/* ** pngtexture.cpp ** Texture class for DDS images ** **--------------------------------------------------------------------------- ** Copyright 2006-2007 Randy Heit ** All rights reserved. ** ** Redistribution and use in source and binary forms, with or without ** modification, are permitted provided that the following conditions ** are met: ** ** 1. Redistributions of source code must retain the above copyright ** notice, this list of conditions and the following disclaimer. ** 2. Redistributions in binary form must reproduce the above copyright ** notice, this list of conditions and the following disclaimer in the ** documentation and/or other materials provided with the distribution. ** 3. The name of the author may not be used to endorse or promote products ** derived from this software without specific prior written permission. ** ** THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR ** IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES ** OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. ** IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, ** INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT ** NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, ** DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY ** THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT ** (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF ** THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. **--------------------------------------------------------------------------- ** ** DDS is short for "DirectDraw Surface" and is essentially that. It's ** interesting to us because it is a standard file format for DXTC/S3TC ** encoded images. Look up "DDS File Reference" in the DirectX SDK or ** the online MSDN documentation to the specs for this file format. Look up ** "Compressed Texture Resources" for information about DXTC encoding. ** ** Perhaps the most important part of DXTC to realize is that every 4x4 ** pixel block can only have four different colors, and only two of those ** are discrete. So depending on the texture, there may be very noticable ** quality degradation, or it may look virtually indistinguishable from ** the uncompressed texture. ** ** Note: Although this class supports reading RGB textures from a DDS, ** DO NOT use DDS images with plain RGB data. PNG does everything useful ** better. Since DDS lets the R, G, B, and A components lie anywhere in ** the pixel data, it is fairly inefficient to process. */ #include "doomtype.h" #include "files.h" #include "r_local.h" #include "w_wad.h" #include "templates.h" // Since we want this to compile under Linux too, we need to define this // stuff ourselves instead of including a DirectX header. #define ID_DDS MAKE_ID('D','D','S',' ') #define ID_DXT1 MAKE_ID('D','X','T','1') #define ID_DXT2 MAKE_ID('D','X','T','2') #define ID_DXT3 MAKE_ID('D','X','T','3') #define ID_DXT4 MAKE_ID('D','X','T','4') #define ID_DXT5 MAKE_ID('D','X','T','5') // Bits in dwFlags #define DDSD_CAPS 0x00000001 #define DDSD_HEIGHT 0x00000002 #define DDSD_WIDTH 0x00000004 #define DDSD_PITCH 0x00000008 #define DDSD_PIXELFORMAT 0x00001000 #define DDSD_MIPMAPCOUNT 0x00020000 #define DDSD_LINEARSIZE 0x00080000 #define DDSD_DEPTH 0x00800000 // Bits in ddpfPixelFormat #define DDPF_ALPHAPIXELS 0x00000001 #define DDPF_FOURCC 