mirror of
https://github.com/ZDoom/gzdoom.git
synced 2025-01-08 11:00:58 +00:00
8b6e09ca09
This was done to clean up the license and to ensure that any commercial fork of the engine has to obey the far stricter requirements concerning source distribution. The old license was compatible with GPLv2 whereas combining GPLv2 and LGPLv3 force a license upgrade to GPLv3. The license of code that originates from ZDoomGL has not been changed.
283 lines
5.5 KiB
C++
283 lines
5.5 KiB
C++
/*
|
|
** gl_geometric.cpp
|
|
**
|
|
**---------------------------------------------------------------------------
|
|
** Copyright 2003 Timothy Stump
|
|
** All rights reserved.
|
|
**
|
|
** Redistribution and use in source and binary forms, with or without
|
|
** modification, are permitted provided that the following conditions
|
|
** are met:
|
|
**
|
|
** 1. Redistributions of source code must retain the above copyright
|
|
** notice, this list of conditions and the following disclaimer.
|
|
** 2. Redistributions in binary form must reproduce the above copyright
|
|
** notice, this list of conditions and the following disclaimer in the
|
|
** documentation and/or other materials provided with the distribution.
|
|
** 3. The name of the author may not be used to endorse or promote products
|
|
** derived from this software without specific prior written permission.
|
|
**
|
|
** THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
|
|
** IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
|
|
** OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
|
|
** IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
|
|
** INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
|
|
** NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
** DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
** THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
** (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
|
|
** THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
**---------------------------------------------------------------------------
|
|
**
|
|
*/
|
|
|
|
|
|
#include <math.h>
|
|
#include <float.h>
|
|
#include "gl/utility/gl_geometric.h"
|
|
|
|
static Vector axis[3] =
|
|
{
|
|
Vector(1.0f, 0.0f, 0.0f),
|
|
Vector(0.0f, 1.0f, 0.0f),
|
|
Vector(0.0f, 0.0f, 1.0f)
|
|
};
|
|
|
|
|
|
|
|
Vector Vector::Cross(Vector &v)
|
|
{
|
|
float x, y, z;
|
|
Vector cp;
|
|
|
|
x = Y() * v.Z() - Z() * v.Y();
|
|
y = Z() * v.X() - X() * v.Z();
|
|
z = X() * v.Y() - Y() * v.X();
|
|
|
|
cp.Set(x, y, z);
|
|
|
|
return cp;
|
|
}
|
|
|
|
|
|
Vector Vector::operator- (Vector &v)
|
|
{
|
|
float x, y, z;
|
|
Vector vec;
|
|
|
|
x = X() - v.X();
|
|
y = Y() - v.Y();
|
|
z = Z() - v.Z();
|
|
|
|
vec.Set(x, y, z);
|
|
|
|
return vec;
|
|
}
|
|
|
|
|
|
Vector Vector::operator+ (Vector &v)
|
|
{
|
|
float x, y, z;
|
|
Vector vec;
|
|
|
|
x = X() + v.X();
|
|
y = Y() + v.Y();
|
|
z = Z() + v.Z();
|
|
|
|
vec.Set(x, y, z);
|
|
|
|
return vec;
|
|
}
|
|
|
|
|
|
Vector Vector::operator* (float f)
|
|
{
|
|
Vector vec(X(), Y(), Z());
|
|
|
|
vec.Scale(f);
|
|
|
|
return vec;
|
|
}
|
|
|
|
|
|
Vector Vector::operator/ (float f)
|
|
{
|
|
Vector vec(X(), Y(), Z());
|
|
|
|
vec.Scale(1.f / f);
|
|
|
|
return vec;
|
|
}
|
|
|
|
|
|
bool Vector::operator== (Vector &v)
