/* ** vectors.h ** Vector math routines. ** **--------------------------------------------------------------------------- ** Copyright 2005-2007 Randy Heit ** All rights reserved. ** ** Redistribution and use in source and binary forms, with or without ** modification, are permitted provided that the following conditions ** are met: ** ** 1. Redistributions of source code must retain the above copyright ** notice, this list of conditions and the following disclaimer. ** 2. Redistributions in binary form must reproduce the above copyright ** notice, this list of conditions and the following disclaimer in the ** documentation and/or other materials provided with the distribution. ** 3. The name of the author may not be used to endorse or promote products ** derived from this software without specific prior written permission. ** ** THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR ** IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES ** OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. ** IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, ** INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT ** NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, ** DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY ** THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT ** (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF ** THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. **--------------------------------------------------------------------------- ** ** Since C++ doesn't let me add completely new operators, the following two ** are overloaded for vectors: ** ** | dot product ** ^ cross product */ #ifndef VECTORS_H #define VECTORS_H #include #include #ifndef PI #define PI 3.14159265358979323846 // matches value in gcc v2 math.h #endif #define EQUAL_EPSILON (1/65536.f) #define DEG2RAD(d) ((d)*PI/180.f) #define RAD2DEG(r) ((r)*180.f/PI) template struct TVector3; template struct TRotator; template struct TAngle; template struct TVector2 { vec_t X, Y; TVector2 () { } TVector2 (double a, double b) : X(vec_t(a)), Y(vec_t(b)) { } TVector2 (const TVector2 &other) : X(other.X), Y(other.Y) { } TVector2 (const TVector3 &other) // Copy the X and Y from the 3D vector and discard the Z : X(other.X), Y(other.Y) { } void Zero() { Y = X = 0; } TVector2 &operator= (const TVector2 &other) { // This might seem backwards, but this helps produce smaller code when a newly // created vector is assigned, because the components can just be popped off // the FPU stack in order without the need for fxch. For platforms with a // more sensible registered-based FPU, of course, the order doesn't matter. // (And, yes, I know fxch can improve performance in the right circumstances, // but this isn't one of those times. Here, it's little more than a no-op that // makes the exe 2 bytes larger whenever you assign one vector to another.) Y = other.Y, X = other.X; return *this; } // Access X and Y as an array vec_t &operator[] (int index) { return *(&X + index); } const vec_t &operator[] (int index) const { return *(&X + index); } // Test for equality bool operator== (const TVector2 &other) const { return X == other.X && Y == other.Y; } // Test for inequality bool operator!