/* ** dobject.h ** **--------------------------------------------------------------------------- ** Copyright 1998-2008 Randy Heit ** All rights reserved. ** ** Redistribution and use in source and binary forms, with or without ** modification, are permitted provided that the following conditions ** are met: ** ** 1. Redistributions of source code must retain the above copyright ** notice, this list of conditions and the following disclaimer. ** 2. Redistributions in binary form must reproduce the above copyright ** notice, this list of conditions and the following disclaimer in the ** documentation and/or other materials provided with the distribution. ** 3. The name of the author may not be used to endorse or promote products ** derived from this software without specific prior written permission. ** ** THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR ** IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES ** OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. ** IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, ** INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT ** NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, ** DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY ** THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT ** (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF ** THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. **--------------------------------------------------------------------------- ** */ #ifndef __DOBJECT_H__ #define __DOBJECT_H__ #include #include "doomtype.h" #include "i_system.h" class PClass; class PType; class FSerializer; class FSoundID; class DObject; /* class DArgs; class DCanvas; class DConsoleCommand; class DConsoleAlias; class DSeqNode; class DSeqActorNode; class DSeqPolyNode; class DSeqSectorNode; class DThinker; class AActor; class DPolyAction; class DMovePoly; class DPolyDoor; class DRotatePoly; class DPusher; class DScroller; class DSectorEffect; class DLighting; class DFireFlicker; class DFlicker; class DGlow; class DGlow2; class DLightFlash; class DPhased; class DStrobe; class DMover; class DElevator; class DMovingCeiling; class DCeiling; class DDoor; class DMovingFloor; class DFloor; class DFloorWaggle; class DPlat; class DPillar; */ class PClassActor; #define RUNTIME_CLASS_CASTLESS(cls) (cls::RegistrationInfo.MyClass) // Passed a native class name, returns a PClass representing that class #define RUNTIME_CLASS(cls) ((cls::MetaClass *)RUNTIME_CLASS_CASTLESS(cls)) // Like above, but returns the true type of the meta object #define RUNTIME_TEMPLATE_CLASS(cls) ((typename cls::MetaClass *)RUNTIME_CLASS_CASTLESS(cls)) // RUNTIME_CLASS, but works with templated parameters on GCC #define NATIVE_TYPE(object) (object->StaticType()) // Passed an object, returns the type of the C++ class representing the object // Enumerations for the meta classes created by ClassReg::RegisterClass() enum { CLASSREG_PClass, CLASSREG_PClassActor, }; struct ClassReg { PClass *MyClass; const char *Name; ClassReg *ParentType; ClassReg *_VMExport; const size_t *Pointers; void (*ConstructNative)(void *); void(*InitNatives)(); unsigned int SizeOf:28; unsigned int MetaClassNum:4; PClass *RegisterClass(); void SetupClass(PClass *cls); }; enum EInPlace { EC_InPlace }; #define DECLARE_ABSTRACT_CLASS(cls,parent) \ public: \ virtual PClass *StaticType() const; \ static ClassReg RegistrationInfo, * const RegistrationInfoPtr; \ typedef parent Super; \ private: \ typedef cls ThisClass; #define DECLARE_ABSTRACT_CLASS_WITH_META(cls,parent,meta) \ DECLARE_ABSTRACT_CLASS(cls,parent) \ public: \ typedef meta MetaClass; \ MetaClass *GetClass() const { return static_cast(DObject::GetClass()); } \ protected: \ enum { MetaClassNum = CLASSREG_##meta }; private: \ #define DECLARE_CLASS(cls,parent) \ DECLARE_ABSTRACT_CLASS(cls,parent) \ private: static void InPlaceConstructor (void *mem); #define DECLARE_CLASS_WITH_META(cls,parent,meta) \ DECLARE_ABSTRACT_CLASS_WITH_META(cls,parent,meta) \ private: static void InPlaceConstructor (void *mem); #define HAS_OBJECT_POINTERS \ static const size_t PointerOffsets[]; #if defined(_MSC_VER) # pragma section(".creg$u",read) # define _DECLARE_TI(cls) __declspec(allocate(".creg$u")) ClassReg * const cls::RegistrationInfoPtr = &cls::RegistrationInfo; #else # define _DECLARE_TI(cls) ClassReg * const cls::RegistrationInfoPtr __attribute__((section(SECTION_CREG))) = &cls::RegistrationInfo; #endif #define _IMP_PCLASS(cls, ptrs, create) \ ClassReg cls::RegistrationInfo = {\ nullptr, \ #cls, \ &cls::Super::RegistrationInfo, \ nullptr, \ ptrs, \ create, \ nullptr, \ sizeof(cls), \ cls::MetaClassNum }; \ _DECLARE_TI(cls) \ PClass *cls::StaticType() const { return RegistrationInfo.MyClass; } #define IMPLEMENT_CLASS(cls, isabstract, ptrs) \ _X_CONSTRUCTOR_##isabstract(cls) \ _IMP_PCLASS(cls, _X_POINTERS_##ptrs(cls), _X_ABSTRACT_##isabstract(cls)) // Taking the address of a field in an object at address > 0 instead of // address 0 keeps GCC from complaining about possible misuse of offsetof. // Using 8 to avoid unaligned pointer use. #define IMPLEMENT_POINTERS_START(cls) const size_t cls::PointerOffsets[] = { #define IMPLEMENT_POINTER(field) ((size_t)&((ThisClass*)8)->field) - 8, #define IMPLEMENT_POINTERS_END ~(size_t)0 }; // Possible arguments for the IMPLEMENT_CLASS macro #define _X_POINTERS_true(cls) cls::PointerOffsets #define _X_POINTERS_false(cls) nullptr #define _X_FIELDS_true(cls) nullptr #define _X_FIELDS_false(cls) nullptr #define _X_CONSTRUCTOR_true(cls) #define _X_CONSTRUCTOR_false(cls) void cls::InPlaceConstructor(void *mem) { new((EInPlace *)mem) cls; } #define _X_ABSTRACT_true(cls) nullptr #define _X_ABSTRACT_false(cls) cls::InPlaceConstructor #define _X_VMEXPORT_true(cls) nullptr #define _X_VMEXPORT_false(cls) nullptr enum EObjectFlags { // GC flags OF_White0 = 1 << 0, // Object is white (type 0) OF_White1 = 1 << 1, // Object is white (type 1) OF_Black = 1 << 2, // Object is black OF_Fixed = 1 << 3, // Object is fixed (should not be collected) OF_Rooted = 1 << 4, // Object is soft-rooted OF_EuthanizeMe = 1 << 5, // Object wants to die OF_Cleanup = 1 << 6, // Object is now being deleted by the collector OF_YesReallyDelete = 1 << 7, // Object is being deleted outside the collector, and this is okay, so don't print a warning OF_WhiteBits = OF_White0 | OF_White1, OF_MarkBits = OF_WhiteBits | OF_Black, // Other flags OF_JustSpawned = 1 << 8, // Thinker was spawned this tic OF_SerialSuccess = 1 << 9, // For debugging Serialize() calls OF_Sentinel = 1 << 10, // Object is serving as the sentinel in a ring list OF_Transient = 1 << 11, // Object should not be archived (references to it will be nulled on disk) OF_Spawned = 1 << 12, // Thinker was spawned at all (some thinkers get deleted before spawning) OF_Released = 1 << 13, // Object was released from the GC system and should not be processed by GC function OF_Abstract = 1 << 14, // Marks a class that cannot be created with new() function at all OF_UI = 1 << 15, // Marks a class that defaults to VARF_UI for it's fields/methods OF_Play = 1 << 16, // Marks a class that defaults to VARF_Play for it's fields/methods }; template class TObjPtr; namespace GC { enum EGCState { GCS_Pause, GCS_Propagate, GCS_Sweep, GCS_Finalize }; // Number of bytes currently allocated through M_Malloc/M_Realloc. extern size_t AllocBytes; // Amount of memory to allocate before triggering a collection. extern size_t Threshold; // List of gray objects. extern DObject *Gray; // List of every object. extern DObject *Root; // Current white value for potentially-live objects. extern uint32 CurrentWhite; // Current collector