qzdoom/libraries/glslang/spirv/SpvPostProcess.cpp

451 lines
19 KiB
C++
Raw Normal View History

//
// Copyright (C) 2018 Google, Inc.
//
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions
// are met:
//
// Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//
// Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following
// disclaimer in the documentation and/or other materials provided
// with the distribution.
//
// Neither the name of 3Dlabs Inc. Ltd. nor the names of its
// contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
// FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
// COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
// INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
// BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
// LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
// CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
// LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
// ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
// POSSIBILITY OF SUCH DAMAGE.
//
// Post-processing for SPIR-V IR, in internal form, not standard binary form.
//
#include <cassert>
#include <cstdlib>
#include <unordered_map>
#include <unordered_set>
#include <algorithm>
#include "SpvBuilder.h"
#include "spirv.hpp"
#include "GlslangToSpv.h"
#include "SpvBuilder.h"
namespace spv {
#include "GLSL.std.450.h"
#include "GLSL.ext.KHR.h"
#include "GLSL.ext.EXT.h"
#include "GLSL.ext.AMD.h"
#include "GLSL.ext.NV.h"
}
namespace spv {
#ifndef GLSLANG_WEB
// Hook to visit each operand type and result type of an instruction.
// Will be called multiple times for one instruction, once for each typed
// operand and the result.
void Builder::postProcessType(const Instruction& inst, Id typeId)
{
// Characterize the type being questioned
Id basicTypeOp = getMostBasicTypeClass(typeId);
int width = 0;
if (basicTypeOp == OpTypeFloat || basicTypeOp == OpTypeInt)
width = getScalarTypeWidth(typeId);
// Do opcode-specific checks
switch (inst.getOpCode()) {
case OpLoad:
case OpStore:
if (basicTypeOp == OpTypeStruct) {
if (containsType(typeId, OpTypeInt, 8))
addCapability(CapabilityInt8);
if (containsType(typeId, OpTypeInt, 16))
addCapability(CapabilityInt16);
if (containsType(typeId, OpTypeFloat, 16))
addCapability(CapabilityFloat16);
} else {
StorageClass storageClass = getStorageClass(inst.getIdOperand(0));
if (width == 8) {
switch (storageClass) {
case StorageClassPhysicalStorageBufferEXT:
case StorageClassUniform:
case StorageClassStorageBuffer:
case StorageClassPushConstant:
break;
default:
addCapability(CapabilityInt8);
break;
}
} else if (width == 16) {
switch (storageClass) {
case StorageClassPhysicalStorageBufferEXT:
case StorageClassUniform:
case StorageClassStorageBuffer:
case StorageClassPushConstant:
case StorageClassInput:
case StorageClassOutput:
break;
default:
if (basicTypeOp == OpTypeInt)
addCapability(CapabilityInt16);
if (basicTypeOp == OpTypeFloat)
addCapability(CapabilityFloat16);
break;
}
}
}
break;
case OpAccessChain:
case OpPtrAccessChain:
case OpCopyObject:
break;
case OpFConvert:
case OpSConvert:
case OpUConvert:
// Look for any 8/16-bit storage capabilities. If there are none, assume that
// the convert instruction requires the Float16/Int8/16 capability.
