gzdoom/src/dobject.h

645 lines
17 KiB
C++

/*
** dobject.h
**
**---------------------------------------------------------------------------
** Copyright 1998-2008 Randy Heit
** All rights reserved.
**
** Redistribution and use in source and binary forms, with or without
** modification, are permitted provided that the following conditions
** are met:
**
** 1. Redistributions of source code must retain the above copyright
** notice, this list of conditions and the following disclaimer.
** 2. Redistributions in binary form must reproduce the above copyright
** notice, this list of conditions and the following disclaimer in the
** documentation and/or other materials provided with the distribution.
** 3. The name of the author may not be used to endorse or promote products
** derived from this software without specific prior written permission.
**
** THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
** IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
** OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
** IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
** INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
** NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
** DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
** THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
** (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
** THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
**---------------------------------------------------------------------------
**
*/
#ifndef __DOBJECT_H__
#define __DOBJECT_H__
#include <stdlib.h>
#include "doomtype.h"
#include "i_system.h"
class PClass;
class PType;
class FSerializer;
class DObject;
/*
class DArgs;
class DCanvas;
class DConsoleCommand;
class DConsoleAlias;
class DSeqNode;
class DSeqActorNode;
class DSeqPolyNode;
class DSeqSectorNode;
class DThinker;
class AActor;
class DPolyAction;
class DMovePoly;
class DPolyDoor;
class DRotatePoly;
class DPusher;
class DScroller;
class DSectorEffect;
class DLighting;
class DFireFlicker;
class DFlicker;
class DGlow;
class DGlow2;
class DLightFlash;
class DPhased;
class DStrobe;
class DMover;
class DElevator;
class DMovingCeiling;
class DCeiling;
class DDoor;
class DMovingFloor;
class DFloor;
class DFloorWaggle;
class DPlat;
class DPillar;
*/
class PClassActor;
#define RUNTIME_CLASS_CASTLESS(cls) (cls::RegistrationInfo.MyClass) // Passed a native class name, returns a PClass representing that class
#define RUNTIME_CLASS(cls) ((cls::MetaClass *)RUNTIME_CLASS_CASTLESS(cls)) // Like above, but returns the true type of the meta object
#define RUNTIME_TEMPLATE_CLASS(cls) ((typename cls::MetaClass *)RUNTIME_CLASS_CASTLESS(cls)) // RUNTIME_CLASS, but works with templated parameters on GCC
#define NATIVE_TYPE(object) (object->StaticType()) // Passed an object, returns the type of the C++ class representing the object
// Enumerations for the meta classes created by ClassReg::RegisterClass()
enum
{
CLASSREG_PClass,
CLASSREG_PClassActor,
};
struct ClassReg
{
PClass *MyClass;
const char *Name;
ClassReg *ParentType;
ClassReg *_VMExport;
const size_t *Pointers;
void (*ConstructNative)(void *);
void(*InitNatives)();
unsigned int SizeOf:28;
unsigned int MetaClassNum:4;
PClass *RegisterClass();
void SetupClass(PClass *cls);
};
enum EInPlace { EC_InPlace };
#define DECLARE_ABSTRACT_CLASS(cls,parent) \
public: \
virtual PClass *StaticType() const; \
static ClassReg RegistrationInfo, * const RegistrationInfoPtr; \
typedef parent Super; \
private: \
typedef cls ThisClass;
#define DECLARE_ABSTRACT_CLASS_WITH_META(cls,parent,meta) \
DECLARE_ABSTRACT_CLASS(cls,parent) \
public: \
typedef meta MetaClass; \
MetaClass *GetClass() const { return static_cast<MetaClass *>(DObject::GetClass()); } \
protected: \
enum { MetaClassNum = CLASSREG_##meta }; private: \
#define DECLARE_CLASS(cls,parent) \
DECLARE_ABSTRACT_CLASS(cls,parent) \
private: static void InPlaceConstructor (void *mem);
#define DECLARE_CLASS_WITH_META(cls,parent,meta) \
DECLARE_ABSTRACT_CLASS_WITH_META(cls,parent,meta) \
private: static void InPlaceConstructor (void *mem);
#define HAS_OBJECT_POINTERS \
static const size_t PointerOffsets[];
#if defined(_MSC_VER)
# pragma section(".creg$u",read)
# define _DECLARE_TI(cls) __declspec(allocate(".creg$u")) ClassReg * const cls::RegistrationInfoPtr = &cls::RegistrationInfo;
#else
# define _DECLARE_TI(cls) ClassReg * const cls::RegistrationInfoPtr __attribute__((section(SECTION_CREG))) = &cls::RegistrationInfo;
#endif
#define _IMP_PCLASS(cls, ptrs, create) \
ClassReg cls::RegistrationInfo = {\
nullptr, \
#cls, \
&cls::Super::RegistrationInfo, \
nullptr, \
ptrs, \
create, \
nullptr, \
sizeof(cls), \
cls::MetaClassNum }; \
_DECLARE_TI(cls) \
PClass *cls::StaticType() const { return RegistrationInfo.MyClass; }
#define IMPLEMENT_CLASS(cls, isabstract, ptrs) \
_X_CONSTRUCTOR_##isabstract(cls) \
_IMP_PCLASS(cls, _X_POINTERS_##ptrs(cls), _X_ABSTRACT_##isabstract(cls))
// Taking the address of a field in an object at address > 0 instead of
// address 0 keeps GCC from complaining about possible misuse of offsetof.