0x00000004 #define DDPF_RGB 0x00000040 // Bits in DDSCAPS2.dwCaps1 #define DDSCAPS_COMPLEX 0x00000008 #define DDSCAPS_TEXTURE 0x00001000 #define DDSCAPS_MIPMAP 0x00400000 // Bits in DDSCAPS2.dwCaps2 #define DDSCAPS2_CUBEMAP 0x00000200 #define DDSCAPS2_CUBEMAP_POSITIVEX 0x00000400 #define DDSCAPS2_CUBEMAP_NEGATIVEX 0x00000800 #define DDSCAPS2_CUBEMAP_POSITIVEY 0x00001000 #define DDSCAPS2_CUBEMAP_NEGATIVEY 0x00002000 #define DDSCAPS2_CUBEMAP_POSITIVEZ 0x00004000 #define DDSCAPS2_CUBEMAP_NEGATIZEZ 0x00008000 #define DDSCAPS2_VOLUME 0x00200000 struct DDPIXELFORMAT { DWORD Size; // Must be 32 DWORD Flags; DWORD FourCC; DWORD RGBBitCount; DWORD RBitMask, GBitMask, BBitMask; DWORD RGBAlphaBitMask; }; struct DDCAPS2 { DWORD Caps1, Caps2; DWORD Reserved[2]; }; struct DDSURFACEDESC2 { DWORD Size; // Must be 124. DevIL claims some writers set it to 'DDS ' instead. DWORD Flags; DWORD Height; DWORD Width; union { SDWORD Pitch; DWORD LinearSize; }; DWORD Depth; DWORD MipMapCount; DWORD Reserved1[11]; DDPIXELFORMAT PixelFormat; DDCAPS2 Caps; DWORD Reserved2; }; struct DDSFileHeader { DWORD Magic; DDSURFACEDESC2 Desc; }; bool FDDSTexture::Check (FileReader &file) { DDSFileHeader Header; file.Seek (0, SEEK_SET); if (file.Read (&Header, sizeof(Header)) != sizeof(Header)) { return false; } return Header.Magic == ID_DDS && (LittleLong(Header.Desc.Size) == sizeof(DDSURFACEDESC2) || Header.Desc.Size == ID_DDS) && LittleLong(Header.Desc.PixelFormat.Size) == sizeof(DDPIXELFORMAT) && (LittleLong(Header.Desc.Flags) & (DDSD_CAPS | DDSD_PIXELFORMAT | DDSD_WIDTH | DDSD_HEIGHT)) == (DDSD_CAPS | DDSD_PIXELFORMAT | DDSD_WIDTH | DDSD_HEIGHT) && Header.Desc.Width != 0 && Header.Desc.Height != 0; } FTexture *FDDSTexture::Create (FileReader &data, int lumpnum) { union { DDSURFACEDESC2 surfdesc; DWORD byteswapping[sizeof(DDSURFACEDESC2) / 4]; }; data.Seek (4, SEEK_SET); data.Read (&surfdesc, sizeof(surfdesc)); #ifdef WORDS_BIGENDIAN // Every single element of the header is a DWORD for (unsigned int i = 0; i < sizeof(DDSURFACEDESC2) / 4; ++i) { byteswapping[i] = LittleLong(byteswapping[i]); } // Undo the byte swap for the pixel format surfdesc.PixelFormat.FourCC = LittleLong(surfdesc.PixelFormat.FourCC); #endif if (surfdesc.PixelFormat.Flags & DDPF_FOURCC) { // Check for supported FourCC if (surfdesc.PixelFormat.FourCC != ID_DXT1 && surfdesc.PixelFormat.FourCC != ID_DXT2 && surfdesc.PixelFormat.FourCC != ID_DXT3 && surfdesc.PixelFormat.FourCC != ID_DXT4 && surfdesc.PixelFormat.FourCC != ID_DXT5) { return NULL; } if (!(surfdesc.Flags & DDSD_LINEARSIZE)) { return NULL; } } else if (surfdesc.PixelFormat.Flags & DDPF_RGB) { if ((surfdesc.PixelFormat.RGBBitCount >> 3) < 1 || (surfdesc.PixelFormat.RGBBitCount >> 3) > 4) { return NULL; } if ((surfdesc.Flags & DDSD_PITCH) && (surfdesc.Pitch <= 0)) { return NULL; } } else { return NULL; } return new FDDSTexture (data, lumpnum, &surfdesc); } FDDSTexture::FDDSTexture (FileReader &lump, int lumpnum, void *vsurfdesc) : SourceLump(lumpnum), Pixels(0), Spans(0) { DDSURFACEDESC2 *surf = (DDSURFACEDESC2 *)vsurfdesc; Wads.GetLumpName (Name, lumpnum); Name[8] = 0; UseType = TEX_MiscPatch; LeftOffset = 0; TopOffset = 0; bMasked = false; Width = WORD(surf->Width); Height = WORD(surf->Height); CalcBitSize (); if (surf->PixelFormat.Flags & DDPF_FOURCC) { Format = surf->PixelFormat.FourCC; Pitch = 0; LinearSize = surf->LinearSize; } else // DDPF_RGB { Format = surf->PixelFormat.RGBBitCount >> 3; CalcBitShift (RMask = surf->PixelFormat.RBitMask, &RShiftL, &RShiftR); CalcBitShift (GMask = surf->PixelFormat.GBitMask, &GShiftL, &GShiftR); CalcBitShift (BMask = surf->PixelFormat.BBitMask, &BShiftL, &BShiftR); if (surf->PixelFormat.Flags & DDPF_ALPHAPIXELS) { CalcBitShift (AMask = surf->PixelFormat.RGBAlphaBitMask, &AShiftL, &AShiftR); } else { AMask = 0; AShiftL = AShiftR = 0; } if (surf->Flags & DDSD_PITCH) { Pitch = surf->Pitch; } else { Pitch = (Width * Format + 3) & ~3; } LinearSize = Pitch * Height; } } // Returns the number of bits the color must be shifted to produce // an 8-bit value, as in: // // c = (color & mask) << lshift; // c |= c >> rshift; // c >>= 24; // // For any color of at least 4 bits, this ensures that the result // of the calculation for c will be fully saturated, given a maximum // value for the input bit mask. void FDDSTexture::CalcBitShift (DWORD mask, BYTE *lshiftp, BYTE *rshiftp) { BYTE shift; if (mask == 0) { *lshiftp = *rshiftp = 0; return; } shift = 0; while ((mask & 0x80000000) == 0) { mask <<= 1; shift++; } *lshiftp = shift; shift = 0; while (mask & 0x80000000) { mask <<= 1; shift++; } *rshiftp = shift; } FDDSTexture::~FDDSTexture () { Unload (); if (Spans != NULL) { FreeSpans (Spans); Spans = NULL; } } void FDDSTexture::Unload () { if (Pixels != NULL) { delete[] Pixels; Pixels = NULL; } } FTextureFormat FDDSTexture::GetFormat() { switch (Format) { case ID_DXT1: return TEX_DXT1; case ID_DXT2: return TEX_DXT2; case ID_DXT3: return TEX_DXT3; case ID_DXT4: return TEX_DXT4; case ID_DXT5: return TEX_DXT5; default: return TEX_RGB; } } const BYTE *FDDSTexture::GetColumn (unsigned int column, const Span **spans_out) { if (Pixels == NULL) { MakeTexture (); } if ((unsigned)column >= (unsigned)Width) { if (WidthMask + 1 == Width) { column &= WidthMask; } else { column %= Width; } } if (spans_out != NULL) { *spans_out = Spans[column]; } return Pixels + column*Height; } const BYTE *FDDSTexture::GetPixels () { if (Pixels == NULL) { MakeTexture (); } return Pixels; } void FDDSTexture::MakeTexture () { FWadLump lump = Wads.OpenLumpNum (SourceLump); Pixels = new BYTE[Width*Height]; lump.Seek (sizeof(DDSURFACEDESC2) + 4, SEEK_SET); if (Format >= 1 && Format <= 4) // RGB: Format is # of bytes per pixel { ReadRGB (lump); } else if (Format == ID_DXT1) { DecompressDXT1 (lump); } else if (Format == ID_DXT3 || Format == ID_DXT2) { DecompressDXT3 (lump, Format == ID_DXT2); } else if (Format == ID_DXT5 || Format == ID_DXT4) { DecompressDXT5 (lump, Format == ID_DXT4); } if (Spans == NULL) { Spans = CreateSpans (Pixels); } } void FDDSTexture::ReadRGB (FWadLump &lump) { DWORD x, y; DWORD amask = AMask == 0 ? 0 : 0x80000000 >> AShiftL; BYTE *linebuff = new BYTE[Pitch]; for (y = Height; y > 0; --y) { BYTE *buffp = linebuff; BYTE *pixelp = Pixels + y; lump.Read (linebuff, Pitch); for (x = Width; x > 0; --x) { DWORD c; if (Format == 4) { c = LittleLong(*(DWORD *)buffp); buffp += 4; } else if (Format == 2) { c = LittleShort(*(WORD *)buffp); buffp += 2; } else if (Format == 3) { c = buffp[0] | (buffp[1] << 8) | (buffp[2] << 16); buffp += 3; } else // Format == 1 { c = *buffp++; } if (amask == 0 || (c & amask)) { DWORD r = (c & RMask) << RShiftL; r |= r >> RShiftR; DWORD g = (c & GMask) << GShiftL; g |= g >> GShiftR; DWORD b = (c & BMask) << BShiftL; b |= b >> BShiftR; *pixelp = RGB32k[r >> 27][g >> 27][b >> 27]; } else { *pixelp = 0; bMasked = true; } pixelp += Height; } } delete[] linebuff; } void FDDSTexture::DecompressDXT1 (FWadLump &lump) { const long blocklinelen = ((Width + 3) >> 2) << 3; BYTE *blockbuff = new BYTE[blocklinelen]; BYTE *block; PalEntry color[4]; BYTE palcol[4]; int ox, oy, x, y, i; color[0].a = 255; color[1].a = 255; color[2].a = 255; for (oy = 0; oy < Height; oy += 4) { lump.Read (blockbuff, blocklinelen); block = blockbuff; for (ox = 0; ox < Width; ox += 4) { WORD color16[2] = { LittleShort(((WORD *)block)[0]), LittleShort(((WORD *)block)[1]) }; // Convert color from R5G6B5 to R8G8B8. for (i = 1; i >= 0; --i) { color[i].r = ((color16[i] & 0xF800) >> 8) | (color16[i] >> 13); color[i].g = ((color16[i] & 0x07E0) >> 3) | ((color16[i] & 0x0600) >> 9); color[i].b = ((color16[i] & 0x001F) << 3) | ((color16[i] & 0x001C) >> 2); } if (color16[0] > color16[1]) { // Four-color block: derive the other two colors. color[2].r = (color[0].r + color[0].r + color[1].r + 1) / 3; color[2].g = (color[0].g + color[0].g + color[1].g + 1) / 3; color[2].b = (color[0].b + color[0].b + color[1].b + 1) / 3; color[3].r = (color[0].r + color[1].r + color[1].r + 1) / 3; color[3].g = (color[0].g + color[1].g + color[1].g + 1) / 3; color[3].b = (color[0].b + color[1].b + color[1].b + 1) / 3; color[3].a = 255; } else { // Three-color block: derive the other color. color[2].r = (color[0].r + color[1].r) / 2; color[2].g = (color[0].g + color[1].g) / 2; color[2].b = (color[0].b + color[1].b) / 2; color[3].a = color[3].b = color[3].g = color[3].r = 0; // If you have a three-color block, presumably that transparent // color is going to be used. bMasked = true; } // Pick colors from the palette for each of the four colors. for (i = 3; i >= 0; --i) { palcol[i] = color[i].a ? RGB32k[color[i].r >> 3][color[i].g >> 3][color[i].b >> 3] : 0; } // Now decode this 4x4 block to the pixel buffer. for (y = 0; y < 4; ++y) { if (oy + y >= Height) { break; } BYTE yslice = block[4 + y]; for (x = 0; x < 4; ++x) { if (ox + x >= Width) { break; } Pixels[oy + y + (ox + x) * Height] = palcol[(yslice >> (x + x)) & 3]; } } block += 8; } } delete[] blockbuff; } // DXT3: Decompression is identical to DXT1, except every 64-bit block is // preceded by another 64-bit block with explicit alpha values. void FDDSTexture::DecompressDXT3 (FWadLump &lump, bool premultiplied) { const long blocklinelen = ((Width + 3) >> 2) << 4; BYTE *blockbuff = new BYTE[blocklinelen]; BYTE *block; PalEntry color[4]; BYTE palcol[4]; int ox, oy, x, y, i; for (oy = 0; oy < Height; oy += 4) { lump.Read (blockbuff, blocklinelen); block = blockbuff; for (ox = 0; ox < Width; ox += 4) { WORD color16[2] = { LittleShort(((WORD *)block)[4]), LittleShort(((WORD *)block)[5]) }; // Convert color from R5G6B5 to R8G8B8. for (i = 1; i >= 0; --i) { color[i].r = ((color16[i] & 0xF800) >> 8) | (color16[i] >> 13); color[i].g = ((color16[i] & 0x07E0) >> 3) | ((color16[i] & 0x0600) >> 9); color[i].b = ((color16[i] & 0x001F) << 3) | ((color16[i] & 0x001C) >> 2); } // Derive the other two colors. color[2].r = (color[0].r + color[0].r + color[1].r + 1) / 3; color[2].g = (color[0].g + color[0].g + color[1].g + 1) / 3; color[2].b = (color[0].b + color[0].b + color[1].b + 1) / 3; color[3].r = (color[0].r + color[1].r + color[1].r + 1) / 3; color[3].g = (color[0].g + color[1].g + color[1].g + 1) / 3; color[3].b = (color[0].b + color[1].b + color[1].b + 1) / 3; // Pick colors from the palette for each of the four colors. for (i = 3; i >= 0; --i) { palcol[i] = RGB32k[color[i].r >> 3][color[i].g >> 3][color[i].b >> 3]; } // Now decode this 4x4 block to the pixel buffer. for (y = 0; y < 4; ++y) { if (oy + y >= Height) { break; } BYTE yslice = block[12 + y]; WORD yalphaslice = LittleShort(((WORD *)block)[y]); for (x = 0; x < 4; ++x) { if (ox + x >= Width) { break; } Pixels[oy + y + (ox + x) * Height] = ((yalphaslice >> (x*4)) & 15) < 8 ? (bMasked = true, 0) : palcol[(yslice >> (x + x)) & 3]; } } block += 16; } } delete[] blockbuff; } // DXT5: Decompression is identical to DXT3, except every 64-bit alpha block // contains interpolated alpha values, similar to the 64-bit color block. void FDDSTexture::DecompressDXT5 (FWadLump &lump, bool premultiplied) { const long blocklinelen = ((Width + 3) >> 2) << 4; BYTE *blockbuff = new BYTE[blocklinelen]; BYTE *block; PalEntry color[4]; BYTE palcol[4]; DWORD yalphaslice; int ox, oy, x, y, i; for (oy = 0; oy < Height; oy += 4) { lump.Read (blockbuff, blocklinelen); block = blockbuff; for (ox = 0; ox < Width; ox += 4) { WORD color16[2] = { LittleShort(((WORD *)block)[4]), LittleShort(((WORD *)block)[5]) }; BYTE alpha[8]; // Calculate the eight alpha values. alpha[0] = block[0]; alpha[1] = block[1]; if (alpha[0] > alpha[1]) { // Eight-alpha block: derive the other six alphas. for (i = 0; i < 6; ++i) { alpha[i + 2] = ((6 - i) * alpha[0] + (i + 1) * alpha[1] + 3) / 7; } } else { // Six-alpha block: derive the other four alphas. for (i = 0; i < 4; ++i) { alpha[i + 2] = ((4 - i) * alpha[0] + (i + 1) * alpha[1] + 2) / 5; } alpha[6] = 0; alpha[7] = 255; } // Convert color from R5G6B5 to R8G8B8. for (i = 1; i >= 0; --i) { color[i].r = ((color16[i] & 0xF800) >> 8) | (color16[i] >> 13); color[i].g = ((color16[i] & 0x07E0) >> 3) | ((color16[i] & 0x0600) >> 9); color[i].b = ((color16[i] & 0x001F) << 3) | ((color16[i] & 0x001C) >> 2); } // Derive the other two colors. color[2].r = (color[0].r + color[0].r + color[1].r + 1) / 3; color[2].g = (color[0].g + color[0].g + color[1].g + 1) / 3; color[2].b = (color[0].b + color[0].b + color[1].b + 1) / 3; color[3].r = (color[0].r + color[1].r + color[1].r + 1) / 3; color[3].g = (color[0].g + color[1].g + color[1].g + 1) / 3; color[3].b = (color[0].b + color[1].b + color[1].b + 1) / 3; // Pick colors from the palette for each of the four colors. for (i = 3; i >= 0; --i) { palcol[i] = RGB32k[color[i].r >> 3][color[i].g >> 3][color[i].b >> 3]; } // Now decode this 4x4 block to the pixel buffer. for (y = 0; y < 4; ++y) { if (oy + y >= Height) { break; } // Alpha values are stored in 3 bytes for 2 rows if ((y & 0) == 0) { yalphaslice = block[y*3] | (block[y*3+1] << 8) | (block[y*3+2] << 16); } else { yalphaslice >>= 12; } BYTE yslice = block[12 + y]; for (x = 0; x < 4; ++x) { if (ox + x >= Width) { break; } Pixels[oy + y + (ox + x) * Height] = alpha[((yalphaslice >> (x*3)) & 7)] < 128 ? (bMasked = true, 0) : palcol[(yslice >> (x + x)) & 3]; } } block += 16; } } delete[] blockbuff; }