qzdoom-gpl/src/p_sight.cpp

738 lines
18 KiB
C++
Raw Normal View History

//**************************************************************************
//**
//** p_sight.cpp : Heretic 2 : Raven Software, Corp.
//**
//** $RCSfile: p_sight.c,v $
//** $Revision: 1.1 $
//** $Date: 95/05/11 00:22:50 $
//** $Author: bgokey $
//**
//**************************************************************************
#include <assert.h>
#include "doomdef.h"
#include "i_system.h"
#include "p_local.h"
#include "m_random.h"
#include "m_bbox.h"
#include "p_lnspec.h"
#include "g_level.h"
// State.
#include "r_state.h"
#include "stats.h"
static FRandom pr_botchecksight ("BotCheckSight");
static FRandom pr_checksight ("CheckSight");
/*
==============================================================================
P_CheckSight
This uses specialized forms of the maputils routines for optimized performance
==============================================================================
*/
// Performance meters
static int sightcounts[6];
static cycle_t SightCycles;
static cycle_t MaxSightCycles;
static TArray<intercept_t> intercepts (128);
class SightCheck
{
fixed_t sightzstart; // eye z of looker
const AActor * sightthing;
const AActor * seeingthing;
fixed_t lastztop; // z at last line
fixed_t lastzbottom; // z at last line
sector_t * lastsector; // last sector being entered by trace
fixed_t topslope, bottomslope; // slopes to top and bottom of target
int SeePastBlockEverything, SeePastShootableLines;
divline_t trace;
int myseethrough;
bool PTR_SightTraverse (intercept_t *in);
bool P_SightCheckLine (line_t *ld);
bool P_SightBlockLinesIterator (int x, int y);
bool P_SightTraverseIntercepts ();
public:
bool P_SightPathTraverse (fixed_t x1, fixed_t y1, fixed_t x2, fixed_t y2);
SightCheck(const AActor * t1, const AActor * t2, int flags)
{
lastztop = lastzbottom = sightzstart = t1->z + t1->height - (t1->height>>2);
lastsector = t1->Sector;
sightthing=t1;
seeingthing=t2;
bottomslope = t2->z - sightzstart;
topslope = bottomslope + t2->height;
SeePastBlockEverything = flags & 6;
SeePastShootableLines = flags & 4;
myseethrough = FF_SEETHROUGH;
}
};
/*
==============
=
= PTR_SightTraverse
=
==============
*/
/*
static bool PTR_SightTraverse (intercept_t *in)
*/
bool SightCheck::PTR_SightTraverse (intercept_t *in)
{
line_t *li;
fixed_t slope;
- VC++ doesn't seem to like the TArray serializer so I added a workaround to be able to save the 3dMidtex attachment info. - Fixed: The TArray serializer needs to be declared as a friend of TArray in order to be able to access its fields. - Since there are no backwards compatibility issues due to savegame version bumping I closed all gaps in the level flag set. - Bumped min. Savegame version and Netgame version for 3dMidtex related changes. - Changed Jump and Crouch DMFlags into 3-way switches: 0: map default, 1: off, 2: on. Since I needed new bits the rest of the DMFlag bit values had to be changed as a result. - fixed: PTR_SlideTraverse didn't check ML_BLOCKMONSTERS for sliding actors without MF3_NOBLOCKMONST. - Added MAPINFO commands 'checkswitchrange' and 'nocheckswitchrange' that can enable or disable switch range checking globally per map. - Changed ML_3DMIDTEX to force ML_CHECKSWITCHRANGE. - Added a ML_CHECKSWITCHRANGE flag which allows checking whether the player can actually reach the switch he wants to use. - Made DActiveButton::EWhere global so that I can use it outside thr DActiveButton class. March 17, 2008 (Changes by Graf Zahl) - Changed P_LineOpening to pass its result in a struct instead of global variables. - Added Eternity's 3DMIDTEX feature (no Eternity code used though.) It should be feature complete with the exception of the ML_BLOCKMONSTERS flag handling. That particular part of Eternity's implementation is sub-optimal because it hijacks an existing flag and doesn't seem to make much sense to me. Maybe I'll implement it as a separate flag later. SVN r810 (trunk)
