mirror of
https://github.com/ZDoom/qzdoom-gpl.git
synced 2025-01-19 05:30:49 +00:00
Fix incorrect texture mapping vectors for slopes
This commit is contained in:
parent
8309d8f634
commit
09730bff73
1 changed files with 21 additions and 14 deletions
|
@ -1624,7 +1624,7 @@ void R_DrawTiltedPlane (visplane_t *pl, double _xscale, double _yscale, fixed_t
|
|||
double lxscale, lyscale;
|
||||
double xscale, yscale;
|
||||
FVector3 p, m, n;
|
||||
DAngle ang;
|
||||
double ang, planeang, cosine, sine;
|
||||
double zeroheight;
|
||||
|
||||
if (alpha <= 0)
|
||||
|
@ -1640,37 +1640,44 @@ void R_DrawTiltedPlane (visplane_t *pl, double _xscale, double _yscale, fixed_t
|
|||
|
||||
pviewx = xs_ToFixed(32 - ds_xbits, pl->xform.xOffs * pl->xform.xScale);
|
||||
pviewy = xs_ToFixed(32 - ds_ybits, pl->xform.yOffs * pl->xform.yScale);
|
||||
planeang = (pl->xform.Angle + pl->xform.baseAngle).Radians();
|
||||
|
||||
// p is the texture origin in view space
|
||||
// Don't add in the offsets at this stage, because doing so can result in
|
||||
// errors if the flat is rotated.
|
||||
ang = DAngle(270.) - ViewAngle;
|
||||
p[0] = ViewPos.X * ang.Cos() - ViewPos.Y * ang.Sin();
|
||||
p[2] = ViewPos.X * ang.Sin() + ViewPos.Y * ang.Cos();
|
||||
ang = M_PI*3/2 - ViewAngle.Radians();
|
||||
cosine = cos(ang), sine = sin(ang);
|
||||
p[0] = ViewPos.X * cosine - ViewPos.Y * sine;
|
||||
p[2] = ViewPos.X * sine + ViewPos.Y * cosine;
|
||||
p[1] = pl->height.ZatPoint(0.0, 0.0) - ViewPos.Z;
|
||||
|
||||
// m is the v direction vector in view space
|
||||
ang = DAngle(180.) - ViewAngle;
|
||||
m[0] = yscale * cos(ang.Radians());
|
||||
m[2] = yscale * sin(ang.Radians());
|
||||
ang = ang - M_PI / 2 - planeang;
|
||||
cosine = cos(ang), sine = sin(ang);
|
||||
m[0] = yscale * cosine;
|
||||
m[2] = yscale * sine;
|
||||
// m[1] = pl->height.ZatPointF (0, iyscale) - pl->height.ZatPointF (0,0));
|
||||
// VectorScale2 (m, 64.f/VectorLength(m));
|
||||
|
||||
// n is the u direction vector in view space
|
||||
ang += 90;
|
||||
n[0] = -xscale * cos(ang.Radians());
|
||||
n[2] = -xscale * sin(ang.Radians());
|
||||
#if 0
|
||||
//let's use the sin/cosine we already know instead of computing new ones
|
||||
ang += M_PI/2
|
||||
n[0] = -xscale * cos(ang);
|
||||
n[2] = -xscale * sin(ang);
|
||||
#else
|
||||
n[0] = xscale * sine;
|
||||
n[2] = -xscale * cosine;
|
||||
#endif
|
||||
// n[1] = pl->height.ZatPointF (ixscale, 0) - pl->height.ZatPointF (0,0));
|
||||
// VectorScale2 (n, 64.f/VectorLength(n));
|
||||
|
||||
// This code keeps the texture coordinates constant across the x,y plane no matter
|
||||
// how much you slope the surface. Use the commented-out code above instead to keep
|
||||
// the textures a constant size across the surface's plane instead.
|
||||
ang = pl->xform.Angle + pl->xform.baseAngle;
|
||||
double cosine = cos(ang.Radians()), sine = sin(ang.Radians());
|
||||
cosine = cos(planeang), sine = sin(planeang);
|
||||
m[1] = pl->height.ZatPoint(ViewPos.X + yscale * sine, ViewPos.Y + yscale * cosine) - zeroheight;
|
||||
ang += 90;
|
||||
n[1] = pl->height.ZatPoint(ViewPos.X + xscale * sine, ViewPos.Y + xscale * cosine) - zeroheight;
|
||||
n[1] = pl->height.ZatPoint(ViewPos.X - xscale * cosine, ViewPos.Y + xscale * sine) - zeroheight;
|
||||
|
||||
plane_su = p ^ m;
|
||||
plane_sv = p ^ n;
|
||||
|
|
Loading…
Reference in a new issue