if (containsType(typeId, OpTypeFloat, 16) || containsType(typeId, OpTypeInt, 16)) {
bool foundStorage = false;
for (auto it = capabilities.begin(); it != capabilities.end(); ++it) {
spv::Capability cap = *it;
if (cap == spv::CapabilityStorageInputOutput16 ||
cap == spv::CapabilityStoragePushConstant16 ||
cap == spv::CapabilityStorageUniformBufferBlock16 ||
cap == spv::CapabilityStorageUniform16) {
foundStorage = true;
break;
}
}
if (!foundStorage) {
if (containsType(typeId, OpTypeFloat, 16))
addCapability(CapabilityFloat16);
if (containsType(typeId, OpTypeInt, 16))
addCapability(CapabilityInt16);
}
}
if (containsType(typeId, OpTypeInt, 8)) {
bool foundStorage = false;
for (auto it = capabilities.begin(); it != capabilities.end(); ++it) {
spv::Capability cap = *it;
if (cap == spv::CapabilityStoragePushConstant8 ||
cap == spv::CapabilityUniformAndStorageBuffer8BitAccess ||
cap == spv::CapabilityStorageBuffer8BitAccess) {
foundStorage = true;
break;
}
}
if (!foundStorage) {
addCapability(CapabilityInt8);
}
}
break;
case OpExtInst:
switch (inst.getImmediateOperand(1)) {
case GLSLstd450Frexp:
case GLSLstd450FrexpStruct:
if (getSpvVersion() < glslang::EShTargetSpv_1_3 && containsType(typeId, OpTypeInt, 16))
addExtension(spv::E_SPV_AMD_gpu_shader_int16);
break;
case GLSLstd450InterpolateAtCentroid:
case GLSLstd450InterpolateAtSample:
case GLSLstd450InterpolateAtOffset:
if (getSpvVersion() < glslang::EShTargetSpv_1_3 && containsType(typeId, OpTypeFloat, 16))
addExtension(spv::E_SPV_AMD_gpu_shader_half_float);
break;
default:
break;
}
break;
default:
if (basicTypeOp == OpTypeFloat && width == 16)
addCapability(CapabilityFloat16);
if (basicTypeOp == OpTypeInt && width == 16)
addCapability(CapabilityInt16);
if (basicTypeOp == OpTypeInt && width == 8)
addCapability(CapabilityInt8);
break;
}
}
// Called for each instruction that resides in a block.
void Builder::postProcess(Instruction& inst)
{
// Add capabilities based simply on the opcode.
switch (inst.getOpCode()) {
case OpExtInst:
switch (inst.getImmediateOperand(1)) {
case GLSLstd450InterpolateAtCentroid:
case GLSLstd450InterpolateAtSample:
case GLSLstd450InterpolateAtOffset:
addCapability(CapabilityInterpolationFunction);
break;
default:
break;
}
break;
case OpDPdxFine:
case OpDPdyFine:
case OpFwidthFine:
case OpDPdxCoarse:
case OpDPdyCoarse:
case OpFwidthCoarse:
addCapability(CapabilityDerivativeControl);
break;
case OpImageQueryLod:
case OpImageQuerySize:
case OpImageQuerySizeLod:
case OpImageQuerySamples:
case OpImageQueryLevels:
addCapability(CapabilityImageQuery);
break;
case OpGroupNonUniformPartitionNV:
addExtension(E_SPV_NV_shader_subgroup_partitioned);
addCapability(CapabilityGroupNonUniformPartitionedNV);
break;
case OpLoad:
case OpStore:
{
// For any load/store to a PhysicalStorageBufferEXT, walk the accesschain
// index list to compute the misalignment. The pre-existing alignment value
// (set via Builder::AccessChain::alignment) only accounts for the base of
// the reference type and any scalar component selection in the accesschain,
// and this function computes the rest from the SPIR-V Offset decorations.
Instruction *accessChain = module.getInstruction(inst.getIdOperand(0));
if (accessChain->getOpCode() == OpAccessChain) {
Instruction *base = module.getInstruction(accessChain->getIdOperand(0));
// Get the type of the base of the access chain. It must be a pointer type.
Id typeId = base->getTypeId();
Instruction *type = module.getInstruction(typeId);
assert(type->getOpCode() == OpTypePointer);
if (type->getImmediateOperand(0) != StorageClassPhysicalStorageBufferEXT) {
break;
}
// Get the pointee type.
typeId = type->getIdOperand(1);
type = module.getInstruction(typeId);
// Walk the index list for the access chain. For each index, find any
// misalignment that can apply when accessing the member/element via
// Offset/ArrayStride/MatrixStride decorations, and bitwise OR them all
// together.