2008-03-18 18:18:18 +00:00
FLineOpening open;
li = in->d.line;
//
// crosses a two sided line
//
fixed_t trX=trace.x + FixedMul (trace.dx, in->frac);
fixed_t trY=trace.y + FixedMul (trace.dy, in->frac);
P_LineOpening (open, NULL, li, trX, trY);
- VC++ doesn't seem to like the TArray serializer so I added a workaround to be able to save the 3dMidtex attachment info. - Fixed: The TArray serializer needs to be declared as a friend of TArray in order to be able to access its fields. - Since there are no backwards compatibility issues due to savegame version bumping I closed all gaps in the level flag set. - Bumped min. Savegame version and Netgame version for 3dMidtex related changes. - Changed Jump and Crouch DMFlags into 3-way switches: 0: map default, 1: off, 2: on. Since I needed new bits the rest of the DMFlag bit values had to be changed as a result. - fixed: PTR_SlideTraverse didn't check ML_BLOCKMONSTERS for sliding actors without MF3_NOBLOCKMONST. - Added MAPINFO commands 'checkswitchrange' and 'nocheckswitchrange' that can enable or disable switch range checking globally per map. - Changed ML_3DMIDTEX to force ML_CHECKSWITCHRANGE. - Added a ML_CHECKSWITCHRANGE flag which allows checking whether the player can actually reach the switch he wants to use. - Made DActiveButton::EWhere global so that I can use it outside thr DActiveButton class. March 17, 2008 (Changes by Graf Zahl) - Changed P_LineOpening to pass its result in a struct instead of global variables. - Added Eternity's 3DMIDTEX feature (no Eternity code used though.) It should be feature complete with the exception of the ML_BLOCKMONSTERS flag handling. That particular part of Eternity's implementation is sub-optimal because it hijacks an existing flag and doesn't seem to make much sense to me. Maybe I'll implement it as a separate flag later. SVN r810 (trunk)
2008-03-18 18:18:18 +00:00
if (open.range <= 0) // quick test for totally closed doors
return false; // stop
// check bottom
- VC++ doesn't seem to like the TArray serializer so I added a workaround to be able to save the 3dMidtex attachment info. - Fixed: The TArray serializer needs to be declared as a friend of TArray in order to be able to access its fields. - Since there are no backwards compatibility issues due to savegame version bumping I closed all gaps in the level flag set. - Bumped min. Savegame version and Netgame version for 3dMidtex related changes. - Changed Jump and Crouch DMFlags into 3-way switches: 0: map default, 1: off, 2: on. Since I needed new bits the rest of the DMFlag bit values had to be changed as a result. - fixed: PTR_SlideTraverse didn't check ML_BLOCKMONSTERS for sliding actors without MF3_NOBLOCKMONST. - Added MAPINFO commands 'checkswitchrange' and 'nocheckswitchrange' that can enable or disable switch range checking globally per map. - Changed ML_3DMIDTEX to force ML_CHECKSWITCHRANGE. - Added a ML_CHECKSWITCHRANGE flag which allows checking whether the player can actually reach the switch he wants to use. - Made DActiveButton::EWhere global so that I can use it outside thr DActiveButton class. March 17, 2008 (Changes by Graf Zahl) - Changed P_LineOpening to pass its result in a struct instead of global variables. - Added Eternity's 3DMIDTEX feature (no Eternity code used though.) It should be feature complete with the exception of the ML_BLOCKMONSTERS flag handling. That particular part of Eternity's implementation is sub-optimal because it hijacks an existing flag and doesn't seem to make much sense to me. Maybe I'll implement it as a separate flag later. SVN r810 (trunk)