// Using 8 to avoid unaligned pointer use.
#define IMPLEMENT_POINTERS_START(cls) const size_t cls::PointerOffsets[] = {
#define IMPLEMENT_POINTER(field) ((size_t)&((ThisClass*)8)->field) - 8,
#define IMPLEMENT_POINTERS_END ~(size_t)0 };
// Possible arguments for the IMPLEMENT_CLASS macro
#define _X_POINTERS_true(cls) cls::PointerOffsets
#define _X_POINTERS_false(cls) nullptr
#define _X_FIELDS_true(cls) nullptr
#define _X_FIELDS_false(cls) nullptr
#define _X_CONSTRUCTOR_true(cls)
#define _X_CONSTRUCTOR_false(cls) void cls::InPlaceConstructor(void *mem) { new((EInPlace *)mem) cls; }
#define _X_ABSTRACT_true(cls) nullptr
#define _X_ABSTRACT_false(cls) cls::InPlaceConstructor
#define _X_VMEXPORT_true(cls) nullptr
#define _X_VMEXPORT_false(cls) nullptr
enum EObjectFlags
{
// GC flags
OF_White0 = 1 << 0, // Object is white (type 0)
OF_White1 = 1 << 1, // Object is white (type 1)
OF_Black = 1 << 2, // Object is black
OF_Fixed = 1 << 3, // Object is fixed (should not be collected)
OF_Rooted = 1 << 4, // Object is soft-rooted
OF_EuthanizeMe = 1 << 5, // Object wants to die
OF_Cleanup = 1 << 6, // Object is now being deleted by the collector
OF_YesReallyDelete = 1 << 7, // Object is being deleted outside the collector, and this is okay, so don't print a warning
OF_WhiteBits = OF_White0 | OF_White1,
OF_MarkBits = OF_WhiteBits | OF_Black,
// Other flags
OF_JustSpawned = 1 << 8, // Thinker was spawned this tic
OF_SerialSuccess = 1 << 9, // For debugging Serialize() calls
OF_Sentinel = 1 << 10, // Object is serving as the sentinel in a ring list
OF_Transient = 1 << 11, // Object should not be archived (references to it will be nulled on disk)
OF_Spawned = 1 << 12, // Thinker was spawned at all (some thinkers get deleted before spawning)
OF_Released = 1 << 13, // Object was released from the GC system and should not be processed by GC function
OF_Abstract = 1 << 14, // Marks a class that cannot be created with CreateNew
};
template<class T> class TObjPtr;
namespace GC
{
enum EGCState
{
GCS_Pause,
GCS_Propagate,
GCS_Sweep,
GCS_Finalize
};
// Number of bytes currently allocated through M_Malloc/M_Realloc.
extern size_t AllocBytes;
// Amount of memory to allocate before triggering a collection.
extern size_t Threshold;
// List of gray objects.
extern DObject *Gray;
// List of every object.
extern DObject *Root;
// Current white value for potentially-live objects.
extern uint32 CurrentWhite;
// Current collector state.
extern EGCState State;
// Position of GC sweep in the list of objects.
extern DObject **SweepPos;
// Size of GC pause.
extern int Pause;
// Size of GC steps.
extern int StepMul;
// Is this the final collection just before exit?
extern bool FinalGC;
// Current white value for known-dead objects.
