qzdoom-gpl/src/farchive.cpp
Randy Heit c54f2f66fc - Unlimited the monster pain sounds in Hexen after playing as the Cleric a
while and killing centaurs with the flechette.
- Fixed: Moving to an old level in a hub caused the old player's inventory to
  spawn owned by the current player (but still hanging off the old player), so
  the game would hang when trying to delete it.
- Modified re2c so that it doesn't add a date to the file it generates. Thus,
  if it regenerates a file during a full rebuild, SVN won't see it as a change.
  Also updated it to 0.10.5.
- Fixed: SC_GetString() did not properly terminate sc_String when the last
  token in the file had no white space after it. Since I could not actually
  find the problem (it works fine in debug mode and I saw no logic errors),
  I decided to take this opportunity to reimplement it using an re2c-generated
  scanner. Now it's 1.6x faster than before and correctness is easier to
  verify.
- Fixed: FMODSoundRenderer::Shutdown() also needs to reset NumChannels.
- Added back the Manifest to zdoom.rc for non-VC8 Windows compilers.
- Fixed MinGW compilation again. Now it uses the same method as Makefile.linux
  to find all the source files so that it doesn't need to be manually updated
  each time source files are added or removed.
- Added the SVN revision number to the version string. A new tool is used to
  obtain this information from the svnversion command and write it into a
  header file. If you don't have the svn command line tools installed or didn't
  check it out from the repository, you can still build. I added some rules for
  this to Makefile.linux, and I assume they work because they do for
  Makefile.mingw.
- Fixed: MIDISong2 did not delete MusHeader in its destructor.


SVN r200 (trunk)
2006-06-20 20:30:39 +00:00

1516 lines
33 KiB
C++

/*
** farchive.cpp
** Implements an archiver for DObject serialization.
**
**---------------------------------------------------------------------------
** Copyright 1998-2006 Randy Heit
** All rights reserved.
**
** Redistribution and use in source and binary forms, with or without
** modification, are permitted provided that the following conditions
** are met:
**
** 1. Redistributions of source code must retain the above copyright
** notice, this list of conditions and the following disclaimer.
** 2. Redistributions in binary form must reproduce the above copyright
** notice, this list of conditions and the following disclaimer in the
** documentation and/or other materials provided with the distribution.
** 3. The name of the author may not be used to endorse or promote products
** derived from this software without specific prior written permission.
**
** THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
** IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
** OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
** IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
** INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
** NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
** DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
** THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
** (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
** THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
**---------------------------------------------------------------------------
**
** The structure of the archive file generated is influenced heavily by the
** description of the MFC archive format published somewhere in the MSDN
** library.
**
** Two major shortcomings of the format I use are that there is no version
** control and no support for storing the non-default portions of objects.
** The latter would allow for easier extension of objects in future
** releases even without a versioning system.
*/
#include <stddef.h>
#include <string.h>
#include <zlib.h>
#include <malloc.h>
#include "doomtype.h"