2008-03-18 18:18:18 +00:00
slope = FixedDiv (open.bottom - sightzstart, in->frac);
if (slope > bottomslope)
bottomslope = slope;
// check top
- VC++ doesn't seem to like the TArray serializer so I added a workaround to be able to save the 3dMidtex attachment info. - Fixed: The TArray serializer needs to be declared as a friend of TArray in order to be able to access its fields. - Since there are no backwards compatibility issues due to savegame version bumping I closed all gaps in the level flag set. - Bumped min. Savegame version and Netgame version for 3dMidtex related changes. - Changed Jump and Crouch DMFlags into 3-way switches: 0: map default, 1: off, 2: on. Since I needed new bits the rest of the DMFlag bit values had to be changed as a result. - fixed: PTR_SlideTraverse didn't check ML_BLOCKMONSTERS for sliding actors without MF3_NOBLOCKMONST. - Added MAPINFO commands 'checkswitchrange' and 'nocheckswitchrange' that can enable or disable switch range checking globally per map. - Changed ML_3DMIDTEX to force ML_CHECKSWITCHRANGE. - Added a ML_CHECKSWITCHRANGE flag which allows checking whether the player can actually reach the switch he wants to use. - Made DActiveButton::EWhere global so that I can use it outside thr DActiveButton class. March 17, 2008 (Changes by Graf Zahl) - Changed P_LineOpening to pass its result in a struct instead of global variables. - Added Eternity's 3DMIDTEX feature (no Eternity code used though.) It should be feature complete with the exception of the ML_BLOCKMONSTERS flag handling. That particular part of Eternity's implementation is sub-optimal because it hijacks an existing flag and doesn't seem to make much sense to me. Maybe I'll implement it as a separate flag later. SVN r810 (trunk)
2008-03-18 18:18:18 +00:00
slope = FixedDiv (open.top - sightzstart, in->frac);
if (slope < topslope)
topslope = slope;
if (topslope <= bottomslope)
return false; // stop
#ifdef _3DFLOORS
// now handle 3D-floors
if(li->frontsector->e->XFloor.ffloors.Size() || li->backsector->e->XFloor.ffloors.Size())
{
int frontflag;
frontflag = P_PointOnLineSide(sightthing->x, sightthing->y, li);
//Check 3D FLOORS!
for(int i=1;i<=2;i++)
{
sector_t * s=i==1? li->frontsector:li->backsector;
fixed_t highslope, lowslope;
fixed_t topz= FixedMul (topslope, in->frac) + sightzstart;
fixed_t bottomz= FixedMul (bottomslope, in->frac) + sightzstart;
for(unsigned int j=0;j<s->e->XFloor.ffloors.Size();j++)
{
F3DFloor* rover=s->e->XFloor.ffloors[j];
if((rover->flags & FF_SEETHROUGH) == myseethrough || !(rover->flags & FF_EXISTS)) continue;
fixed_t ff_bottom=rover->bottom.plane->ZatPoint(trX, trY);
fixed_t ff_top=rover->top.plane->ZatPoint(trX, trY);
highslope = FixedDiv (ff_top - sightzstart, in->frac);
lowslope = FixedDiv (ff_bottom - sightzstart, in->frac);
if (highslope>=topslope)
{
// blocks completely
if (lowslope<=bottomslope) return false;
// blocks upper edge of view
if (lowslope<topslope) topslope=lowslope;
}
else if (lowslope<=bottomslope)
{
// blocks lower edge of view
if (highslope>bottomslope) bottomslope=highslope;
}
else
{
// the 3D-floor is inside the viewing cone but neither clips the top nor the bottom so by
// itself it can't be view blocking.