= (const TVector2 &other) const { return X != other.X || Y != other.Y; } // Test for approximate equality bool ApproximatelyEquals (const TVector2 &other) const { return fabs(X - other.X) < EQUAL_EPSILON && fabs(Y - other.Y) < EQUAL_EPSILON; } // Test for approximate inequality bool DoesNotApproximatelyEqual (const TVector2 &other) const { return fabs(X - other.X) >= EQUAL_EPSILON || fabs(Y - other.Y) >= EQUAL_EPSILON; } // Unary negation TVector2 operator- () const { return TVector2(-X, -Y); } // Scalar addition TVector2 &operator+= (double scalar) { X += scalar, Y += scalar; return *this; } friend TVector2 operator+ (const TVector2 &v, double scalar) { return TVector2(v.X + scalar, v.Y + scalar); } friend TVector2 operator+ (double scalar, const TVector2 &v) { return TVector2(v.X + scalar, v.Y + scalar); } // Scalar subtraction TVector2 &operator-= (double scalar) { X -= scalar, Y -= scalar; return *this; } TVector2 operator- (double scalar) const { return TVector2(X - scalar, Y - scalar); } // Scalar multiplication TVector2 &operator*= (double scalar) { X *= scalar, Y *= scalar; return *this; } friend TVector2 operator* (const TVector2 &v, double scalar) { return TVector2(v.X * scalar, v.Y * scalar); } friend TVector2 operator* (double scalar, const TVector2 &v) { return TVector2(v.X * scalar, v.Y * scalar); } // Scalar division TVector2 &operator/= (double scalar) { scalar = 1 / scalar, X *= scalar, Y *= scalar; return *this; } TVector2 operator/ (double scalar) const { scalar = 1 / scalar; return TVector2(X * scalar, Y * scalar); } // Vector addition TVector2 &operator+= (const TVector2 &other) { X += other.X, Y += other.Y; return *this; } TVector2 operator+ (const TVector2 &other) const { return TVector2(X + other.X, Y + other.Y); } // Vector subtraction TVector2 &operator-= (const TVector2 &other) { X -= other.X, Y -= other.Y; return *this; } TVector2 operator- (const TVector2 &other) const { return TVector2(X - other.X, Y - other.Y); } // Vector length double Length() const { return sqrt (X*X + Y*Y); } double LengthSquared() const { return X*X + Y*Y; } // Return a unit vector facing the same direction as this one TVector2 Unit() const { double len = Length(); if (len != 0) len = 1 / len; return *this * len; } // Scales this vector into a unit vector void MakeUnit() { double len = Length(); if (len != 0) len = 1 / len; *this *= len; } // Dot product double operator | (const TVector2 &other) const { return X*other.X + Y*other.Y; } // Returns the angle (in radians) that the ray (0,0)-(X,Y) faces double Angle() const { return atan2 (X, Y); } // Returns a rotated vector. TAngle is in radians. TVector2 Rotated (double angle) { double cosval = cos (angle); double sinval = sin (angle); return TVector2(X*cosval - Y*sinval, Y*cosval + X*sinval); } // Returns a vector rotated 90 degrees clockwise. TVector2 Rotated90CW() { return TVector2(Y, -X); } // Returns a vector rotated 90 degrees counterclockwise. TVector2 Rotated90CCW() { return TVector2(-Y, X); } }; template struct TVector3 { typedef TVector2 Vector2; vec_t X, Y, Z; TVector3 () { } TVector3 (double a, double b, double c) : X(vec_t(a)), Y(vec_t(b)), Z(vec_t(c)) { } TVector3 (const TVector3 &other) : X(other.X), Y(other.Y), Z(other.Z) { } TVector3 (const Vector2 &xy, double z) : X(xy.X), Y(xy.Y), Z(z) { } TVector3 (const TRotator &rot); void Zero() { Z = Y = X = 0; } TVector3 &operator= (const TVector3 &other) { Z = other.Z, Y = other.Y, X = other.X; return *this; } // Access X and Y and Z as an array vec_t &operator[] (int index) { return *(&X + index); } const vec_t &operator[] (int index) const { return *(&X + index); } // Test for equality bool operator== (const TVector3 &other) const { return X == other.X && Y == other.Y && Z == other.Z; } // Test for inequality bool operator!