static inline uint32 OtherWhite()
{
return CurrentWhite ^ OF_WhiteBits;
}
// Frees all objects, whether they're dead or not.
void FreeAll();
// Does one collection step.
void Step();
// Does a complete collection.
void FullGC();
// Handles the grunt work for a write barrier.
void Barrier(DObject *pointing, DObject *pointed);
// Handles a write barrier.
static inline void WriteBarrier(DObject *pointing, DObject *pointed);
// Handles a write barrier for a pointer that isn't inside an object.
static inline void WriteBarrier(DObject *pointed);
// Handles a read barrier.
template<class T> inline T *ReadBarrier(T *&obj)
{
if (obj == NULL || !(obj->ObjectFlags & OF_EuthanizeMe))
{
return obj;
}
return obj = NULL;
}
// Check if it's time to collect, and do a collection step if it is.
static inline void CheckGC()
{
if (AllocBytes >= Threshold)
Step();
}
// Forces a collection to start now.
static inline void StartCollection()
{
Threshold = AllocBytes;
}
// Marks a white object gray. If the object wants to die, the pointer
// is NULLed instead.
void Mark(DObject **obj);
// Marks an array of objects.
void MarkArray(DObject **objs, size_t count);
// For cleanup
void DelSoftRootHead();
// Soft-roots an object.
void AddSoftRoot(DObject *obj);
// Unroots an object.
void DelSoftRoot(DObject *obj);
template<class T> void Mark(T *&obj)
{
union
{
T *t;
DObject *o;
};
o = obj;
Mark(&o);
obj = t;
}
template<class T> void Mark(TObjPtr<T> &obj);
template<class T> void MarkArray(T **obj, size_t count)
{
MarkArray((DObject **)(obj), count);
}
template<class T> void MarkArray(TArray<T> &arr)
{
MarkArray(&arr[0], arr.Size());
}
}
// A template class to help with handling read barriers. It does not
// handle write barriers, because those can be handled more efficiently
// with knowledge of the object that holds the pointer.
template<class T>
class TObjPtr
{
union
{
T *p;
DObject *o;
};
public:
TObjPtr() throw()
{
}
TObjPtr(T *q) throw()
: p(q)
{
}
TObjPtr(const TObjPtr<T> &q) throw()
: p(q.p)
{
}
T *operator=(T *q) throw()
{
return p = q;
// The caller must now perform a write barrier.
}
operator T*() throw()
{
return GC::ReadBarrier(p);
}
T &operator*()
{
T *q = GC::ReadBarrier(p);
assert(q != NULL);
return *q;
}
T **operator&() throw()
{
// Does not perform a read barrier. The only real use for this is with
// the DECLARE_POINTER macro, where a read barrier would be a very bad
// thing.
return &p;
}
T *operator->() throw()
{
return GC::ReadBarrier(p);
}
bool operator<(T *u) throw()
{
return GC::ReadBarrier(p) < u;
}
bool operator<=(T *u) throw()
{
return GC::ReadBarrier(p) <= u;
}
bool operator>(T *u) throw()
{
return GC::ReadBarrier(p) > u;
}
bool operator>=(T *u) throw()
{
return GC::ReadBarrier(p) >= u;
}
bool operator!=(T *u) throw()
{
return GC::ReadBarrier(p) != u;
}
bool operator==(T *u) throw()
{
return GC::ReadBarrier(p) == u;
}
template<class U> friend inline void GC::Mark(TObjPtr<U> &obj);
template<class U> friend FSerializer &Serialize(FSerializer &arc, const char *key, TObjPtr<U> &value, TObjPtr<U> *);
friend class DObject;
};
// Use barrier_cast instead of static_cast when you need to cast
// the contents of a TObjPtr to a related type.
template<class T,class U> inline T barrier_cast(TObjPtr<U> &o)
{
return static_cast<T>(static_cast<U *>(o));
}
template<class T> inline void GC::Mark(TObjPtr<T> &obj)
{
GC::Mark(&obj.o);
}
class DObject
{
public:
virtual PClass *StaticType() const { return RegistrationInfo.MyClass; }
static ClassReg RegistrationInfo, * const RegistrationInfoPtr;
static void InPlaceConstructor (void *mem);
typedef PClass MetaClass;
private:
typedef DObject ThisClass;
protected:
enum { MetaClassNum = CLASSREG_PClass };
// Per-instance variables. There are four.