// However, if there's a 3D-floor on the other side that obstructs the same vertical range
// the 2 together will block sight.
sector_t * sb=i==2? li->frontsector:li->backsector;
for(unsigned int k=0;k<sb->e->XFloor.ffloors.Size();k++)
{
F3DFloor* rover2=sb->e->XFloor.ffloors[k];
if((rover2->flags & FF_SEETHROUGH) == myseethrough || !(rover2->flags & FF_EXISTS)) continue;
fixed_t ffb_bottom=rover2->bottom.plane->ZatPoint(trX, trY);
fixed_t ffb_top=rover2->top.plane->ZatPoint(trX, trY);
if ( (ffb_bottom >= ff_bottom && ffb_bottom<=ff_top) ||
(ffb_top <= ff_top && ffb_top >= ff_bottom) ||
(ffb_top >= ff_top && ffb_bottom <= ff_bottom) ||
(ffb_top <= ff_top && ffb_bottom >= ff_bottom) )
{
return false;
}
}
}
// trace is leaving a sector with a 3d-floor
if (s==lastsector && frontflag==i-1)
{
// upper slope intersects with this 3d-floor
if (lastztop<=ff_bottom && topz>ff_top)
{
topslope=lowslope;
}
// lower slope intersects with this 3d-floor
if (lastzbottom>=ff_top && bottomz<ff_top)
{
bottomslope=highslope;
}
}
if (topslope <= bottomslope) return false; // stop
}
}
lastsector = frontflag==0 ? li->backsector : li->frontsector;
}
else lastsector=NULL; // don't need it if there are no 3D-floors
lastztop= FixedMul (topslope, in->frac) + sightzstart;
lastzbottom= FixedMul (bottomslope, in->frac) + sightzstart;
#endif
return true; // keep going
}
/*
==================
=
= P_SightCheckLine
=
===================
*/
bool SightCheck::P_SightCheckLine (line_t *ld)
{
divline_t dl;
if (ld->validcount == validcount)
{
return true;
}
ld->validcount = validcount;
if (P_PointOnDivlineSide (ld->v1->x, ld->v1->y, &trace) ==
P_PointOnDivlineSide (ld->v2->x, ld->v2->y, &trace))
{
return true; // line isn't crossed
}
P_MakeDivline (ld, &dl);
if (P_PointOnDivlineSide (trace.x, trace.y, &dl) ==
P_PointOnDivlineSide (trace.x+trace.dx, trace.y+trace.dy, &dl))
{
return true; // line isn't crossed
}
// try to early out the check
if (!ld->backsector || !(ld->flags & ML_TWOSIDED))
return false; // stop checking
// [RH] don't see past block everything lines
if (ld->flags & ML_BLOCKEVERYTHING)
{
if (!SeePastBlockEverything)
{
return false;
}
// Pretend the other side is invisible if this is not an impact line
// that runs a script on the current map. Used to prevent monsters
// from trying to attack through a block everything line unless
// there's a chance their attack will make it nonblocking.
if (!SeePastShootableLines)
{
if (!(ld->activation & SPAC_Impact))
{
return false;
}
if (ld->special != ACS_Execute && ld->special != ACS_ExecuteAlways)
{
return false;
}
if (ld->args[1] != 0 && ld->args[1] != level.levelnum)
{
return false;
}
}
}
sightcounts[3]++;
// store the line for later intersection testing
intercept_t newintercept;
newintercept.isaline = true;
newintercept.d.line = ld;
intercepts.Push (newintercept);
return true;
}
/*
==================
=
= P_SightBlockLinesIterator
=
===================
*/
bool SightCheck::P_SightBlockLinesIterator (int x, int y)
{
int offset;
int *list;
polyblock_t *polyLink;
int i;
extern polyblock_t **PolyBlockMap;
offset = y*bmapwidth+x;
polyLink = PolyBlockMap[offset];
while (polyLink)
{
if (polyLink->polyobj)
{ // only check non-empty links
if (polyLink->polyobj->validcount != validcount)
{
polyLink->polyobj->validcount = validcount;
for (i = 0; i < polyLink->polyobj->numlines; i++)
{
if (!P_SightCheckLine (polyLink->polyobj->lines[i]))
return false;
}
}
}
polyLink = polyLink->next;
}
offset = *(blockmap + offset);
for (list = blockmaplump + offset + 1; *list != -1; list++)
{
if (!P_SightCheckLine (&lines[*list]))
return false;
}
return true; // everything was checked
}
/*
====================
=
= P_SightTraverseIntercepts
=
= Returns true if the traverser function returns true for all lines
====================
*/
bool SightCheck::P_SightTraverseIntercepts ()
{
unsigned count;
fixed_t dist;
intercept_t *scan, *in;
unsigned scanpos;
divline_t dl;
count = intercepts.Size ();
//
// calculate intercept distance
//
for (scanpos = 0; scanpos < intercepts.Size (); scanpos++)
{
scan = &intercepts[scanpos];
P_MakeDivline (scan->d.line, &dl);
scan->frac = P_InterceptVector (&trace, &dl);
}
//
// go through in order
// [RH] Is it really necessary to go through in order? All we care about is if
// the trace is obstructed, not what specifically obstructed it.