#include "farchive.h"
#include "m_alloc.h"
#include "m_swap.h"
#include "m_crc32.h"
#include "cmdlib.h"
#include "i_system.h"
#include "c_cvars.h"
#include "c_dispatch.h"
#include "d_player.h"
#include "dobject.h"
#include "r_local.h"
// These are special tokens found in the data stream of an archive.
// Whenever a new object is encountered, it gets created using new and
// is then asked to serialize itself before processing of the previous
// object continues. This can result in some very deep recursion if
// you aren't careful about how you organize your data.
#define NEW_OBJ ((BYTE)1) // Data for a new object follows
#define NEW_CLS_OBJ ((BYTE)2) // Data for a new class and object follows
#define OLD_OBJ ((BYTE)3) // Reference to an old object follows
#define NULL_OBJ ((BYTE)4) // Load as NULL
#define M1_OBJ ((BYTE)44) // Load as (DObject*)-1
#define NEW_PLYR_OBJ ((BYTE)5) // Data for a new player follows
#define NEW_PLYR_CLS_OBJ ((BYTE)6) // Data for a new class and player follows
#define NEW_NAME ((BYTE)27) // A new name follows
#define OLD_NAME ((BYTE)28) // Reference to an old name follows
#define NIL_NAME ((BYTE)33) // Load as NULL
#define NEW_SPRITE ((BYTE)11) // A new sprite name follows
#define OLD_SPRITE ((BYTE)12) // Reference to an old sprite name follows
#ifdef WORDS_BIGENDIAN
static inline WORD SWAP_WORD(x) { return x; }
static inline DWORD SWAP_DWORD(x) { return x; }
static inline QWORD SWAP_QWORD(x) { return x; }
static inline void SWAP_FLOAT(x) { }
static inline void SWAP_DOUBLE(double &dst, double src) { dst = src; }
#else
#ifdef _MSC_VER
static inline WORD SWAP_WORD(WORD x) { return _byteswap_ushort(x); }
static inline DWORD SWAP_DWORD(DWORD x) { return _byteswap_ulong(x); }
static inline QWORD SWAP_QWORD(QWORD x) { return _byteswap_uint64(x); }
static inline void SWAP_DOUBLE(double &dst, double &src)
{
union twiddle { QWORD q; double d; } *tdst = (twiddle *)&dst, *tsrc = (twiddle *)&src;
tdst->q = _byteswap_uint64(tsrc->q);
}
#else
static inline WORD SWAP_WORD(WORD x) { return (((x)<<8) | ((x)>>8)); }
static inline DWORD SWAP_DWORD(DWORD x) { return x = (((x)>>24) | (((x)>>8)&0xff00) | ((x)<<8)&0xff0000 | ((x)<<24)); }
static inline QWORD SWAP_QWORD(QWORD x)
{
union { QWORD q; DWORD d[2]; } t, u;
t.q = x;
u.d[0] = SWAP_DWORD(t.d[1]);
u.d[1] = SWAP_DWORD(t.d[0]);
return u.q;
}
static inline void SWAP_DOUBLE(double &dst, double &src)
{
union twiddle { double f; DWORD d[2]; } *tdst = (twiddle *)&dst, *tsrc = (twiddle *)&src;
DWORD t;
t = tsrc->d[0];
tdst->d[0] = SWAP_DWORD(tsrc->d[1]);
tdst->d[1] = SWAP_DWORD(t);
}
#endif
static inline void SWAP_FLOAT(float &x)
{
union twiddle { DWORD i; float f; } *t = (twiddle *)&x;
t->i = SWAP_DWORD(t->i);
}
#endif
// Output buffer size for compression; need some extra space.
// I assume the description in zlib.h is accurate.
#define OUT_LEN(a) ((a) + (a) / 1000 + 12)
void FCompressedFile::BeEmpty ()
{
m_Pos = 0;
m_BufferSize = 0;
m_MaxBufferSize = 0;
m_Buffer = NULL;
m_File = NULL;
m_NoCompress = false;
m_Mode = ENotOpen;
}
static const char LZOSig[4] = { 'F', 'L', 'Z', 'O' };
static const char ZSig[4] = { 'F', 'L', 'Z', 'L' };
FCompressedFile::FCompressedFile ()
{
BeEmpty ();
}
FCompressedFile::FCompressedFile (const char *name, EOpenMode mode, bool dontCompress)
{
BeEmpty ();
Open (name, mode);
m_NoCompress = dontCompress;
}
FCompressedFile::FCompressedFile (FILE *file, EOpenMode mode, bool dontCompress, bool postopen)
{
BeEmpty ();
m_Mode = mode;
m_File = file;
m_NoCompress = dontCompress;
if (postopen)
{
PostOpen ();
}
}
FCompressedFile::~FCompressedFile ()
{
Close ();
}
bool FCompressedFile::Open (const char *name, EOpenMode mode)
{
Close ();
if (name == NULL)
return false;
m_Mode = mode;
m_File = fopen (name, mode == EReading ? "rb" : "wb");
PostOpen ();
return !!m_File;
}
void FCompressedFile::PostOpen ()
{
if (m_File && m_Mode == EReading)
{