= (const TVector3 &other) const { return X != other.X || Y != other.Y || Z != other.Z; } // Test for approximate equality bool ApproximatelyEquals (const TVector3 &other) const { return fabs(X - other.X) < EQUAL_EPSILON && fabs(Y - other.Y) < EQUAL_EPSILON && fabs(Z - other.Z) < EQUAL_EPSILON; } // Test for approximate inequality bool DoesNotApproximatelyEqual (const TVector3 &other) const { return fabs(X - other.X) >= EQUAL_EPSILON || fabs(Y - other.Y) >= EQUAL_EPSILON || fabs(Z - other.Z) >= EQUAL_EPSILON; } // Unary negation TVector3 operator- () const { return TVector3(-X, -Y, -Z); } // Scalar addition TVector3 &operator+= (double scalar) { X += scalar, Y += scalar, Z += scalar; return *this; } friend TVector3 operator+ (const TVector3 &v, double scalar) { return TVector3(v.X + scalar, v.Y + scalar, v.Z + scalar); } friend TVector3 operator+ (double scalar, const TVector3 &v) { return TVector3(v.X + scalar, v.Y + scalar, v.Z + scalar); } // Scalar subtraction TVector3 &operator-= (double scalar) { X -= scalar, Y -= scalar, Z -= scalar; return *this; } TVector3 operator- (double scalar) const { return TVector3(X - scalar, Y - scalar, Z - scalar); } // Scalar multiplication TVector3 &operator*= (double scalar) { X = vec_t(X *scalar), Y = vec_t(Y * scalar), Z = vec_t(Z * scalar); return *this; } friend TVector3 operator* (const TVector3 &v, double scalar) { return TVector3(v.X * scalar, v.Y * scalar, v.Z * scalar); } friend TVector3 operator* (double scalar, const TVector3 &v) { return TVector3(v.X * scalar, v.Y * scalar, v.Z * scalar); } // Scalar division TVector3 &operator/= (double scalar) { scalar = 1 / scalar, X = vec_t(X * scalar), Y = vec_t(Y * scalar), Z = vec_t(Z * scalar); return *this; } TVector3 operator/ (double scalar) const { scalar = 1 / scalar; return TVector3(X * scalar, Y * scalar, Z * scalar); } // Vector addition TVector3 &operator+= (const TVector3 &other) { X += other.X, Y += other.Y, Z += other.Z; return *this; } TVector3 operator+ (const TVector3 &other) const { return TVector3(X + other.X, Y + other.Y, Z + other.Z); } // Vector subtraction TVector3 &operator-= (const TVector3 &other) { X -= other.X, Y -= other.Y, Z - other.Z; return *this; } TVector3 operator- (const TVector3 &other) const { return TVector3(X - other.X, Y - other.Y, Z - other.Z); } // Add a 2D vector to this 3D vector, leaving Z unchanged. TVector3 &operator+= (const Vector2 &other) { X += other.X, Y += other.Y; return *this; } // Subtract a 2D vector from this 3D vector, leaving Z unchanged. TVector3 &operator-= (const Vector2 &other) { X -= other.X, Y -= other.Y; return *this; } // Add a 3D vector and a 2D vector. // Discards the Z component of the 3D vector and returns a 2D vector. friend Vector2 operator+ (const TVector3 &v3, const Vector2 &v2) { return Vector2(v3.X + v2.X, v3.Y + v2.Y); } friend Vector2 operator+ (const Vector2 &v2, const TVector3 &v3) { return Vector2(v2.X + v3.X, v2.Y + v3.Y); } // Subtract a 3D vector and a 2D vector. // Discards the Z component of the 3D vector and returns a 2D vector. friend Vector2 operator- (const TVector3 &v3, const Vector2 &v2) { return Vector2(v3.X - v2.X, v3.Y - v2.Y); } friend Vector2 operator- (const TVector2 &v2, const TVector3 &v3) { return Vector2(v2.X - v3.X, v2.Y - v3.Y); } // Vector length double Length() const { return sqrt (X*X + Y*Y + Z*Z); } double LengthSquared() const { return X*X + Y*Y + Z*Z; } // Return a unit vector facing the same direction as this one TVector3 Unit() const { double len = Length(); if (len != 0) len = 1 / len; return *this * len; } // Scales this vector into a unit vector void MakeUnit() { double len = Length(); if (len != 0) len = 1 / len; *this *= len; } // Resizes this vector to be the specified length (if it is not 0) TVector3 &Resize(double len) { double nowlen = Length(); X = vec_t(X * (len /= nowlen)); Y = vec_t(Y * len); Z = vec_t(Z * len); return *this; } // Dot