private:
PClass *Class; // This object's type
public:
DObject *ObjNext; // Keep track of all allocated objects
DObject *GCNext; // Next object in this collection list
uint32 ObjectFlags; // Flags for this object
void *ScriptVar(FName field, PType *type);
protected:
public:
DObject ();
DObject (PClass *inClass);
virtual ~DObject ();
inline bool IsKindOf (const PClass *base) const;
inline bool IsKindOf(FName base) const;
inline bool IsA (const PClass *type) const;
void SerializeUserVars(FSerializer &arc);
virtual void Serialize(FSerializer &arc);
void ClearClass()
{
Class = NULL;
}
// Releases the object from the GC, letting the caller care of any maintenance.
void Release();
// For catching Serialize functions in derived classes
// that don't call their base class.
void CheckIfSerialized () const;
virtual void OnDestroy() {}
void Destroy();
// Add other types as needed.
bool &BoolVar(FName field);
int &IntVar(FName field);
PalEntry &ColorVar(FName field);
FName &NameVar(FName field);
double &FloatVar(FName field);
template<class T> T*& PointerVar(FName field);
// If you need to replace one object with another and want to
// change any pointers from the old object to the new object,
// use this method.
virtual size_t PointerSubstitution (DObject *old, DObject *notOld);
static size_t StaticPointerSubstitution (DObject *old, DObject *notOld, bool scandefaults = false);
PClass *GetClass() const
{
if (Class == NULL)
{
// Save a little time the next time somebody wants this object's type
// by recording it now.
const_cast<DObject *>(this)->Class = StaticType();
}
return Class;
}
void SetClass (PClass *inClass)
{
Class = inClass;
}
void *operator new(size_t len)
{
return M_Malloc(len);
}
void operator delete (void *mem)
{
M_Free(mem);
}
// GC fiddling
// An object is white if either white bit is set.
bool IsWhite() const
{
return !!(ObjectFlags & OF_WhiteBits);
}
bool IsBlack() const
{
return !!(ObjectFlags & OF_Black);
}
// An object is gray if it isn't white or black.
bool IsGray() const
{
return !(ObjectFlags & OF_MarkBits);
}
// An object is dead if it's the other white.
bool IsDead() const
{
return !!(ObjectFlags & GC::OtherWhite() & OF_WhiteBits);
}
void ChangeWhite()
{
ObjectFlags ^= OF_WhiteBits;
}
void MakeWhite()
{
ObjectFlags = (ObjectFlags & ~OF_MarkBits) | (GC::CurrentWhite & OF_WhiteBits);
}
void White2Gray()
{
ObjectFlags &= ~OF_WhiteBits;
}
void Black2Gray()
{
ObjectFlags &= ~OF_Black;
}
void Gray2Black()
{
ObjectFlags |= OF_Black;
}
// Marks all objects pointed to by this one. Returns the (approximate)
// amount of memory used by this object.
virtual size_t PropagateMark();
protected:
// This form of placement new and delete is for use *only* by PClass's
// CreateNew() method. Do not use them for some other purpose.
void *operator new(size_t, EInPlace *mem)
{
return (void *)mem;
}
void operator delete (void *mem, EInPlace *)
{
M_Free (mem);
}
};
class AInventory;//
// When you write to a pointer to an Object, you must call this for
// proper bookkeeping in case the Object holding this pointer has
// already been processed by the GC.
static inline void GC::WriteBarrier(DObject *pointing, DObject *pointed)
{
if (pointed != NULL && pointed->IsWhite() && pointing->IsBlack())
{
Barrier(pointing, pointed);
}
}
static inline void GC::WriteBarrier(DObject *pointed)
{
if (pointed != NULL && State == GCS_Propagate && pointed->IsWhite())
{
Barrier(NULL, pointed);
}
}
#include "symbols.h"
#include "dobjtype.h"
inline bool DObject::IsKindOf (const PClass *base) const
{
return base->IsAncestorOf (GetClass ());
}
inline bool DObject::IsKindOf(FName base) const
{
return GetClass()->IsDescendantOf(base);
}
inline bool DObject::IsA (const PClass *type) const
{
return (type == GetClass());
}
template<class T> T *dyn_cast(DObject *p)
{
if (p != NULL && p->IsKindOf(RUNTIME_CLASS_CASTLESS(T)))
{
return static_cast<T *>(p);
}
return NULL;
}
template<class T> const T *dyn_cast(const DObject *p)
{
return dyn_cast<T>(const_cast<DObject *>(p));
}
#endif //__DOBJECT_H__