qzdoom-gpl/src/zscript/vmframe.cpp
2012-07-17 03:35:03 +00:00

416 lines
9.8 KiB
C++

#include <new>
#include "vm.h"
IMPLEMENT_CLASS(VMException)
IMPLEMENT_ABSTRACT_CLASS(VMFunction)
IMPLEMENT_CLASS(VMScriptFunction)
IMPLEMENT_CLASS(VMNativeFunction)
VMScriptFunction::VMScriptFunction(FName name)
{
Native = false;
Name = name;
Code = NULL;
KonstD = NULL;
KonstF = NULL;
KonstS = NULL;
KonstA = NULL;
ExtraSpace = 0;
CodeSize = 0;
NumRegD = 0;
NumRegF = 0;
NumRegS = 0;
NumRegA = 0;
NumKonstD = 0;
NumKonstF = 0;
NumKonstS = 0;
NumKonstA = 0;
MaxParam = 0;
NumArgs = 0;
}
VMScriptFunction::~VMScriptFunction()
{
if (Code != NULL)
{
if (KonstS != NULL)
{
for (int i = 0; i < NumKonstS; ++i)
{
KonstS[i].~FString();
}
}
M_Free(Code);
}
}
void VMScriptFunction::Alloc(int numops, int numkonstd, int numkonstf, int numkonsts, int numkonsta)
{
assert(Code == NULL);
assert(numops > 0);
assert(numkonstd >= 0 && numkonstd <= 255);
assert(numkonstf >= 0 && numkonstf <= 255);
assert(numkonsts >= 0 && numkonsts <= 255);
assert(numkonsta >= 0 && numkonsta <= 255);
void *mem = M_Malloc(numops * sizeof(VMOP) +
numkonstd * sizeof(int) +
numkonstf * sizeof(double) +
numkonsts * sizeof(FString) +
numkonsta * (sizeof(FVoidObj) + 1));
Code = (VMOP *)mem;
mem = (void *)((VMOP *)mem + numops);
if (numkonstd > 0)
{
KonstD = (int *)mem;
mem = (void *)((int *)mem + numkonstd);
}
else
{
KonstD = NULL;
}
if (numkonstf > 0)
{
KonstF = (double *)mem;
mem = (void *)((double *)mem + numkonstf);
}
else
{
KonstF = NULL;
}
if (numkonsts > 0)
{
KonstS = (FString *)mem;
for (int i = 0; i < numkonsts; ++i)
{
::new(&KonstS[i]) FString;
}
mem = (void *)((FString *)mem + numkonsts);
}
else
{
KonstS = NULL;
}
if (numkonsta > 0)
{
KonstA = (FVoidObj *)mem;
}
else
{
KonstA = NULL;
}
CodeSize = numops;
NumKonstD = numkonstd;
NumKonstF = numkonstf;
NumKonstS = numkonsts;
NumKonstA = numkonsta;
}
size_t VMScriptFunction::PropagateMark()
{
if (KonstA != NULL)
{
FVoidObj *konsta = KonstA;
VM_UBYTE *atag = KonstATags();
for (int count = NumKonstA; count > 0; --count)
{
if (*atag++ == ATAG_OBJECT)
{
GC::Mark(konsta->o);
}
konsta++;
}
}
return NumKonstA * sizeof(void *) + Super::PropagateMark();
}
//===========================================================================
//
// VMFrame :: InitRegS
//
// Initialize the string registers of a newly-allocated VMFrame.
//
//===========================================================================
void VMFrame::InitRegS()
{
FString *regs = GetRegS();
for (int i = 0; i < NumRegS; ++i)
{
::new(&regs[i]) FString;
}
}
//===========================================================================
//
// VMFrameStack - Constructor
//
//===========================================================================
VMFrameStack::VMFrameStack()
{
Blocks = NULL;
UnusedBlocks = NULL;
}
//===========================================================================
//
// VMFrameStack - Destructor
//
//===========================================================================
VMFrameStack::~VMFrameStack()
{
while (PopFrame() != NULL)
{ }
if (Blocks != NULL)
{
BlockHeader *block, *next;
for (block = Blocks; block != NULL; block = next)
{
next = block->NextBlock;
delete[] (VM_UBYTE *)block;
}
}
if (UnusedBlocks != NULL)
{
BlockHeader *block, *next;
for (block = UnusedBlocks; block != NULL; block = next)
{
next = block->NextBlock;
delete[] (VM_UBYTE *)block;
}
}
Blocks = NULL;
UnusedBlocks = NULL;
}
//===========================================================================
//
// VMFrameStack :: AllocFrame
//
// Allocates a frame from the stack with the desired number of registers.
//
//===========================================================================
VMFrame *VMFrameStack::AllocFrame(int numregd, int numregf, int numregs, int numrega)
{
assert((unsigned)numregd < 255);
assert((unsigned)numregf < 255);
assert((unsigned)numregs < 255);
assert((unsigned)numrega < 255);
// To keep the arguments to this function simpler, it assumes that every
// register might be used as a parameter for a single call.
int numparam = numregd + numregf + numregs + numrega;
int size = VMFrame::FrameSize(numregd, numregf, numregs, numrega, numparam, 0);
VMFrame *frame = Alloc(size);
frame->NumRegD = numregd;
frame->NumRegF = numregf;
frame->NumRegS = numregs;
frame->NumRegA = numrega;
frame->MaxParam = numparam;
frame->InitRegS();
return frame;
}
//===========================================================================
//
// VMFrameStack :: AllocFrame
//
// Allocates a frame from the stack suitable for calling a particular
// function.