product double operator | (const TVector3 &other) const { return X*other.X + Y*other.Y + Z*other.Z; } // Cross product TVector3 operator ^ (const TVector3 &other) const { return TVector3(Y*other.Z - Z*other.Y, Z*other.X - X*other.Z, X*other.Y - Y*other.X); } TVector3 &operator ^= (const TVector3 &other) { *this = *this ^ other; } }; template struct TMatrix3x3 { typedef TVector3 Vector3; vec_t Cells[3][3]; TMatrix3x3() { } TMatrix3x3(const TMatrix3x3 &other) { (*this)[0] = other[0]; (*this)[1] = other[1]; (*this)[2] = other[2]; } TMatrix3x3(const Vector3 &row1, const Vector3 &row2, const Vector3 &row3) { (*this)[0] = row1; (*this)[1] = row2; (*this)[2] = row3; } // Construct a rotation matrix about an arbitrary axis. // (The axis vector must be normalized.) TMatrix3x3(const Vector3 &axis, double radians) { double c = cos(radians), s = sin(radians), t = 1 - c; /* In comments: A more readable version of the matrix setup. This was found in Diana Gruber's article "The Mathematics of the 3D Rotation Matrix" at and is attributed to Graphics Gems (Glassner, Academic Press, 1990). Cells[0][0] = t*axis.X*axis.X + c; Cells[0][1] = t*axis.X*axis.Y - s*axis.Z; Cells[0][2] = t*axis.X*axis.Z + s*axis.Y; Cells[1][0] = t*axis.Y*axis.X + s*axis.Z; Cells[1][1] = t*axis.Y*axis.Y + c; Cells[1][2] = t*axis.Y*axis.Z - s*axis.X; Cells[2][0] = t*axis.Z*axis.X - s*axis.Y; Cells[2][1] = t*axis.Z*axis.Y + s*axis.X; Cells[2][2] = t*axis.Z*axis.Z + c; Outside comments: A faster version with only 10 (not 24) multiplies. */ double sx = s*axis.X, sy = s*axis.Y, sz = s*axis.Z; double tx, ty, txx, tyy, u, v; tx = t*axis.X; Cells[0][0] = vec_t( (txx=tx*axis.X) + c ); Cells[0][1] = vec_t( (u=tx*axis.Y) - sz); Cells[0][2] = vec_t( (v=tx*axis.Z) + sy); ty = t*axis.Y; Cells[1][0] = vec_t( u + sz); Cells[1][1] = vec_t( (tyy=ty*axis.Y) + c ); Cells[1][2] = vec_t( (u=ty*axis.Z) - sx); Cells[2][0] = vec_t( v - sy); Cells[2][1] = vec_t( u + sx); Cells[2][2] = vec_t( (t-txx-tyy) + c ); } TMatrix3x3(const Vector3 &axis, double c/*cosine*/, double s/*sine*/) { double t = 1 - c; double sx = s*axis.X, sy = s*axis.Y, sz = s*axis.Z; double tx, ty, txx, tyy, u, v; tx = t*axis.X; Cells[0][0] = vec_t( (txx=tx*axis.X) + c ); Cells[0][1] = vec_t( (u=tx*axis.Y) - sz); Cells[0][2] = vec_t( (v=tx*axis.Z) + sy); ty = t*axis.Y; Cells[1][0] = vec_t( u + sz); Cells[1][1] = vec_t( (tyy=ty*axis.Y) + c ); Cells[1][2] = vec_t( (u=ty*axis.Z) - sx); Cells[2][0] = vec_t( v - sy); Cells[2][1] = vec_t( u + sx); Cells[2][2] = vec_t( (t-txx-tyy) + c ); } TMatrix3x3(const Vector3 &axis, TAngle degrees); void Zero() { memset (this, 0, sizeof *this); } void Identity() { Cells[0][0] = 1; Cells[0][1] = 0; Cells[0][2] = 0; Cells[1][0] = 0; Cells[1][1] = 1; Cells[1][2] = 0; Cells[2][0] = 0; Cells[2][1] = 0; Cells[2][2] = 1; } Vector3 &operator[] (int index) { return *((Vector3 *)&Cells[index]); } const Vector3 &operator[] (int index) const { return *((Vector3 *)&Cells[index]); } // Multiply a scalar TMatrix3x3 &operator*= (double scalar) { (*this)[0] *= scalar; (*this)[1] *= scalar; (*this)[2] *= scalar; return *this; } friend TMatrix3x3 operator* (double s, const TMatrix3x3 &m) { return TMatrix3x3(m[0]*s, m[1]*s, m[2]*s); } TMatrix3x3 operator* (double s) const { return TMatrix3x3((*this)[0]*s, (*this)[1]*s, (*this)[2]*s); } // Divide a scalar TMatrix3x3 &operator/= (double scalar) { return *this *= 1 / scalar; } TMatrix3x3 operator/ (double s) const { return *this * (1 / s); } // Add two 3x3 matrices together TMatrix3x3 &operator+= (const TMatrix3x3 &o) { (*this)[0] += o[0]; (*this)[1] += o[1]; (*this)[2] += o[2]; return *this; } TMatrix3x3 operator+ (const