state. extern EGCState State; // Position of GC sweep in the list of objects. extern DObject **SweepPos; // Size of GC pause. extern int Pause; // Size of GC steps. extern int StepMul; // Is this the final collection just before exit? extern bool FinalGC; // Current white value for known-dead objects. static inline uint32 OtherWhite() { return CurrentWhite ^ OF_WhiteBits; } // Frees all objects, whether they're dead or not. void FreeAll(); // Does one collection step. void Step(); // Does a complete collection. void FullGC(); // Handles the grunt work for a write barrier. void Barrier(DObject *pointing, DObject *pointed); // Handles a write barrier. static inline void WriteBarrier(DObject *pointing, DObject *pointed); // Handles a write barrier for a pointer that isn't inside an object. static inline void WriteBarrier(DObject *pointed); // Handles a read barrier. template inline T *ReadBarrier(T *&obj) { if (obj == NULL || !(obj->ObjectFlags & OF_EuthanizeMe)) { return obj; } return obj = NULL; } // Check if it's time to collect, and do a collection step if it is. static inline void CheckGC() { if (AllocBytes >= Threshold) Step(); } // Forces a collection to start now. static inline void StartCollection() { Threshold = AllocBytes; } // Marks a white object gray. If the object wants to die, the pointer // is NULLed instead. void Mark(DObject **obj); // Marks an array of objects. void MarkArray(DObject **objs, size_t count); // For cleanup void DelSoftRootHead(); // Soft-roots an object. void AddSoftRoot(DObject *obj); // Unroots an object. void DelSoftRoot(DObject *obj); template void Mark(T *&obj) { union { T *t; DObject *o; }; o = obj; Mark(&o); obj = t; } template void Mark(TObjPtr &obj); template void MarkArray(T **obj, size_t count) { MarkArray((DObject **)(obj), count); } template void MarkArray(TArray &arr) { MarkArray(&arr[0], arr.Size()); } } // A template class to help with handling read barriers. It does not // handle write barriers, because those can be handled more efficiently // with knowledge of the object that holds the pointer. template class TObjPtr { union { T pp; DObject *o; }; public: TObjPtr() throw() { } TObjPtr(T q) throw() : pp(q) { } TObjPtr(const TObjPtr &q) throw() : pp(q.pp) { } T operator=(T q) throw() { return pp = q; // The caller must now perform a write barrier. } operator T() throw() { return GC::ReadBarrier(pp); } T &operator*() { T q = GC::ReadBarrier(pp); assert(q != NULL); return *q; } T *operator&() throw() { // Does not perform a read barrier. The only real use for this is with // the DECLARE_POINTER macro, where a read barrier would be a very bad // thing. return &pp; } T operator->() throw() { return GC::ReadBarrier(pp); } bool operator!=(T u) throw() { return GC::ReadBarrier(o) != u; } bool operator==(T u) throw() { return GC::ReadBarrier(o) == u; } template friend inline void GC::Mark(TObjPtr &obj); template friend FSerializer &Serialize(FSerializer &arc, const char *key, TObjPtr &value, TObjPtr *); friend class DObject; }; // Use barrier_cast instead of static_cast when you need to cast // the contents of a TObjPtr to a related type. template inline T barrier_cast(TObjPtr &o) { return static_cast(static_cast(o)); } template inline void GC::Mark(TObjPtr &obj) { GC::Mark(&obj.o); } class DObject { public: virtual PClass *StaticType() const { return RegistrationInfo.MyClass; } static ClassReg RegistrationInfo, * const RegistrationInfoPtr; static void InPlaceConstructor (void *mem); typedef PClass MetaClass; private: typedef DObject ThisClass; protected: enum { MetaClassNum = CLASSREG_PClass }; // Per-instance variables. There are four. private: PClass *Class; // This object's type public: DObject *ObjNext; // Keep track of all allocated objects DObject *GCNext; // Next object in this collection list uint32 ObjectFlags; // Flags for