char sig[4];
fread (sig, 4, 1, m_File);
if (sig[0] != ZSig[0] || sig[1] != ZSig[1] || sig[2] != ZSig[2] || sig[3] != ZSig[3])
{
fclose (m_File);
m_File = NULL;
if (sig[0] == LZOSig[0] && sig[1] == LZOSig[1] && sig[2] == LZOSig[2] && sig[3] == LZOSig[3])
{
Printf ("Compressed files from older ZDooms are not supported.\n");
}
return;
}
else
{
DWORD sizes[2];
fread (sizes, sizeof(DWORD), 2, m_File);
sizes[0] = SWAP_DWORD (sizes[0]);
sizes[1] = SWAP_DWORD (sizes[1]);
unsigned int len = sizes[0] == 0 ? sizes[1] : sizes[0];
m_Buffer = (byte *)M_Malloc (len+8);
fread (m_Buffer+8, len, 1, m_File);
sizes[0] = SWAP_DWORD (sizes[0]);
sizes[1] = SWAP_DWORD (sizes[1]);
((DWORD *)m_Buffer)[0] = sizes[0];
((DWORD *)m_Buffer)[1] = sizes[1];
Explode ();
}
}
}
void FCompressedFile::Close ()
{
if (m_File)
{
if (m_Mode == EWriting)
{
Implode ();
fwrite (ZSig, 4, 1, m_File);
fwrite (m_Buffer, m_BufferSize + 8, 1, m_File);
}
fclose (m_File);
m_File = NULL;
}
if (m_Buffer)
free (m_Buffer);
BeEmpty ();
}
void FCompressedFile::Flush ()
{
}
FFile::EOpenMode FCompressedFile::Mode () const
{
return m_Mode;
}
bool FCompressedFile::IsOpen () const
{
return !!m_File;
}
FFile &FCompressedFile::Write (const void *mem, unsigned int len)
{
if (m_Mode == EWriting)
{
if (m_Pos + len > m_MaxBufferSize)
{
do
{
m_MaxBufferSize = m_MaxBufferSize ? m_MaxBufferSize * 2 : 16384;
}
while (m_Pos + len > m_MaxBufferSize);
m_Buffer = (byte *)M_Realloc (m_Buffer, m_MaxBufferSize);
}
if (len == 1)
m_Buffer[m_Pos] = *(BYTE *)mem;
else
memcpy (m_Buffer + m_Pos, mem, len);
m_Pos += len;
if (m_Pos > m_BufferSize)
m_BufferSize = m_Pos;
}
else
{
I_Error ("Tried to write to reading cfile");
}
return *this;
}
FFile &FCompressedFile::Read (void *mem, unsigned int len)
{
if (m_Mode == EReading)
{
if (m_Pos + len > m_BufferSize)
{
I_Error ("Attempt to read past end of cfile");
}
if (len == 1)
*(BYTE *)mem = m_Buffer[m_Pos];
else
memcpy (mem, m_Buffer + m_Pos, len);
m_Pos += len;
}
else
{
I_Error ("Tried to read from writing cfile");
}
return *this;
}
unsigned int FCompressedFile::Tell () const
{
return m_Pos;
}
FFile &FCompressedFile::Seek (int pos, ESeekPos ofs)
{
if (ofs == ESeekRelative)
pos += m_Pos;
else if (ofs == ESeekEnd)
pos = m_BufferSize - pos;
if (pos < 0)
m_Pos = 0;
else if ((unsigned)pos > m_BufferSize)
m_Pos = m_BufferSize;
else
m_Pos = pos;
return *this;
}
CVAR (Bool, nofilecompression, false, CVAR_ARCHIVE|CVAR_GLOBALCONFIG)
void FCompressedFile::Implode ()
{
uLong outlen;
uLong len = m_BufferSize;
Byte *compressed = NULL;
byte *oldbuf = m_Buffer;
int r;
if (!nofilecompression && !m_NoCompress)
{
outlen = OUT_LEN(len);
do
{
compressed = new Bytef[outlen];
r = compress (compressed, &outlen, m_Buffer, len);
if (r == Z_BUF_ERROR)
{
delete[] compressed;
outlen += 1024;
}
} while (r == Z_BUF_ERROR);
// If the data could not be compressed, store it as-is.
if (r != Z_OK || outlen >= len)
{
DPrintf ("cfile could not be compressed\n");
outlen = 0;
}
else
{
DPrintf ("cfile shrank from %lu to %lu bytes\n", len, outlen);
}
}
else
{
outlen = 0;
}
m_MaxBufferSize = m_BufferSize = ((outlen == 0) ? len : outlen);
m_Buffer = (BYTE *)M_Malloc (m_BufferSize + 8);
m_Pos = 0;
DWORD *lens = (DWORD *)(m_Buffer);
lens[0] = BigLong((unsigned int)outlen);
lens[1] = BigLong((unsigned int)len);
if (outlen == 0)
memcpy (m_Buffer + 8, oldbuf, len);
else
memcpy (m_Buffer + 8, compressed, outlen);
if (compressed)
delete[] compressed;
free (oldbuf);
}
void FCompressedFile::Explode ()
{
uLong expandsize, cprlen;
unsigned char *expand;
if (m_Buffer)
{
unsigned int *ints = (unsigned int *)(m_Buffer);
cprlen = BigLong(ints[0]);
expandsize = BigLong(ints[1]);
expand = (unsigned char *)M_Malloc (expandsize);
if (cprlen)
{
int r;
uLong newlen;
newlen = expandsize;
r = uncompress (expand, &newlen, m_Buffer + 8, cprlen);
if (r != Z_OK || newlen != expandsize)
{
free (expand);
I_Error ("Could not decompress cfile");