TMatrix3x3 &o) const { return TMatrix3x3((*this)[0] + o[0], (*this)[1] + o[1], (*this)[2] + o[2]); } // Subtract two 3x3 matrices TMatrix3x3 &operator-= (const TMatrix3x3 &o) { (*this)[0] -= o[0]; (*this)[1] -= o[1]; (*this)[2] -= o[2]; return *this; } TMatrix3x3 operator- (const TMatrix3x3 &o) const { return TMatrix3x3((*this)[0] - o[0], (*this)[1] - o[1], (*this)[2] - o[2]); } // Concatenate two 3x3 matrices TMatrix3x3 &operator*= (const TMatrix3x3 &o) { return *this = *this * o; } TMatrix3x3 operator* (const TMatrix3x3 &o) const { return TMatrix3x3( Vector3(Cells[0][0]*o[0][0] + Cells[0][1]*o[1][0] + Cells[0][2]*o[2][0], Cells[0][0]*o[0][1] + Cells[0][1]*o[1][1] + Cells[0][2]*o[2][1], Cells[0][0]*o[0][2] + Cells[0][1]*o[1][2] + Cells[0][2]*o[2][2]), Vector3(Cells[1][0]*o[0][0] + Cells[1][1]*o[1][0] + Cells[1][2]*o[2][0], Cells[1][0]*o[0][1] + Cells[1][1]*o[1][1] + Cells[1][2]*o[2][1], Cells[1][0]*o[0][2] + Cells[1][1]*o[1][2] + Cells[1][2]*o[2][2]), Vector3(Cells[2][0]*o[0][0] + Cells[2][1]*o[1][0] + Cells[2][2]*o[2][0], Cells[2][0]*o[0][1] + Cells[2][1]*o[1][1] + Cells[2][2]*o[2][1], Cells[2][0]*o[0][2] + Cells[2][1]*o[1][2] + Cells[2][2]*o[2][2])); } // Multiply a 3D vector by a rotation matrix friend Vector3 operator* (const Vector3 &v, const TMatrix3x3 &m) { return Vector3(m[0] | v, m[1] | v, m[2] | v); } friend Vector3 operator* (const TMatrix3x3 &m, const Vector3 &v) { return Vector3(m[0] | v, m[1] | v, m[2] | v); } }; template struct TAngle { vec_t Degrees; TAngle () { } TAngle (float amt) : Degrees(amt) { } TAngle (double amt) : Degrees(vec_t(amt)) { } TAngle (int amt) : Degrees(vec_t(amt)) { } TAngle (const TAngle &other) : Degrees(other.Degrees) { } TAngle &operator= (const TAngle &other) { Degrees = other.Degrees; return *this; } TAngle &operator= (double other) { Degrees = other; return *this; } operator float() const { return Degrees; } operator double() const { return Degrees; } TAngle operator- () const { return TAngle(-Degrees); } TAngle &operator+= (TAngle other) { Degrees += other.Degrees; return *this; } TAngle &operator-= (TAngle other) { Degrees -= other.Degrees; return *this; } TAngle &operator*= (TAngle other) { Degrees *= other.Degrees; return *this; } TAngle &operator/= (TAngle other) { Degrees /= other.Degrees; return *this; } TAngle operator+ (TAngle other) const { return Degrees + other.Degrees; } TAngle operator- (TAngle other) const { return Degrees - other.Degrees; } TAngle operator* (TAngle other) const { return Degrees * other.Degrees; } TAngle operator/ (TAngle other) const { return Degrees / other.Degrees; } TAngle &operator+= (double other) { Degrees = vec_t(Degrees + other); return *this; } TAngle &operator-= (double other) { Degrees = vec_t(Degrees - other); return *this; } TAngle &operator*= (double other) { Degrees = vec_t(Degrees * other); return *this; } TAngle &operator/= (double other) { Degrees = vec_t(Degrees / other); return *this; } TAngle operator+ (double other) const { return Degrees + other; } TAngle operator- (double other) const { return Degrees - other; } friend TAngle operator- (double o1, TAngle o2) { return TAngle(o1 - o2.Degrees); } TAngle operator* (double other) const { return Degrees * vec_t(other); } TAngle operator/ (double other) const { return Degrees / vec_t(other); } // Should the comparisons consider an epsilon value? bool operator< (TAngle other) const { return Degrees < other.Degrees; } bool operator> (TAngle other) const { return Degrees > other.Degrees; } bool operator<= (TAngle other) const { return Degrees <= other.Degrees; } bool operator>= (TAngle other) const { return Degrees >= other.Degrees; } bool operator== (TAngle other) const { return Degrees == other.Degrees; } bool operator!