//
in = NULL;
while (count--)
{
dist = FIXED_MAX;
for (scanpos = 0; scanpos < intercepts.Size (); scanpos++)
{
scan = &intercepts[scanpos];
if (scan->frac < dist)
{
dist = scan->frac;
in = scan;
}
}
if (in != NULL)
{
if (!PTR_SightTraverse (in))
return false; // don't bother going farther
in->frac = FIXED_MAX;
}
}
#ifdef _3DFLOORS
if (lastsector==seeingthing->Sector && lastsector->e->XFloor.ffloors.Size())
{
// we must do one last check whether the trace has crossed a 3D floor in the last sector
fixed_t topz= topslope + sightzstart;
fixed_t bottomz= bottomslope + sightzstart;
for(unsigned int i=0;i<lastsector->e->XFloor.ffloors.Size();i++)
{
F3DFloor* rover = lastsector->e->XFloor.ffloors[i];
if((rover->flags & FF_SOLID) == myseethrough || !(rover->flags & FF_EXISTS)) continue;
fixed_t ff_bottom=rover->bottom.plane->ZatPoint(seeingthing->x, seeingthing->y);
fixed_t ff_top=rover->top.plane->ZatPoint(seeingthing->x, seeingthing->y);
if (lastztop<=ff_bottom && topz>ff_bottom && lastzbottom<=ff_bottom && bottomz>ff_bottom) return false;
if (lastzbottom>=ff_top && bottomz<ff_top && lastztop>=ff_top && topz<ff_top) return false;
}
}
#endif
return true; // everything was traversed
}
/*
==================
=
= P_SightPathTraverse
=
= Traces a line from x1,y1 to x2,y2, calling the traverser function for each block
= Returns true if the traverser function returns true for all lines
==================
*/
bool SightCheck::P_SightPathTraverse (fixed_t x1, fixed_t y1, fixed_t x2, fixed_t y2)
{
fixed_t xt1,yt1,xt2,yt2;
fixed_t xstep,ystep;
fixed_t partialx, partialy;
fixed_t xintercept, yintercept;
int mapx, mapy, mapxstep, mapystep;
int count;
validcount++;
intercepts.Clear ();
#ifdef _3DFLOORS
// for FF_SEETHROUGH the following rule applies:
// If the viewer is in an area without FF_SEETHROUGH he can only see into areas without this flag
// If the viewer is in an area with FF_SEETHROUGH he can only see into areas with this flag
for(unsigned int i=0;i<lastsector->e->XFloor.ffloors.Size();i++)
{
F3DFloor* rover = lastsector->e->XFloor.ffloors[i];
if(!(rover->flags & FF_EXISTS)) continue;
fixed_t ff_bottom=rover->bottom.plane->ZatPoint(sightthing->x, sightthing->y);
fixed_t ff_top=rover->top.plane->ZatPoint(sightthing->x, sightthing->y);
if (sightzstart < ff_top && sightzstart >= ff_bottom)
{
myseethrough = rover->flags & FF_SEETHROUGH;
break;
}
}
#endif
if ( ((x1-bmaporgx)&(MAPBLOCKSIZE-1)) == 0)
x1 += FRACUNIT; // don't side exactly on a line
if ( ((y1-bmaporgy)&(MAPBLOCKSIZE-1)) == 0)
y1 += FRACUNIT; // don't side exactly on a line
trace.x = x1;
trace.y = y1;
trace.dx = x2 - x1;
trace.dy = y2 - y1;