}
}
else
{
memcpy (expand, m_Buffer + 8, expandsize);
}
if (FreeOnExplode ())
free (m_Buffer);
m_Buffer = expand;
m_BufferSize = expandsize;
}
}
FCompressedMemFile::FCompressedMemFile ()
{
m_SourceFromMem = false;
m_ImplodedBuffer = NULL;
}
/*
FCompressedMemFile::FCompressedMemFile (const char *name, EOpenMode mode)
: FCompressedFile (name, mode)
{
m_SourceFromMem = false;
m_ImplodedBuffer = NULL;
}
*/
FCompressedMemFile::~FCompressedMemFile ()
{
if (m_ImplodedBuffer != NULL)
{
free (m_ImplodedBuffer);
}
}
bool FCompressedMemFile::Open (const char *name, EOpenMode mode)
{
if (mode == EWriting)
{
if (name)
{
I_Error ("FCompressedMemFile cannot write to disk");
}
else
{
return Open ();
}
}
else
{
bool res = FCompressedFile::Open (name, EReading);
if (res)
{
fclose (m_File);
m_File = NULL;
}
return res;
}
return false;
}
bool FCompressedMemFile::Open (void *memblock)
{
Close ();
m_Mode = EReading;
m_Buffer = (BYTE *)memblock;
m_SourceFromMem = true;
Explode ();
m_SourceFromMem = false;
return !!m_Buffer;
}
bool FCompressedMemFile::Open ()
{
Close ();
m_Mode = EWriting;
m_BufferSize = 0;
m_MaxBufferSize = 16384;
m_Buffer = (unsigned char *)M_Malloc (16384);
m_Pos = 0;
return true;
}
bool FCompressedMemFile::Reopen ()
{
if (m_Buffer == NULL && m_ImplodedBuffer)
{
m_Mode = EReading;
m_Buffer = m_ImplodedBuffer;
m_SourceFromMem = true;
Explode ();
m_SourceFromMem = false;
return true;
}
return false;
}
void FCompressedMemFile::Close ()
{
if (m_Mode == EWriting)
{
Implode ();
m_ImplodedBuffer = m_Buffer;
m_Buffer = NULL;
}
}
void FCompressedMemFile::Serialize (FArchive &arc)
{
if (arc.IsStoring ())
{
if (m_ImplodedBuffer == NULL)
{
I_Error ("FCompressedMemFile must be compressed before storing");
}
arc.Write (ZSig, 4);
DWORD sizes[2];
sizes[0] = SWAP_DWORD (((DWORD *)m_ImplodedBuffer)[0]);
sizes[1] = SWAP_DWORD (((DWORD *)m_ImplodedBuffer)[1]);
arc.Write (m_ImplodedBuffer, (sizes[0] ? sizes[0] : sizes[1])+8);
}
else
{
Close ();
m_Mode = EReading;
char sig[4];
DWORD sizes[2] = { 0, 0 };
arc.Read (sig, 4);
if (sig[0] != ZSig[0] || sig[1] != ZSig[1] || sig[2] != ZSig[2] || sig[3] != ZSig[3])
I_Error ("Expected to extract a compressed file");
arc << sizes[0] << sizes[1];
DWORD len = sizes[0] == 0 ? sizes[1] : sizes[0];
m_Buffer = (BYTE *)M_Malloc (len+8);
((DWORD *)m_Buffer)[0] = SWAP_DWORD(sizes[0]);
((DWORD *)m_Buffer)[1] = SWAP_DWORD(sizes[1]);
arc.Read (m_Buffer+8, len);
m_ImplodedBuffer = m_Buffer;
m_Buffer = NULL;
m_Mode = EWriting;
}
}
bool FCompressedMemFile::IsOpen () const
{
return !!m_Buffer;
}
FPNGChunkFile::FPNGChunkFile (FILE *file, DWORD id)
: FCompressedFile (file, EWriting, true, false), m_ChunkID (id)
{
}
FPNGChunkFile::FPNGChunkFile (FILE *file, DWORD id, size_t chunklen)
: FCompressedFile (file, EReading, true, false), m_ChunkID (id)
{
m_Buffer = (byte *)M_Malloc (chunklen);
m_BufferSize = (unsigned int)chunklen;
fread (m_Buffer, chunklen, 1, m_File);
// Skip the CRC for now. Maybe later it will be used.
fseek (m_File, 4, SEEK_CUR);
}
// Unlike FCompressedFile::Close, m_File is left open
void FPNGChunkFile::Close ()
{
DWORD data[2];
DWORD crc;
if (m_File)
{
if (m_Mode == EWriting)
{
crc = CalcCRC32 ((BYTE *)&m_ChunkID, 4);
crc = AddCRC32 (crc, (BYTE *)m_Buffer, m_BufferSize);
data[0] = BigLong(m_BufferSize);
data[1] = m_ChunkID;
fwrite (data, 8, 1, m_File);
fwrite (m_Buffer, m_BufferSize, 1, m_File);
crc = SWAP_DWORD (crc);
fwrite (&crc, 4, 1, m_File);
}
m_File = NULL;
}
FCompressedFile::Close ();
}
FPNGChunkArchive::FPNGChunkArchive (FILE *file, DWORD id)
: FArchive (), Chunk (file, id)
{
AttachToFile (Chunk);
}
FPNGChunkArchive::FPNGChunkArchive (FILE *file, DWORD id, size_t len)
: FArchive (), Chunk (file, id, len)
{
AttachToFile (Chunk);
}
FPNGChunkArchive::~FPNGChunkArchive ()
{
// Close before FArchive's destructor, because Chunk will be
// destroyed before the FArchive is destroyed.