= (TAngle other) const { return Degrees != other.Degrees; } bool operator< (double other) const { return Degrees < other; } bool operator> (double other) const { return Degrees > other; } bool operator<= (double other) const { return Degrees <= other; } bool operator>= (double other) const { return Degrees >= other; } bool operator== (double other) const { return Degrees == other; } bool operator!= (double other) const { return Degrees != other; } // Ensure the angle is between [0.0,360.0) degrees TAngle &Normalize360() { // Normalizing the angle converts it to a BAM, masks it, and converts it back to a float. // This could have been kept entirely in floating point using fmod(), but the MSVCRT has lots // of overhead for that function, despite the x87 offering the FPREM instruction which does // exactly what fmod() is supposed to do. So fmod ends up being an order of magnitude slower // than casting to and from an int. // Casting Degrees to a volatile ensures that the compiler will not try to evaluate an expression // such as "TAngle a(360*100+24); a.Normalize360();" at compile time. Normally, it would see that // this expression is constant and attempt to remove the Normalize360() call entirely and store // the result of the function in the TAngle directly. Unfortunately, it does not do the casting // properly and will overflow, producing an incorrect result. So we need to make sure it always // evaluates Normalize360 at run time and never at compile time. (This applies to VC++. I don't // know if other compilers suffer similarly). Degrees = vec_t((int(*(volatile vec_t *)&Degrees * ((1<<30)/360.0)) & ((1<<30)-1)) * (360.f/(1<<30))); return *this; } // Ensures the angle is between (-180.0,180.0] degrees TAngle &Normalize180() { Degrees = vec_t((((int(*(volatile vec_t *)&Degrees * ((1<<30)/360.0))+(1<<29)-1) & ((1<<30)-1)) - (1<<29)+1) * (360.f/(1<<30))); return *this; } // Like Normalize360(), except the integer value is not converted back to a float. // The steps parameter must be a power of 2. int Quantize(int steps) { return int(*(volatile vec_t *)&Degrees * (steps/360.0)) & (steps-1); } }; template inline double ToRadians (const TAngle °) { return double(deg.Degrees * (PI / 180.0)); } template inline TAngle ToDegrees (double rad) { return TAngle (double(rad * (180.0 / PI))); } template inline double cos (const TAngle °) { return cos(ToRadians(deg)); } template inline double sin (const TAngle °) { return sin(ToRadians(deg)); } template inline double tan (const TAngle °) { return tan(ToRadians(deg)); } template inline TAngle fabs (const TAngle °) { return TAngle(fabs(deg.Degrees)); } template inline TAngle vectoyaw (const TVector2 &vec) { return atan2(vec.Y, vec.X) * (180.0 / PI); } template inline TAngle vectoyaw (const TVector3 &vec) { return atan2(vec.Y, vec.X) * (180.0 / PI); } // Much of this is copied from TVector3. Is all that functionality really appropriate? template struct TRotator { typedef TAngle Angle; Angle Pitch; // up/down Angle Yaw; // left/right Angle Roll; // rotation about the forward axis TRotator () { } TRotator (const Angle &p, const Angle &y, const Angle &r) : Pitch(p), Yaw(y), Roll(r) { } TRotator (const TRotator &other) : Pitch(other.Pitch), Yaw(other.Yaw), Roll(other.Roll) { } TRotator &operator= (const TRotator &other) { Roll = other.Roll, Yaw = other.Yaw, Pitch = other.Pitch; return *this; } // Access angles as an array Angle &operator[] (int index) { return *(&Pitch + index); } const Angle &operator[] (int index) const { return *(&Pitch + index); } // Test for equality bool operator== (const TRotator &other) const { return fabs(Pitch - other.Pitch) < Angle(EQUAL_EPSILON) && fabs(Yaw - other.Yaw) < Angle(EQUAL_EPSILON) && fabs(Roll - other.Roll) < Angle(EQUAL_EPSILON); } // Test for inequality bool operator!