int alignment = 0;
for (int i = 1; i < accessChain->getNumOperands(); ++i) {
Instruction *idx = module.getInstruction(accessChain->getIdOperand(i));
if (type->getOpCode() == OpTypeStruct) {
assert(idx->getOpCode() == OpConstant);
unsigned int c = idx->getImmediateOperand(0);
const auto function = [&](const std::unique_ptr<Instruction>& decoration) {
if (decoration.get()->getOpCode() == OpMemberDecorate &&
decoration.get()->getIdOperand(0) == typeId &&
decoration.get()->getImmediateOperand(1) == c &&
(decoration.get()->getImmediateOperand(2) == DecorationOffset ||
decoration.get()->getImmediateOperand(2) == DecorationMatrixStride)) {
alignment |= decoration.get()->getImmediateOperand(3);
}
};
std::for_each(decorations.begin(), decorations.end(), function);
// get the next member type
typeId = type->getIdOperand(c);
type = module.getInstruction(typeId);
} else if (type->getOpCode() == OpTypeArray ||
type->getOpCode() == OpTypeRuntimeArray) {
const auto function = [&](const std::unique_ptr<Instruction>& decoration) {
if (decoration.get()->getOpCode() == OpDecorate &&
decoration.get()->getIdOperand(0) == typeId &&
decoration.get()->getImmediateOperand(1) == DecorationArrayStride) {
alignment |= decoration.get()->getImmediateOperand(2);
}
};
std::for_each(decorations.begin(), decorations.end(), function);
// Get the element type
typeId = type->getIdOperand(0);
type = module.getInstruction(typeId);
} else {
// Once we get to any non-aggregate type, we're done.
break;
}
}
assert(inst.getNumOperands() >= 3);
unsigned int memoryAccess = inst.getImmediateOperand((inst.getOpCode() == OpStore) ? 2 : 1);
assert(memoryAccess & MemoryAccessAlignedMask);
static_cast<void>(memoryAccess);
// Compute the index of the alignment operand.
int alignmentIdx = 2;
if (inst.getOpCode() == OpStore)
alignmentIdx++;
// Merge new and old (mis)alignment
alignment |= inst.getImmediateOperand(alignmentIdx);
// Pick the LSB
alignment = alignment & ~(alignment & (alignment-1));
// update the Aligned operand
inst.setImmediateOperand(alignmentIdx, alignment);
}
break;
}
default:
break;
}
// Checks based on type
if (inst.getTypeId() != NoType)
postProcessType(inst, inst.getTypeId());
for (int op = 0; op < inst.getNumOperands(); ++op) {
if (inst.isIdOperand(op)) {
// In blocks, these are always result ids, but we are relying on
// getTypeId() to return NoType for things like OpLabel.
if (getTypeId(inst.getIdOperand(op)) != NoType)
postProcessType(inst, getTypeId(inst.getIdOperand(op)));
}
}
}
#endif
// comment in header
void Builder::postProcessCFG()
{
// reachableBlocks is the set of blockss reached via control flow, or which are
// unreachable continue targert or unreachable merge.
std::unordered_set<const Block*> reachableBlocks;
std::unordered_map<Block*, Block*> headerForUnreachableContinue;
std::unordered_set<Block*> unreachableMerges;
std::unordered_set<Id> unreachableDefinitions;
// Collect IDs defined in unreachable blocks. For each function, label the
// reachable blocks first. Then for each unreachable block, collect the
// result IDs of the instructions in it.
for (auto fi = module.getFunctions().cbegin(); fi != module.getFunctions().cend(); fi++) {
Function* f = *fi;
Block* entry = f->getEntryBlock();
inReadableOrder(entry,
[&reachableBlocks, &unreachableMerges, &headerForUnreachableContinue]
(Block* b, ReachReason why, Block* header) {
reachableBlocks.insert(b);
if (why == ReachDeadContinue) headerForUnreachableContinue[b] = header;
if (why == ReachDeadMerge) unreachableMerges.insert(b);
});
for (auto bi = f->getBlocks().cbegin(); bi != f->getBlocks().cend(); bi++) {
Block* b = *bi;
if (unreachableMerges.count(b) != 0 || headerForUnreachableContinue.count(b) != 0) {
auto ii = b->getInstructions().cbegin();
++ii; // Keep potential decorations on the label.
for (; ii != b->getInstructions().cend(); ++ii)
unreachableDefinitions.insert(ii->get()->getResultId());
} else if (reachableBlocks.count(b) == 0) {
// The normal case for unreachable code. All definitions are considered dead.
for (auto ii = b->getInstructions().cbegin(); ii != b->getInstructions().cend(); ++ii)
unreachableDefinitions.insert(ii->get()->getResultId());
}
}
}
// Modify unreachable merge blocks and unreachable continue targets.