Close ();
}
//============================================
//
// FArchive
//
//============================================
FArchive::FArchive ()
{
}
FArchive::FArchive (FFile &file)
{
AttachToFile (file);
}
void FArchive::AttachToFile (FFile &file)
{
unsigned int i;
m_HubTravel = false;
m_File = &file;
m_MaxObjectCount = m_ObjectCount = 0;
m_ObjectMap = NULL;
if (file.Mode() == FFile::EReading)
{
m_Loading = true;
m_Storing = false;
}
else
{
m_Loading = false;
m_Storing = true;
}
m_Persistent = file.IsPersistent();
m_TypeMap = NULL;
m_TypeMap = new TypeMap[PClass::m_Types.Size()];
for (i = 0; i < PClass::m_Types.Size(); i++)
{
m_TypeMap[i].toArchive = TypeMap::NO_INDEX;
m_TypeMap[i].toCurrent = NULL;
}
m_ClassCount = 0;
for (i = 0; i < EObjectHashSize; i++)
{
m_ObjectHash[i] = ~0;
m_NameHash[i] = NameMap::NO_INDEX;
}
m_NumSprites = 0;
m_SpriteMap = new int[sprites.Size()];
for (size_t s = 0; s < sprites.Size(); ++s)
{
m_SpriteMap[s] = -1;
}
}
FArchive::~FArchive ()
{
Close ();
if (m_TypeMap)
delete[] m_TypeMap;
if (m_ObjectMap)
free (m_ObjectMap);
if (m_SpriteMap)
delete[] m_SpriteMap;
}
void FArchive::Write (const void *mem, unsigned int len)
{
m_File->Write (mem, len);
}
void FArchive::Read (void *mem, unsigned int len)
{
m_File->Read (mem, len);
}
void FArchive::Close ()
{
if (m_File)
{
m_File->Close ();
m_File = NULL;
DPrintf ("Processed %ld objects\n", m_ObjectCount);
}
}
void FArchive::WriteCount (DWORD count)
{
BYTE out;
do
{
out = count & 0x7f;
if (count >= 0x80)
out |= 0x80;
Write (&out, sizeof(BYTE));
count >>= 7;
} while (count);
}
DWORD FArchive::ReadCount ()
{
BYTE in;
DWORD count = 0;
int ofs = 0;
do
{
Read (&in, sizeof(BYTE));
count |= (in & 0x7f) << ofs;
ofs += 7;
} while (in & 0x80);
return count;
}
void FArchive::WriteName (const char *name)
{
BYTE id;
if (name == NULL)
{
id = NIL_NAME;
Write (&id, 1);
}
else
{
DWORD index = FindName (name);
if (index != NameMap::NO_INDEX)
{
id = OLD_NAME;
Write (&id, 1);
WriteCount (index);
}
else
{
AddName (name);
id = NEW_NAME;
Write (&id, 1);
WriteString (name);
}
}
}
const char *FArchive::ReadName ()
{
BYTE id;
operator<< (id);
if (id == NIL_NAME)
{
return NULL;
}
else if (id == OLD_NAME)
{
DWORD index = ReadCount ();
if (index >= m_Names.Size())
{
I_Error ("Name %lu has not been read yet\n", index);
}
return &m_NameStorage[m_Names[index].StringStart];
}
else if (id == NEW_NAME)
{
DWORD index;
DWORD size = ReadCount ();
char *str;
index = (DWORD)m_NameStorage.Reserve (size);
str = &m_NameStorage[index];
Read (str, size-1);
str[size-1] = 0;
AddName (index);
return str;
}
else
{
I_Error ("Expected a name but got something else\n");
return NULL;
}
}
void FArchive::WriteString (const char *str)
{
if (str == NULL)
{
WriteCount (0);
}
else
{
DWORD size = (DWORD)(strlen (str) + 1);
WriteCount (size);
Write (str, size - 1);
}
}
FArchive &FArchive::operator<< (char *&str)
{
if (m_Storing)
{
WriteString (str);
}
else
{
DWORD size = ReadCount ();
char *str2;
if (size == 0)
{
str2 = NULL;
}
else
{
str2 = new char[size];
size--;
Read (str2, size);
str2[size] = 0;
ReplaceString ((char **)&str, str2);
}
if (str)
{
delete[] str;
}
str = str2;
}
return *this;
}
FArchive &FArchive::operator<< (FString &str)
{
if (m_Storing)
{
WriteString (str.GetChars());
}
else
{
DWORD size = ReadCount();
if (size == 0)
{
str = "";
}
else
{
char *str2 = (char *)alloca(size*sizeof(char));
size--;
Read (str2, size);
str2[size] = 0;
str = str2;
}
}
return *this;
}
FArchive &FArchive::operator<< (BYTE &c)
{
if (m_Storing)
Write (&c, sizeof(BYTE));
else
Read (&c, sizeof(BYTE));
return *this;
}
FArchive &FArchive::operator<< (WORD &w)
{
if (m_Storing)
{
WORD temp = SWAP_WORD(w);
Write (&temp, sizeof(WORD));
}
else
{
Read (&w, sizeof(WORD));
w = SWAP_WORD(w);
}
return *this;
}
FArchive &FArchive::operator<< (DWORD &w)
{
if (m_Storing)
{
DWORD temp = SWAP_DWORD(w);
Write (&temp, sizeof(DWORD));
}
else
{
Read (&w, sizeof(DWORD));
w = SWAP_DWORD(w);
}
return *this;
}
FArchive &FArchive::operator<< (QWORD &w)
{
if (m_Storing)
{
QWORD temp = SWAP_QWORD(w);
Write (&temp, sizeof(QWORD));
}
else
{
Read (&w, sizeof(QWORD));
w = SWAP_QWORD(w);
}
return *this;
}
FArchive &FArchive::operator<< (float &w)
{
if (m_Storing)
{
float temp = w;
SWAP_FLOAT(temp);
Write (&temp, sizeof(float));
}
else
{
Read (&w, sizeof(float));
SWAP_FLOAT(w);
}
return *this;
}
FArchive &FArchive::operator<< (double &w)
{
if (m_Storing)
{
double temp;
SWAP_DOUBLE(temp,w);
Write (&temp, sizeof(double));
}
else
{
Read (&w, sizeof(double));
SWAP_DOUBLE(w,w);
}
return *this;
}
FArchive &FArchive::operator<< (FName &n)
{ // In an archive, a "name" is a string that might be stored multiple times,
// so it is only stored once. It is still treated as a normal string. In the
// rest of the game, a name is a unique identifier for a number.