|
|
{
|
|
return X() == v.X() && Y() == v.Y() && Z() == v.Z();
|
|
}
|
|
|
|
|
|
void Vector::GetRightUp(Vector &right, Vector &up)
|
|
{
|
|
Vector n(X(), Y(), Z());
|
|
Vector fn(fabsf(n.X()), fabsf(n.Y()), fabsf(n.Z()));
|
|
int major = 0;
|
|
|
|
if (fn[1] > fn[major]) major = 1;
|
|
if (fn[2] > fn[major]) major = 2;
|
|
|
|
// build right vector by hand
|
|
if (fabsf(fn[0]-1.0f) < FLT_EPSILON || fabsf(fn[1]-1.0f) < FLT_EPSILON || fabsf(fn[2]-1.0f) < FLT_EPSILON)
|
|
{
|
|
if (major == 0 && n[0] > 0.f)
|
|
{
|
|
right.Set(0.f, 0.f, -1.f);
|
|
}
|
|
else if (major == 0)
|
|
{
|
|
right.Set(0.f, 0.f, 1.f);
|
|
}
|
|
|
|
if (major == 1 || (major == 2 && n[2] > 0.f))
|
|
{
|
|
right.Set(1.f, 0.f, 0.f);
|
|
}
|
|
|
|
if (major == 2 && n[2] < 0.0f)
|
|
{
|
|
right.Set(-1.f, 0.f, 0.f);
|
|
}
|
|
}
|
|
else
|
|
{
|
|
right = axis[major].Cross(n);
|
|
}
|
|
|
|
up = n.Cross(right);
|
|
right.Normalize();
|
|
up.Normalize();
|
|
}
|
|
|
|
|
|
void Vector::Scale(float scale)
|
|
{
|
|
float x, y, z;
|
|
|
|
x = X() * scale;
|
|
y = Y() * scale;
|
|
z = Z() * scale;
|
|
|
|
Set(x, y, z);
|
|
}
|
|
|
|
|
|
Vector Vector::ProjectVector(Vector &a)
|
|
{
|
|
Vector res, b;
|
|
|
|
b.Set(X(), Y(), Z());
|
|
res.Set(a.X(), a.Y(), a.Z());
|
|
|
|
res.Scale(a.Dot(b) / a.Dot(a));
|
|
|
|
return res;
|
|
}
|
|
|
|
|
|
Vector Vector::ProjectPlane(Vector &right, Vector &up)
|
|
{
|
|
Vector src(X(), Y(), Z());
|
|
Vector t1, t2;
|
|
|
|
t1 = src.ProjectVector(right);
|
|
t2 = src.ProjectVector(up);
|
|
|
|
return t1 + t2;
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
void Plane::Init(float *v1, float *v2, float *v3)
|
|
{
|
|
Vector vec1, vec2, vec3;
|
|
|
|
vec1.Set(v1);
|
|
vec2.Set(v2);
|
|
vec3.Set(v3);
|
|
|
|
#ifdef _MSC_VER
|
|
m_normal = (vec2 - vec1).Cross(vec3 - vec1);
|
|
#else
|
|
Vector tmpVec = vec3 - vec1;
|
|
m_normal = (vec2 - vec1).Cross(tmpVec);
|
|
#endif
|
|
m_normal.Normalize();
|
|
m_d = vec3.Dot(m_normal) * -1.f;
|
|
}
|
|
|
|
|
|
#define FNOTEQUAL(a, b) (fabsf(a - b) > 0.001f)
|
|
void Plane::Init(float *verts, int numVerts)
|
|
{
|
|
float *v[3], *t;
|
|
int i, curVert;
|
|
|
|
if (numVerts < 3) return;
|
|
|
|
curVert = 1;
|
|
v[0] = verts + 0;
|
|
for (i = 1; i < numVerts; i++)
|
|
{
|
|
t = verts + (i * 3);
|
|
if (FNOTEQUAL(t[0], v[curVert - 1][0]) || FNOTEQUAL(t[1], v[curVert - 1][1]) || FNOTEQUAL(t[2], v[curVert - 1][2]))
|
|
{
|
|
v[curVert] = t;
|
|
curVert++;
|
|
}
|
|
if (curVert == 3) break;
|
|
}
|
|
|
|
if (curVert != 3)
|
|
{
|
|
// degenerate triangle, no valid normal
|
|
return;
|
|
}
|
|
|
|
Init(v[0], v[1], v[2]);
|
|
}
|
|
|
|
|
|
void Plane::Init(float a, float b, float c, float d)
|
|
{
|
|
m_normal.Set(a, b, c);
|
|
m_d = d / m_normal.Length();
|
|
m_normal.Normalize();
|
|
}
|
|
|
|
|
|
void Plane::Set(secplane_t &plane)
|
|
{
|
|
m_normal.Set((float)plane.Normal().X, (float)plane.Normal().Z, (float)plane.Normal().Y);
|
|
//m_normal.Normalize(); the vector is already normalized
|
|
m_d = (float)plane.fD();
|
|
}
|
|
|
|
|
|
float Plane::DistToPoint(float x, float y, float z)
|
|
{
|
|
Vector p;
|
|
|
|
p.Set(x, y, z);
|
|
|
|
return m_normal.Dot(p) + m_d;
|
|
}
|
|
|
|
|
|
bool Plane::PointOnSide(float x, float y, float z)
|
|
{
|
|
return DistToPoint(x, y, z) < 0.f;
|
|
}
|
|
|
|
|