//
//===========================================================================
VMFrame *VMFrameStack::AllocFrame(VMScriptFunction *func)
{
int size = VMFrame::FrameSize(func->NumRegD, func->NumRegF, func->NumRegS, func->NumRegA,
func->MaxParam, func->ExtraSpace);
VMFrame *frame = Alloc(size);
frame->Func = func;
frame->NumRegD = func->NumRegD;
frame->NumRegF = func->NumRegF;
frame->NumRegS = func->NumRegS;
frame->NumRegA = func->NumRegA;
frame->MaxParam = func->MaxParam;
frame->Func = func;
frame->InitRegS();
return frame;
}
//===========================================================================
//
// VMFrameStack :: Alloc
//
// Allocates space for a frame. Its size will be rounded up to a multiple
// of 16 bytes.
//
//===========================================================================
VMFrame *VMFrameStack::Alloc(int size)
{
BlockHeader *block;
VMFrame *frame, *parent;
size = (size + 15) & ~15;
block = Blocks;
if (block != NULL)
{
parent = block->LastFrame;
}
else
{
parent = NULL;
}
if (block == NULL || ((VM_UBYTE *)block + block->BlockSize) < (block->FreeSpace + size))
{ // Not enough space. Allocate a new block.
int blocksize = ((sizeof(BlockHeader) + 15) & ~15) + size;
BlockHeader **blockp;
if (blocksize < BLOCK_SIZE)
{
blocksize = BLOCK_SIZE;
}
for (blockp = &UnusedBlocks, block = *blockp; block != NULL; block = block->NextBlock)
{
if (block->BlockSize >= blocksize)
{
break;
}
}
if (block != NULL)
{
*blockp = block->NextBlock;
}
else
{
block = (BlockHeader *)new VM_UBYTE[blocksize];
block->BlockSize = blocksize;
}
block->FreeSpace = (VM_UBYTE *)block + ((sizeof(BlockHeader) + 15) & ~15);
block->LastFrame = NULL;
block->NextBlock = Blocks;
Blocks = block;
}
frame = (VMFrame *)block->FreeSpace;
memset(frame, 0, size);
frame->ParentFrame = parent;
block->FreeSpace += size;
block->LastFrame = frame;
return frame;
}
//===========================================================================
//
// VMFrameStack :: PopFrame
//
// Pops the top frame off the stack, returning a pointer to the new top
// frame.
//
//===========================================================================
VMFrame *VMFrameStack::PopFrame()
{
if (Blocks == NULL)
{
return NULL;
}
VMFrame *frame = Blocks->LastFrame;
if (frame == NULL)
{
return NULL;
}
// Free any string registers this frame had.
FString *regs = frame->GetRegS();
for (int i = frame->NumRegS; i != 0; --i)
{
(regs++)->~FString();
}
// Free any parameters this frame left behind.
VMValue *param = frame->GetParam();
for (int i = frame->NumParam; i != 0; --i)
{
(param++)->~VMValue();
}
VMFrame *parent = frame->ParentFrame;
if (parent == NULL)
{
// Popping the last frame off the stack.
if (Blocks != NULL)
{
assert(Blocks->NextBlock == NULL);
Blocks->LastFrame = NULL;
Blocks->FreeSpace = (VM_UBYTE *)Blocks + ((sizeof(BlockHeader) + 15) & ~15);
}
return NULL;
}
if ((VM_UBYTE *)parent < (VM_UBYTE *)Blocks || (VM_UBYTE *)parent >= (VM_UBYTE *)Blocks + Blocks->BlockSize)
{ // Parent frame is in a different block, so move this one to the unused list.
BlockHeader *next = Blocks->NextBlock;
assert(next != NULL);
assert((VM_UBYTE *)parent >= (VM_UBYTE *)next && (VM_UBYTE *)parent < (VM_UBYTE *)next + next->BlockSize);
Blocks->NextBlock = UnusedBlocks;
UnusedBlocks = Blocks;
Blocks = next;
}
else
{
Blocks->LastFrame = parent;
Blocks->FreeSpace = (VM_UBYTE *)frame;
}
return parent;
}
//===========================================================================
//
// VMFrameStack :: Call
//
// Calls a function, either native or scripted. If an exception occurs while
// executing, the stack is cleaned up. If trap is non-NULL, it is set to the
// VMException that was caught and the return value is negative. Otherwise,
// any caught exceptions will be rethrown. Under normal termination, the
// return value is the number of results from the function.
//
//===========================================================================
int VMFrameStack::Call(VMFunction *func, VMValue *params, int numparams, VMReturn *results, int numresults, VMException **trap)
{
bool allocated = false;
try
{
if (func->Native)
{
return static_cast<VMNativeFunction *>(func)->NativeCall(this, params, numparams, results, numresults);
}
else
{
AllocFrame(static_cast<VMScriptFunction *>(func));
allocated = true;
VMFillParams(params, TopFrame(), numparams);
int numret = VMExec(this, static_cast<VMScriptFunction *>(func)->Code, results, numresults);
PopFrame();
return numret;
}
}
catch (VMException *exception)
{
if (allocated)
{
PopFrame();
}
if (trap != NULL)
{
*trap = exception;
return -1;
}
throw;
}
catch (...)
{
if (allocated)
{
PopFrame();
}
throw;
}
}