this object void *ScriptVar(FName field, PType *type); protected: public: DObject (); DObject (PClass *inClass); virtual ~DObject (); inline bool IsKindOf (const PClass *base) const; inline bool IsKindOf(FName base) const; inline bool IsA (const PClass *type) const; void SerializeUserVars(FSerializer &arc); virtual void Serialize(FSerializer &arc); void ClearClass() { Class = NULL; } // Releases the object from the GC, letting the caller care of any maintenance. void Release(); // For catching Serialize functions in derived classes // that don't call their base class. void CheckIfSerialized () const; virtual void OnDestroy() {} void Destroy(); // Add other types as needed. bool &BoolVar(FName field); int &IntVar(FName field); FSoundID &SoundVar(FName field); PalEntry &ColorVar(FName field); FName &NameVar(FName field); double &FloatVar(FName field); FString &StringVar(FName field); template T*& PointerVar(FName field); // If you need to replace one object with another and want to // change any pointers from the old object to the new object, // use this method. virtual size_t PointerSubstitution (DObject *old, DObject *notOld); static size_t StaticPointerSubstitution (DObject *old, DObject *notOld, bool scandefaults = false); PClass *GetClass() const { if (Class == NULL) { // Save a little time the next time somebody wants this object's type // by recording it now. const_cast(this)->Class = StaticType(); } return Class; } void SetClass (PClass *inClass) { Class = inClass; } void *operator new(size_t len) { return M_Malloc(len); } void operator delete (void *mem) { M_Free(mem); } // GC fiddling // An object is white if either white bit is set. bool IsWhite() const { return !!(ObjectFlags & OF_WhiteBits); } bool IsBlack() const { return !!(ObjectFlags & OF_Black); } // An object is gray if it isn't white or black. bool IsGray() const { return !(ObjectFlags & OF_MarkBits); } // An object is dead if it's the other white. bool IsDead() const { return !!(ObjectFlags & GC::OtherWhite() & OF_WhiteBits); } void ChangeWhite() { ObjectFlags ^= OF_WhiteBits; } void MakeWhite() { ObjectFlags = (ObjectFlags & ~OF_MarkBits) | (GC::CurrentWhite & OF_WhiteBits); } void White2Gray() { ObjectFlags &= ~OF_WhiteBits; } void Black2Gray() { ObjectFlags &= ~OF_Black; } void Gray2Black() { ObjectFlags |= OF_Black; } // Marks all objects pointed to by this one. Returns the (approximate) // amount of memory used by this object. virtual size_t PropagateMark(); protected: // This form of placement new and delete is for use *only* by PClass's // CreateNew() method. Do not use them for some other purpose. void *operator new(size_t, EInPlace *mem) { return (void *)mem; } void operator delete (void *mem, EInPlace *) { M_Free (mem); } }; class AInventory;// // When you write to a pointer to an Object, you must call this for // proper bookkeeping in case the Object holding this pointer has // already been processed by the GC. static inline void GC::WriteBarrier(DObject *pointing, DObject *pointed) { if (pointed != NULL && pointed->IsWhite() && pointing->IsBlack()) { Barrier(pointing, pointed); } } static inline void GC::WriteBarrier(DObject *pointed) { if (pointed != NULL && State == GCS_Propagate && pointed->IsWhite()) { Barrier(NULL, pointed); } } #include "symbols.h" #include "dobjtype.h" inline bool DObject::IsKindOf (const PClass *base) const { return base->IsAncestorOf (GetClass ()); } inline bool DObject::IsKindOf(FName base) const { return GetClass()->IsDescendantOf(base); } inline bool DObject::IsA (const PClass *type) const { return (type == GetClass()); } template T *dyn_cast(DObject *p) { if (p != NULL && p->IsKindOf(RUNTIME_CLASS_CASTLESS(T))) { return static_cast(p); } return NULL; } template const T *dyn_cast(const DObject *p) { return dyn_cast(const_cast(p)); } #endif //__DOBJECT_H__