if (m_Storing)
{
WriteName (n.GetChars());
}
else
{
n = FName(ReadName());
}
return *this;
}
FArchive &FArchive::SerializePointer (void *ptrbase, BYTE **ptr, DWORD elemSize)
{
DWORD w;
if (m_Storing)
{
if (*(void **)ptr)
{
w = DWORD(((size_t)*ptr - (size_t)ptrbase) / elemSize);
}
else
{
w = ~0u;
}
WriteCount (w);
}
else
{
w = ReadCount ();
if (w != ~0u)
{
*(void **)ptr = (byte *)ptrbase + w * elemSize;
}
else
{
*(void **)ptr = NULL;
}
}
return *this;
}
FArchive &FArchive::SerializeObject (DObject *&object, PClass *type)
{
if (IsStoring ())
return WriteObject (object);
else
return ReadObject (object, type);
}
FArchive &FArchive::WriteObject (DObject *obj)
{
player_t *player;
BYTE id[2];
if (obj == NULL)
{
id[0] = NULL_OBJ;
Write (id, 1);
}
else if (obj == (DObject*)~0)
{
id[0] = M1_OBJ;
Write (id, 1);
}
else
{
const PClass *type = RUNTIME_TYPE(obj);
if (type == RUNTIME_CLASS(DObject))
{
//I_Error ("Tried to save an instance of DObject.\n"
// "This should not happen.\n");
id[0] = NULL_OBJ;
Write (id, 1);
}
else if (m_TypeMap[type->ClassIndex].toArchive == TypeMap::NO_INDEX)
{
// No instances of this class have been written out yet.
// Write out the class, then write out the object. If this
// is an actor controlled by a player, make note of that
// so that it can be overridden when moving around in a hub.
if (obj->IsKindOf (RUNTIME_CLASS (AActor)) &&
(player = static_cast<AActor *>(obj)->player) &&
player->mo == obj)
{
id[0] = NEW_PLYR_CLS_OBJ;
id[1] = (BYTE)(player - players);
Write (id, 2);
}
else
{
id[0] = NEW_CLS_OBJ;
Write (id, 1);
}
WriteClass (type);
// Printf ("Make class %s (%u)\n", type->Name, m_File->Tell());
MapObject (obj);
obj->Serialize (*this);
obj->CheckIfSerialized ();
}
else
{
// An instance of this class has already been saved. If
// this object has already been written, save a reference
// to the saved object. Otherwise, save a reference to the
// class, then save the object. Again, if this is a player-
// controlled actor, remember that.
DWORD index = FindObjectIndex (obj);
if (index == TypeMap::NO_INDEX)
{
if (obj->IsKindOf (RUNTIME_CLASS (AActor)) &&
(player = static_cast<AActor *>(obj)->player) &&
player->mo == obj)
{
id[0] = NEW_PLYR_OBJ;
id[1] = (BYTE)(player - players);
Write (id, 2);
}
else
{
id[0] = NEW_OBJ;
Write (id, 1);
}
WriteCount (m_TypeMap[type->ClassIndex].toArchive);
// Printf ("Reuse class %s (%u)\n", type->Name, m_File->Tell());
MapObject (obj);
obj->Serialize (*this);
obj->CheckIfSerialized ();
}
else
{
id[0] = OLD_OBJ;
Write (id, 1);
WriteCount (index);
}
}
}
return *this;
}
FArchive &FArchive::ReadObject (DObject* &obj, PClass *wanttype)
{
BYTE objHead;
const PClass *type;
BYTE playerNum;
DWORD index;
operator<< (objHead);
switch (objHead)
{
case NULL_OBJ:
obj = NULL;
break;
case M1_OBJ:
obj = (DObject *)~0;
break;
case OLD_OBJ:
index = ReadCount ();
if (index >= m_ObjectCount)
{
I_Error ("Object reference too high (%lu; max is %lu)\n", index, m_ObjectCount);
}
obj = (DObject *)m_ObjectMap[index].object;
break;
case NEW_PLYR_CLS_OBJ:
operator<< (playerNum);
if (m_HubTravel)
{
// If travelling inside a hub, use the existing player actor
type = ReadClass (wanttype);
// Printf ("New player class: %s (%u)\n", type->Name, m_File->Tell());
obj = players[playerNum].mo;
// But also create a new one so that we can get past the one
// stored in the archive.