x1 -= bmaporgx;
y1 -= bmaporgy;
xt1 = x1>>MAPBLOCKSHIFT;
yt1 = y1>>MAPBLOCKSHIFT;
x2 -= bmaporgx;
y2 -= bmaporgy;
xt2 = x2>>MAPBLOCKSHIFT;
yt2 = y2>>MAPBLOCKSHIFT;
// points should never be out of bounds, but check once instead of
// each block
if (xt1<0 || yt1<0 || xt1>=bmapwidth || yt1>=bmapheight
|| xt2<0 || yt2<0 || xt2>=bmapwidth || yt2>=bmapheight)
return false;
if (xt2 > xt1)
{
mapxstep = 1;
partialx = FRACUNIT - ((x1>>MAPBTOFRAC)&(FRACUNIT-1));
ystep = FixedDiv (y2-y1,abs(x2-x1));
}
else if (xt2 < xt1)
{
mapxstep = -1;
partialx = (x1>>MAPBTOFRAC)&(FRACUNIT-1);
ystep = FixedDiv (y2-y1,abs(x2-x1));
}
else
{
mapxstep = 0;
partialx = FRACUNIT;
ystep = 256*FRACUNIT;
}
yintercept = (y1>>MAPBTOFRAC) + FixedMul (partialx, ystep);
if (yt2 > yt1)
{
mapystep = 1;
partialy = FRACUNIT - ((y1>>MAPBTOFRAC)&(FRACUNIT-1));
xstep = FixedDiv (x2-x1,abs(y2-y1));
}
else if (yt2 < yt1)
{
mapystep = -1;
partialy = (y1>>MAPBTOFRAC)&(FRACUNIT-1);
xstep = FixedDiv (x2-x1,abs(y2-y1));
}
else
{
mapystep = 0;
partialy = FRACUNIT;
xstep = 256*FRACUNIT;
}
xintercept = (x1>>MAPBTOFRAC) + FixedMul (partialy, xstep);
// [RH] Fix for traces that pass only through blockmap corners. In that case,
// xintercept and yintercept can both be set ahead of mapx and mapy, so the
// for loop would never advance anywhere.
if (abs(xstep) == FRACUNIT && abs(ystep) == FRACUNIT)
{
if (ystep < 0)
{
partialx = FRACUNIT - partialx;
}
if (xstep < 0)
{
partialy = FRACUNIT - partialy;
}
if (partialx == partialy)
{
xintercept = xt1 << FRACBITS;
yintercept = yt1 << FRACBITS;
}
}
//
// step through map blocks
// Count is present to prevent a round off error from skipping the break
mapx = xt1;
mapy = yt1;
for (count = 0 ; count < 100 ; count++)
{
if (!P_SightBlockLinesIterator (mapx, mapy))
{
sightcounts[1]++;
return false; // early out
}
if ((mapxstep | mapystep) == 0)
break;
switch ((((yintercept >> FRACBITS) == mapy) << 1) | ((xintercept >> FRACBITS) == mapx))
{
case 0: // neither xintercept nor yintercept match!
sightcounts[5]++;
// Continuing won't make things any better, so we might as well stop right here
count = 100;
break;
case 1: // xintercept matches
xintercept += xstep;
mapy += mapystep;
if (mapy == yt2)
mapystep = 0;
break;
case 2: // yintercept matches
yintercept += ystep;
mapx += mapxstep;
if (mapx == xt2)
mapxstep = 0;
break;
case 3: // xintercept and yintercept both match
sightcounts[4]++;
// The trace is exiting a block through its corner. Not only does the block
// being entered need to be checked (which will happen when this loop
// continues), but the other two blocks adjacent to the corner also need to
// be checked.
