int inv_alpha_bottom = 256 - alpha_bottom;
int c_red = RPART(c);
int c_green = GPART(c);
int c_blue = BPART(c);
c_red = (c_red * alpha_bottom + solid_bottom_r * inv_alpha_bottom) >> 8;
c_green = (c_green * alpha_bottom + solid_bottom_g * inv_alpha_bottom) >> 8;
c_blue = (c_blue * alpha_bottom + solid_bottom_b * inv_alpha_bottom) >> 8;
output[col] = RGB32k.RGB[(c_red >> 3)][(c_green >> 3)][(c_blue >> 3)];
frac[col] += fracstep[col];
}
*((uint32_t*)dest) = *((uint32_t*)output);
dest += pitch;
}
// Bottom solid color:
for (int index = end_fadebottom_y; index < count; index++)
{
*((uint32_t*)dest) = solid_bottom_fill;
dest += pitch;
}
}