AActor *tempobj = static_cast<AActor *>(type->CreateNew ());
MapObject (obj != NULL ? obj : tempobj);
tempobj->Serialize (*this);
tempobj->CheckIfSerialized ();
// If this player is not present anymore, keep the new body
// around just so that the load will succeed.
if (obj != NULL)
{
// When the temporary player's inventory items were loaded,
// they became owned by the real player. Undo that now.
for (AInventory *item = tempobj->Inventory;
item != NULL; item = item->Inventory)
{
item->Owner = tempobj;
}
tempobj->Destroy ();
}
else
{
obj = tempobj;
players[playerNum].mo = static_cast<APlayerPawn *>(obj);
}
break;
}
/* fallthrough when not travelling to a previous level */
case NEW_CLS_OBJ:
type = ReadClass (wanttype);
// Printf ("New class: %s (%u)\n", type->Name, m_File->Tell());
obj = type->CreateNew ();
MapObject (obj);
obj->Serialize (*this);
obj->CheckIfSerialized ();
break;
case NEW_PLYR_OBJ:
operator<< (playerNum);
if (m_HubTravel)
{
type = ReadStoredClass (wanttype);
// Printf ("Use player class: %s (%u)\n", type->Name, m_File->Tell());
obj = players[playerNum].mo;
AActor *tempobj = static_cast<AActor *>(type->CreateNew ());
MapObject (obj != NULL ? obj : tempobj);
tempobj->Serialize (*this);
tempobj->CheckIfSerialized ();
if (obj != NULL)
{
for (AInventory *item = tempobj->Inventory;
item != NULL; item = item->Inventory)
{
item->Owner = tempobj;
}
tempobj->Destroy ();
}
else
{
obj = tempobj;
players[playerNum].mo = static_cast<APlayerPawn *>(obj);
}
break;
}
/* fallthrough when not travelling to a previous level */
case NEW_OBJ:
type = ReadStoredClass (wanttype);
// Printf ("Use class: %s (%u)\n", type->Name, m_File->Tell());
obj = type->CreateNew ();
MapObject (obj);
obj->Serialize (*this);
obj->CheckIfSerialized ();
break;
default:
I_Error ("Unknown object code (%d) in archive\n", objHead);
}
return *this;
}
void FArchive::WriteSprite (int spritenum)
{
BYTE id;
if ((unsigned)spritenum >= (unsigned)sprites.Size())
{
spritenum = 0;
}
if (m_SpriteMap[spritenum] < 0)
{
m_SpriteMap[spritenum] = (int)(m_NumSprites++);
id = NEW_SPRITE;
Write (&id, 1);
Write (sprites[spritenum].name, 4);
// Write the current sprite number as a hint, because
// these will only change between different versions.
WriteCount (spritenum);
}
else
{
id = OLD_SPRITE;
Write (&id, 1);
WriteCount (m_SpriteMap[spritenum]);
}
}
int FArchive::ReadSprite ()
{
BYTE id;
Read (&id, 1);
if (id == OLD_SPRITE)
{
DWORD index = ReadCount ();
if (index >= m_NumSprites)
{
I_Error ("Sprite %lu has not been read yet\n", index);
}
return m_SpriteMap[index];
}
else if (id == NEW_SPRITE)
{
DWORD name;
DWORD hint;
Read (&name, 4);
hint = ReadCount ();
if (hint >= NumStdSprites || *(DWORD *)&sprites[hint].name != name)
{
for (hint = NumStdSprites; hint-- != 0; )
{
if (*(DWORD *)&sprites[hint].name == name)
{
break;
}
}
if (hint >= sprites.Size())
{ // Don't know this sprite, so just use the first one
hint = 0;
}
}
m_SpriteMap[m_NumSprites++] = hint;
return hint;
}
else
{
I_Error ("Expected a sprite but got something else\n");
return 0;
}
}
DWORD FArchive::AddName (const char *name)
{
DWORD index;
unsigned int hash = MakeKey (name) % EObjectHashSize;
index = FindName (name, hash);
if (index == NameMap::NO_INDEX)
{
DWORD namelen = (DWORD)(strlen (name) + 1);
DWORD strpos = (DWORD)m_NameStorage.Reserve (namelen);
NameMap mapper = { strpos, (DWORD)m_NameHash[hash] };
memcpy (&m_NameStorage[strpos], name, namelen);
m_NameHash[hash] = index = (DWORD)m_Names.Push (mapper);
}
return index;
}
DWORD FArchive::AddName (unsigned int start)
{
DWORD hash = MakeKey (&m_NameStorage[start]) % EObjectHashSize;
NameMap mapper = { (DWORD)start, (DWORD)m_NameHash[hash] };
return (DWORD)(m_NameHash[hash] = m_Names.Push (mapper));
}
DWORD FArchive::FindName (const char *name) const
{
return FindName (name, MakeKey (name) % EObjectHashSize);
}
DWORD FArchive::FindName (const char *name, unsigned int bucket) const