if (!P_SightBlockLinesIterator (mapx + mapxstep, mapy) ||
!P_SightBlockLinesIterator (mapx, mapy + mapystep))
{
sightcounts[1]++;
return false;
}
xintercept += xstep;
yintercept += ystep;
mapx += mapxstep;
mapy += mapystep;
if (mapx == xt2)
mapxstep = 0;
if (mapy == yt2)
mapystep = 0;
break;
}
}
//
// couldn't early out, so go through the sorted list
//
sightcounts[2]++;
return P_SightTraverseIntercepts ( );
}
/*
=====================
=
= P_CheckSight
=
= Returns true if a straight line between t1 and t2 is unobstructed
= look from eyes of t1 to any part of t2
=
= killough 4/20/98: cleaned up, made to use new LOS struct
=
=====================
*/
bool P_CheckSight (const AActor *t1, const AActor *t2, int flags)
{
SightCycles.Clock();
bool res;
assert (t1 != NULL);
assert (t2 != NULL);
if (t1 == NULL || t2 == NULL)
{
return false;
}
const sector_t *s1 = t1->Sector;
const sector_t *s2 = t2->Sector;
int pnum = int(s1 - sectors) * numsectors + int(s2 - sectors);
//
// check for trivial rejection
//
if (rejectmatrix != NULL &&
(rejectmatrix[pnum>>3] & (1 << (pnum & 7))))
{
sightcounts[0]++;
res = false; // can't possibly be connected
goto done;
}
//
// check precisely
//
// [RH] Andy Baker's stealth monsters:
// Cannot see an invisible object
- Updated lempar.c to v1.31. - Added .txt files to the list of types (wad, zip, and pk3) that can be loaded without listing them after -file. - Fonts that are created by the ACS setfont command to wrap a texture now support animated textures. - FON2 fonts can now use their full palette for CR_UNTRANSLATED when drawn with the hardware 2D path instead of being restricted to the game palette. - Fixed: Toggling vid_vsync would reset the displayed fullscreen gamma to 1 on a Radeon 9000. - Added back the off-by-one palette handling, but in a much more limited scope than before. The skipped entry is assumed to always be at 248, and it is assumed that all Shader Model 1.4 cards suffer from this. That's because all SM1.4 cards are based on variants of the ATI R200 core, and the RV250 in a Radeon 9000 craps up like this. I see no reason to assume that other flavors of the R200 are any different. (Interesting note: With the Radeon 9000, D3DTADDRESS_CLAMP is an invalid address mode when using the debug Direct3D 9 runtime, but it works perfectly fine with the retail Direct3D 9 runtime.) (Insight: The R200 probably uses bytes for all its math inside pixel shaders. That would explain perfectly why I can't use constants greater than 1 with PS1.4 and why it can't do an exact mapping to every entry in the color palette. - Fixed: The software shaded drawer did not work for 2D, because its selected "color"map was replaced with the identitymap before being used. - Fixed: I cannot use Printf to output messages before the framebuffer was completely setup, meaning that Shader Model 1.4 cards could not change resolution. - I have decided to let remap palettes specify variable alpha values for their colors. D3DFB no longer forces them to 255. - Updated re2c to version 0.12.3. - Fixed: A_Wander used threshold as a timer, when it should have used reactiontime. - Fixed: A_CustomRailgun would not fire at all for actors without a target when the aim parameter was disabled. - Made the warp command work in multiplayer, again courtesy of Karate Chris. - Fixed: Trying to spawn a bot while not in a game made for a crashing time. (Patch courtesy of Karate Chris.) - Removed some floating point math from hu_scores.cpp that somebody's GCC gave warnings for (not mine, though). - Fixed: The SBarInfo drawbar command crashed if the sprite image was unavailable. - Fixed: FString::operator=(const char *) did not