= (const TRotator &other) const { return fabs(Pitch - other.Pitch) >= Angle(EQUAL_EPSILON) && fabs(Yaw - other.Yaw) >= Angle(EQUAL_EPSILON) && fabs(Roll - other.Roll) >= Angle(EQUAL_EPSILON); } // Unary negation TRotator operator- () const { return TRotator(-Pitch, -Yaw, -Roll); } // Scalar addition TRotator &operator+= (const Angle &scalar) { Pitch += scalar, Yaw += scalar, Roll += scalar; return *this; } friend TRotator operator+ (const TRotator &v, const Angle &scalar) { return TRotator(v.Pitch + scalar, v.Yaw + scalar, v.Roll + scalar); } friend TRotator operator+ (const Angle &scalar, const TRotator &v) { return TRotator(v.Pitch + scalar, v.Yaw + scalar, v.Roll + scalar); } // Scalar subtraction TRotator &operator-= (const Angle &scalar) { Pitch -= scalar, Yaw -= scalar, Roll -= scalar; return *this; } TRotator operator- (const Angle &scalar) const { return TRotator(Pitch - scalar, Yaw - scalar, Roll - scalar); } // Scalar multiplication TRotator &operator*= (const Angle &scalar) { Pitch *= scalar, Yaw *= scalar, Roll *= scalar; return *this; } friend TRotator operator* (const TRotator &v, const Angle &scalar) { return TRotator(v.Pitch * scalar, v.Yaw * scalar, v.Roll * scalar); } friend TRotator operator* (const Angle &scalar, const TRotator &v) { return TRotator(v.Pitch * scalar, v.Yaw * scalar, v.Roll * scalar); } // Scalar division TRotator &operator/= (const Angle &scalar) { Angle mul(1 / scalar.Degrees); Pitch *= scalar, Yaw *= scalar, Roll *= scalar; return *this; } TRotator operator/ (const Angle &scalar) const { Angle mul(1 / scalar.Degrees); return TRotator(Pitch * mul, Yaw * mul, Roll * mul); } // Vector addition TRotator &operator+= (const TRotator &other) { Pitch += other.Pitch, Yaw += other.Yaw, Roll += other.Roll; return *this; } TRotator operator+ (const TRotator &other) const { return TRotator(Pitch + other.Pitch, Yaw + other.Yaw, Roll + other.Roll); } // Vector subtraction TRotator &operator-= (const TRotator &other) { Pitch -= other.Pitch, Yaw -= other.Yaw, Roll - other.Roll; return *this; } TRotator operator- (const TRotator &other) const { return TRotator(Pitch - other.Pitch, Yaw - other.Yaw, Roll - other.Roll); } // Normalize each component TRotator &Normalize180 () { for (int i = -3; i; ++i) { (*this)[i+3].Normalize180(); } return *this; } TRotator &Normalize360 () { for (int i = -3; i; ++i) { (*this)[i+3].Normalize360(); } return *this; } }; // Create a forward vector from a rotation (ignoring roll) template inline TVector3::TVector3 (const TRotator &rot) : X(cos(rot.Pitch)*cos(rot.Yaw)), Y(cos(rot.Pitch)*sin(rot.Yaw)), Z(-sin(rot.Pitch)) { } template inline TMatrix3x3::TMatrix3x3(const TVector3 &axis, TAngle degrees) { double c = cos(degrees), s = sin(degrees), t = 1 - c; double sx = s*axis.X, sy = s*axis.Y, sz = s*axis.Z; double tx, ty, txx, tyy, u, v; tx = t*axis.X; Cells[0][0] = T( (txx=tx*axis.X) + c ); Cells[0][1] = T( (u=tx*axis.Y) - sz ); Cells[0][2] = T( (v=tx*axis.Z) + sy ); ty = t*axis.Y; Cells[1][0] = T( u + sz ); Cells[1][1] = T( (tyy=ty*axis.Y) + c ); Cells[1][2] = T( (u=ty*axis.Z) - sx ); Cells[2][0] = T( v - sy ); Cells[2][1] = T( u + sx ); Cells[2][2] = T( (t-txx-tyy) + c ); } typedef TVector2 FVector2; typedef TVector3 FVector3; typedef TRotator FRotator; typedef TMatrix3x3 FMatrix3x3; typedef TAngle FAngle; #define FLOAT2FIXED(f) fixed_t((f) * float(65536)) #define FIXED2FLOAT(f) (float(f) / float(65536)) #endif