// Delete their contents.
for (auto mergeIter = unreachableMerges.begin(); mergeIter != unreachableMerges.end(); ++mergeIter) {
(*mergeIter)->rewriteAsCanonicalUnreachableMerge();
}
for (auto continueIter = headerForUnreachableContinue.begin();
continueIter != headerForUnreachableContinue.end();
++continueIter) {
Block* continue_target = continueIter->first;
Block* header = continueIter->second;
continue_target->rewriteAsCanonicalUnreachableContinue(header);
}
// Remove unneeded decorations, for unreachable instructions
decorations.erase(std::remove_if(decorations.begin(), decorations.end(),
[&unreachableDefinitions](std::unique_ptr<Instruction>& I) -> bool {
Id decoration_id = I.get()->getIdOperand(0);
return unreachableDefinitions.count(decoration_id) != 0;
}),
decorations.end());
}
#ifndef GLSLANG_WEB
// comment in header
void Builder::postProcessFeatures() {
// Add per-instruction capabilities, extensions, etc.,
// Look for any 8/16 bit type in physical storage buffer class, and set the
// appropriate capability. This happens in createSpvVariable for other storage
// classes, but there isn't always a variable for physical storage buffer.
for (int t = 0; t < (int)groupedTypes[OpTypePointer].size(); ++t) {
Instruction* type = groupedTypes[OpTypePointer][t];
if (type->getImmediateOperand(0) == (unsigned)StorageClassPhysicalStorageBufferEXT) {
if (containsType(type->getIdOperand(1), OpTypeInt, 8)) {
addIncorporatedExtension(spv::E_SPV_KHR_8bit_storage, spv::Spv_1_5);
addCapability(spv::CapabilityStorageBuffer8BitAccess);
}
if (containsType(type->getIdOperand(1), OpTypeInt, 16) ||
containsType(type->getIdOperand(1), OpTypeFloat, 16)) {
addIncorporatedExtension(spv::E_SPV_KHR_16bit_storage, spv::Spv_1_3);
addCapability(spv::CapabilityStorageBuffer16BitAccess);
}
}
}
// process all block-contained instructions
for (auto fi = module.getFunctions().cbegin(); fi != module.getFunctions().cend(); fi++) {
Function* f = *fi;
for (auto bi = f->getBlocks().cbegin(); bi != f->getBlocks().cend(); bi++) {
Block* b = *bi;
for (auto ii = b->getInstructions().cbegin(); ii != b->getInstructions().cend(); ii++)
postProcess(*ii->get());
// For all local variables that contain pointers to PhysicalStorageBufferEXT, check whether
// there is an existing restrict/aliased decoration. If we don't find one, add Aliased as the
// default.
for (auto vi = b->getLocalVariables().cbegin(); vi != b->getLocalVariables().cend(); vi++) {
const Instruction& inst = *vi->get();
Id resultId = inst.getResultId();
if (containsPhysicalStorageBufferOrArray(getDerefTypeId(resultId))) {
bool foundDecoration = false;
const auto function = [&](const std::unique_ptr<Instruction>& decoration) {
if (decoration.get()->getIdOperand(0) == resultId &&
decoration.get()->getOpCode() == OpDecorate &&
(decoration.get()->getImmediateOperand(1) == spv::DecorationAliasedPointerEXT ||
decoration.get()->getImmediateOperand(1) == spv::DecorationRestrictPointerEXT)) {
foundDecoration = true;
}
};
std::for_each(decorations.begin(), decorations.end(), function);
if (!foundDecoration) {
addDecoration(resultId, spv::DecorationAliasedPointerEXT);
}
}
}
}
}
}
#endif
// comment in header
void Builder::postProcess() {
postProcessCFG();
#ifndef GLSLANG_WEB
postProcessFeatures();
#endif
}
}; // end spv namespace