release its old buffer when being assigned to the null string. - The scanner no longer has an upper limit on the length of strings it accepts, though short strings will be faster than long ones. - Moved all the text scanning functions into a class. Mainly, this means that multiple script scanner states can be stored without being forced to do so recursively. I think I might be taking advantage of that in the near future. Possibly. Maybe. - Removed some potential buffer overflows from the decal parser. - Applied Blzut3's SBARINFO update #9: * Fixed: When using even length values in drawnumber it would cap to a 98 value instead of a 99 as intended. * The SBarInfo parser can now accept negatives for coordinates. This doesn't allow much right now, but later I plan to add better fullscreen hud support in which the negatives will be more useful. This also cleans up the source a bit since all calls for (x, y) coordinates are with the function getCoordinates(). - Added support for stencilling actors. - Added support for non-black colors specified with DTA_ColorOverlay to the software renderer. - Fixed: The inverse, gold, red, and green fixed colormaps each allocated space for 32 different colormaps, even though each only used the first one. - Added two new blending flags to make reverse subtract blending more useful: STYLEF_InvertSource and STYLEF_InvertOverlay. These invert the color that gets blended with the background, since that seems like a good idea for reverse subtraction. They also work with the other two blending operations. - Added subtract and reverse subtract blending operations to the renderer. Since the ERenderStyle enumeration was getting rather unwieldy, I converted it into a new FRenderStyle structure that lets each parameter of the blending equation be set separately. This simplified the set up for the blend quite a bit, and it means a number of new combinations are available by setting the parameters properly. SVN r710 (trunk)
2008-01-25 23:57:44 +00:00
if ((flags & 1) == 0 && ((t2->renderflags & RF_INVISIBLE) || !t2->RenderStyle.IsVisible(t2->alpha)))
{ // small chance of an attack being made anyway
if ((bglobal.m_Thinking ? pr_botchecksight() : pr_checksight()) > 50)
{
res = false;
goto done;
}
}
// killough 4/19/98: make fake floors and ceilings block monster view
if ((s1->GetHeightSec() &&
((t1->z + t1->height <= s1->heightsec->floorplane.ZatPoint (t1->x, t1->y) &&
t2->z >= s1->heightsec->floorplane.ZatPoint (t2->x, t2->y)) ||
(t1->z >= s1->heightsec->ceilingplane.ZatPoint (t1->x, t1->y) &&
t2->z + t1->height <= s1->heightsec->ceilingplane.ZatPoint (t2->x, t2->y))))
||
(s2->GetHeightSec() &&
((t2->z + t2->height <= s2->heightsec->floorplane.ZatPoint (t2->x, t2->y) &&
t1->z >= s2->heightsec->floorplane.ZatPoint (t1->x, t1->y)) ||
(t2->z >= s2->heightsec->ceilingplane.ZatPoint (t2->x, t2->y) &&
t1->z + t2->height <= s2->heightsec->ceilingplane.ZatPoint (t1->x, t1->y)))))
{
res = false;
goto done;
}
// An unobstructed LOS is possible.
// Now look from eyes of t1 to any part of t2.
validcount++;
{
SightCheck s(t1, t2, flags);
res = s.P_SightPathTraverse (t1->x, t1->y, t2->x, t2->y);
}
done:
SightCycles.Unclock();
return res;
}
ADD_STAT (sight)
{
FString out;
out.Format ("%04.1f ms (%04.1f max), %5d %2d%4d%4d%4d%4d\n",
SightCycles.TimeMS(), MaxSightCycles.TimeMS(),
sightcounts[3], sightcounts[0], sightcounts[1], sightcounts[2], sightcounts[4], sightcounts[5]);
return out;
}
void P_ResetSightCounters (bool full)
{
if (full)
{
MaxSightCycles.Reset();
}
if (SightCycles.Time() > MaxSightCycles.Time())
{
MaxSightCycles = SightCycles;
}
SightCycles.Reset();
memset (sightcounts, 0, sizeof(sightcounts));
}