{
unsigned int map = m_NameHash[bucket];
while (map != NameMap::NO_INDEX)
{
const NameMap *mapping = &m_Names[map];
if (strcmp (name, &m_NameStorage[mapping->StringStart]) == 0)
{
return (DWORD)map;
}
map = mapping->HashNext;
}
return (DWORD)map;
}
DWORD FArchive::WriteClass (const PClass *info)
{
if (m_ClassCount >= PClass::m_Types.Size())
{
I_Error ("Too many unique classes have been written.\nOnly %u were registered\n",
PClass::m_Types.Size());
}
if (m_TypeMap[info->ClassIndex].toArchive != TypeMap::NO_INDEX)
{
I_Error ("Attempt to write '%s' twice.\n", info->TypeName.GetChars());
}
m_TypeMap[info->ClassIndex].toArchive = m_ClassCount;
m_TypeMap[m_ClassCount].toCurrent = info;
WriteString (info->TypeName.GetChars());
return m_ClassCount++;
}
const PClass *FArchive::ReadClass ()
{
struct String {
String() { val = NULL; }
~String() { if (val) delete[] val; }
char *val;
} typeName;
if (m_ClassCount >= PClass::m_Types.Size())
{
I_Error ("Too many unique classes have been read.\nOnly %u were registered\n",
PClass::m_Types.Size());
}
operator<< (typeName.val);
FName zaname(typeName.val, true);
if (zaname != NAME_None)
{
for (unsigned int i = 0; i < PClass::m_Types.Size(); i++)
{
if (PClass::m_Types[i]->TypeName == zaname)
{
m_TypeMap[i].toArchive = m_ClassCount;
m_TypeMap[m_ClassCount].toCurrent = PClass::m_Types[i];
m_ClassCount++;
return PClass::m_Types[i];
}
}
}
I_Error ("Unknown class '%s'\n", typeName.val);
return NULL;
}
const PClass *FArchive::ReadClass (const PClass *wanttype)
{
const PClass *type = ReadClass ();
if (!type->IsDescendantOf (wanttype))
{
I_Error ("Expected to extract an object of type '%s'.\n"
"Found one of type '%s' instead.\n",
wanttype->TypeName.GetChars(), type->TypeName.GetChars());
}
return type;
}
const PClass *FArchive::ReadStoredClass (const PClass *wanttype)
{
DWORD index = ReadCount ();
if (index >= m_ClassCount)
{
I_Error ("Class reference too high (%lu; max is %lu)\n", index, m_ClassCount);
}
const PClass *type = m_TypeMap[index].toCurrent;
if (!type->IsDescendantOf (wanttype))
{
I_Error ("Expected to extract an object of type '%s'.\n"
"Found one of type '%s' instead.\n",
wanttype->TypeName.GetChars(), type->TypeName.GetChars());
}
return type;
}
DWORD FArchive::MapObject (const DObject *obj)
{
DWORD i;
if (m_ObjectCount >= m_MaxObjectCount)
{
m_MaxObjectCount = m_MaxObjectCount ? m_MaxObjectCount * 2 : 1024;
m_ObjectMap = (ObjectMap *)M_Realloc (m_ObjectMap, sizeof(ObjectMap)*m_MaxObjectCount);
for (i = m_ObjectCount; i < m_MaxObjectCount; i++)
{
m_ObjectMap[i].hashNext = ~0;
m_ObjectMap[i].object = NULL;
}
}
DWORD index = m_ObjectCount++;
DWORD hash = HashObject (obj);
m_ObjectMap[index].object = obj;
m_ObjectMap[index].hashNext = m_ObjectHash[hash];
m_ObjectHash[hash] = index;
return index;
}
DWORD FArchive::HashObject (const DObject *obj) const
{
return (DWORD)((size_t)obj % EObjectHashSize);
}
DWORD FArchive::FindObjectIndex (const DObject *obj) const
{
size_t index = m_ObjectHash[HashObject (obj)];
while (index != TypeMap::NO_INDEX && m_ObjectMap[index].object != obj)
{
index = m_ObjectMap[index].hashNext;
}
return (DWORD)index;
}
void FArchive::UserWriteClass (const PClass *type)
{
BYTE id;
if (type == NULL)
{
id = 2;
Write (&id, 1);
}
else
{
if (m_TypeMap[type->ClassIndex].toArchive == TypeMap::NO_INDEX)
{
id = 1;
Write (&id, 1);
WriteClass (type);
}
else
{
id = 0;
Write (&id, 1);
WriteCount (m_TypeMap[type->ClassIndex].toArchive);
}
}
}
void FArchive::UserReadClass (const PClass *&type)
{
BYTE newclass;
Read (&newclass, 1);
switch (newclass)
{
case 0:
type = ReadStoredClass (RUNTIME_CLASS(DObject));
break;
case 1:
type = ReadClass ();
break;
case 2:
type = NULL;
break;
default:
I_Error ("Unknown class type %d in archive.\n", newclass);
break;
}
}
FArchive &operator<< (FArchive &arc, const PClass * &info)
{
if (arc.IsStoring ())
{
arc.UserWriteClass (info);
}
else
{
arc.UserReadClass (info);
}
return arc;
}