#ifndef VM_H #define VM_H #include "zstring.h" #include "dobject.h" #define MAX_RETURNS 8 // Maximum number of results a function called by script code can return #define MAX_TRY_DEPTH 8 // Maximum number of nested TRYs in a single function typedef unsigned char VM_UBYTE; typedef signed char VM_SBYTE; typedef unsigned short VM_UHALF; typedef signed short VM_SHALF; typedef unsigned int VM_UWORD; typedef signed int VM_SWORD; #define VM_EPSILON (1/1024.0) enum { #include "vmops.h" NUM_OPS }; // Flags for A field of CMPS enum { CMP_CHECK = 1, CMP_EQ = 0, CMP_LT = 2, CMP_LE = 4, CMP_METHOD_MASK = 6, CMP_BK = 8, CMP_CK = 16, CMP_APPROX = 32, }; // Floating point operations for FLOP enum { FLOP_ABS, FLOP_NEG, FLOP_ACOS, FLOP_ASIN, FLOP_ATAN, FLOP_COS, FLOP_COSH, FLOP_EXP, FLOP_LOG, FLOP_LOG10, FLOP_SIN, FLOP_SINH, FLOP_TAN, FLOP_TANH, FLOP_SQRT, FLOP_CEIL, FLOP_FLOOR, }; // Cast operations enum { CAST_I2F, CAST_I2S, CAST_F2I, CAST_F2S, CAST_P2S, CAST_S2I, CAST_S2F, }; // Register types for VMParam enum { REGT_INT = 0, REGT_FLOAT = 1, REGT_STRING = 2, REGT_POINTER = 3, REGT_TYPE = 3, REGT_KONST = 4, REGT_MULTIREG = 8, // (e.g. a vector) REGT_FINAL = 16, // used with RET: this is the final return value REGT_ADDROF = 32, // used with PARAM: pass address of this register REGT_NIL = 255 // parameter was omitted }; // Tags for address registers enum { ATAG_GENERIC, // pointer to something; we don't care what ATAG_OBJECT, // pointer to an object; will be followed by GC // The following are all for documentation during debugging and are // functionally no different than ATAG_GENERIC. ATAG_FRAMEPOINTER, // pointer to extra stack frame space for this function ATAG_DREGISTER, // pointer to a data register ATAG_FREGISTER, // pointer to a float register ATAG_SREGISTER, // pointer to a string register ATAG_AREGISTER, // pointer to an address register ATAG_STATE, // pointer to FState }; class VMFunction : public DObject { DECLARE_CLASS(VMFunction, DObject); public: bool Native; }; enum EVMOpMode { MODE_ASHIFT = 0, MODE_BSHIFT = 4, MODE_CSHIFT = 8, MODE_BCSHIFT = 12, MODE_ATYPE = 15 << MODE_ASHIFT, MODE_BTYPE = 15 << MODE_BSHIFT, MODE_CTYPE = 15 << MODE_CSHIFT, MODE_BCTYPE = 31 << MODE_BCSHIFT, MODE_I = 0, MODE_F, MODE_S, MODE_P, MODE_V, MODE_X, MODE_KI, MODE_KF, MODE_KS, MODE_KP, MODE_KV, MODE_UNUSED, MODE_IMMS, MODE_IMMZ, MODE_JOINT, MODE_PARAM, MODE_THROW, MODE_CATCH, MODE_CAST, MODE_AI = MODE_I << MODE_ASHIFT, MODE_AF = MODE_F << MODE_ASHIFT, MODE_AS = MODE_S << MODE_ASHIFT, MODE_AP = MODE_P << MODE_ASHIFT, MODE_AV = MODE_V << MODE_ASHIFT, MODE_AX = MODE_X << MODE_ASHIFT, MODE_AKP = MODE_KP << MODE_ASHIFT, MODE_AUNUSED = MODE_UNUSED << MODE_ASHIFT, MODE_AIMMS = MODE_IMMS << MODE_ASHIFT, MODE_AIMMZ = MODE_IMMZ << MODE_ASHIFT, MODE_BI = MODE_I << MODE_BSHIFT, MODE_BF = MODE_F << MODE_BSHIFT, MODE_BS = MODE_S << MODE_BSHIFT, MODE_BP = MODE_P << MODE_BSHIFT, MODE_BV = MODE_V << MODE_BSHIFT, MODE_BX = MODE_X << MODE_BSHIFT, MODE_BKI = MODE_KI << MODE_BSHIFT, MODE_BKF = MODE_KF << MODE_BSHIFT, MODE_BKS = MODE_KS << MODE_BSHIFT, MODE_BKP = MODE_KP << MODE_BSHIFT, MODE_BKV = MODE_KV << MODE_BSHIFT, MODE_BUNUSED = MODE_UNUSED << MODE_BSHIFT, MODE_BIMMS = MODE_IMMS << MODE_BSHIFT, MODE_BIMMZ = MODE_IMMZ << MODE_BSHIFT, MODE_CI = MODE_I << MODE_CSHIFT, MODE_CF = MODE_F << MODE_CSHIFT, MODE_CS = MODE_S << MODE_CSHIFT, MODE_CP = MODE_P << MODE_CSHIFT, MODE_CV = MODE_V << MODE_CSHIFT, MODE_CX = MODE_X << MODE_CSHIFT, MODE_CKI = MODE_KI << MODE_CSHIFT, MODE_CKF = MODE_KF << MODE_CSHIFT, MODE_CKS = MODE_KS << MODE_CSHIFT, MODE_CKP = MODE_KP << MODE_CSHIFT, MODE_CKV = MODE_KV << MODE_CSHIFT, MODE_CUNUSED = MODE_UNUSED << MODE_CSHIFT, MODE_CIMMS = MODE_IMMS << MODE_CSHIFT, MODE_CIMMZ = MODE_IMMZ << MODE_CSHIFT, MODE_BCJOINT = (MODE_JOINT << MODE_BSHIFT) | (MODE_JOINT << MODE_CSHIFT), MODE_BCKI = MODE_KI << MODE_BCSHIFT, MODE_BCKF = MODE_KF << MODE_BCSHIFT, MODE_BCKS = MODE_KS << MODE_BCSHIFT, MODE_BCKP = MODE_KP << MODE_BCSHIFT, MODE_BCIMMS = MODE_IMMS << MODE_BCSHIFT, MODE_BCIMMZ = MODE_IMMZ << MODE_BCSHIFT, MODE_BCPARAM = MODE_PARAM << MODE_BCSHIFT, MODE_BCTHROW = MODE_THROW << MODE_BCSHIFT, MODE_BCCATCH = MODE_CATCH << MODE_BCSHIFT, MODE_BCCAST = MODE_CAST << MODE_BCSHIFT, MODE_ABCJOINT = (MODE_JOINT << MODE_ASHIFT) | MODE_BCJOINT, }; struct VMOpInfo { const char *Name; int Mode; }; extern const VMOpInfo OpInfo[NUM_OPS]; struct VMReturn { void *Location; VM_SHALF RegNum; // Used to find ObjFlag index for pointers; set negative if the caller is native code and doesn't care VM_UBYTE RegType; // Same as VMParam RegType, except REGT_KONST is invalid; only used by asserts void SetInt(int val) { *(int *)Location = val; } void SetFloat(double val) { *(double *)Location = val; } void SetVector(const double val[3]) { ((double *)Location)[0] = val[0]; ((double *)Location)[1] = val[1]; ((double *)Location)[2] = val[2]; } void SetString(const FString &val) { *(FString *)Location = val; } void SetPointer(void *val) { *(void **)Location = val; } void IntAt(int *loc) { Location = loc; RegNum = -1; RegType = REGT_INT; } void FloatAt(double *loc) { Location = loc; RegNum = -1; RegType = REGT_FLOAT; } void StringAt(FString *loc) { Location = loc; RegNum = -1; RegType = REGT_STRING; } void PointerAt(void **loc) { Location = loc; RegNum = -1; RegType = REGT_POINTER; } }; struct VMRegisters; struct VMValue { union { int i; struct { void *a; int atag; }; double f; struct { int pad[3]; int Type; }; struct { int foo[4]; } biggest; }; // Unfortunately, FString cannot be used directly. // Fortunately, it is relatively simple. FString &s() { return *(FString *)&a; } const FString &s() const { return *(FString *)&a; } VMValue() { a = NULL; Type = REGT_NIL; } ~VMValue() { Kill(); } VMValue(const VMValue &o) { biggest = o.biggest; if (Type == REGT_STRING) { ::new(&s()) FString(o.s()); } } VMValue(int v) { i = v; Type = REGT_INT; } VMValue(double v) { f = v; Type = REGT_FLOAT; } VMValue(const char *s) { ::new(&a) FString(s); Type = REGT_STRING; } VMValue(const FString &s) { ::new(&a) FString(s); Type = REGT_STRING; } VMValue(DObject *v) { a = v; atag = ATAG_OBJECT; Type = REGT_POINTER; } VMValue(void *v) { a = v; atag = ATAG_GENERIC; Type = REGT_POINTER; } VMValue(void *v, int tag) { a = v; atag = tag; Type = REGT_POINTER; } VMValue &operator=(const VMValue &o) { if (o.Type == REGT_STRING) { if (Type == REGT_STRING) { s() = o.s(); } else { new(&s()) FString(o.s()); Type = REGT_STRING; } } else { Kill(); biggest = o.biggest; } return *this; } VMValue &operator=(int v) { Kill(); i = v; Type = REGT_INT; return *this; } VMValue &operator=(double v) { Kill(); f = v; Type = REGT_FLOAT; return *this; } VMValue &operator=(const FString &v) { if (Type == REGT_STRING) { s() = v; } else { ::new(&s()) FString(v); Type = REGT_STRING; } return *this; } VMValue &operator=(const char *v) { if (Type == REGT_STRING) { s() = v; } else { ::new(&s()) FString(v); Type = REGT_STRING; } return *this; } VMValue &operator=(DObject *v) { Kill(); a = v; atag = ATAG_OBJECT; Type = REGT_POINTER; return *this; } VMValue &operator=(void *v) { Kill(); a = v; atag = ATAG_GENERIC; Type = REGT_POINTER; return *this; } void SetNil() { Kill(); Type = REGT_NIL; } bool operator==(const VMValue &o) { return Test(o) == 0; } bool operator!=(const VMValue &o) { return Test(o) != 0; } bool operator< (const VMValue &o) { return Test(o) < 0; } bool operator<=(const VMValue &o) { return Test(o) <= 0; } bool operator> (const VMValue &o) { return Test(o) > 0; } bool operator>=(const VMValue &o) { return Test(o) >= 0; } int Test(const VMValue &o, int inexact=false) { double diff; if (Type == o.Type) { switch(Type) { case REGT_NIL: return 0; case REGT_INT: return i - o.i; case REGT_FLOAT: diff = f - o.f; do_double: if (inexact) { return diff < -VM_EPSILON ? -1 : diff > VM_EPSILON ? 1 : 0; } return diff < 0 ? -1 : diff > 0 ? 1 : 0; case REGT_STRING: return inexact ? s().CompareNoCase(o.s()) : s().Compare(o.s()); case REGT_POINTER: return int((const VM_UBYTE *)a - (const VM_UBYTE *)o.a); } assert(0); // Should not get here return 2; } if (Type == REGT_FLOAT && o.Type == REGT_INT) { diff = f - o.i; goto do_double; } if (Type == REGT_INT && o.Type == REGT_FLOAT) { diff = i - o.f; goto do_double; } // Bad comparison return 2; } FString ToString() { if (Type == REGT_STRING) { return s(); } else if (Type == REGT_NIL) { return "nil"; } FString t; if (Type == REGT_INT) { t.Format ("%d", i); } else if (Type == REGT_FLOAT) { t.Format ("%.14g", f); } else if (Type == REGT_POINTER) { // FIXME t.Format ("Object: %p", a); } return t; } int ToInt() { if (Type == REGT_INT) { return i; } if (Type == REGT_FLOAT) { return int(f); } if (Type == REGT_STRING) { return s().ToLong(); } // FIXME return 0; } double ToDouble() { if (Type == REGT_FLOAT) { return f; } if (Type == REGT_INT) { return i; } if (Type == REGT_STRING) { return s().ToDouble(); } // FIXME return 0; } void Kill() { if (Type == REGT_STRING) { s().~FString(); } } }; // VM frame layout: // VMFrame header // parameter stack - 16 byte boundary, 16 bytes each // double registers - 8 bytes each // string registers - 4 or 8 bytes each // address registers - 4 or 8 bytes each // data registers - 4 bytes each // address register tags-1 byte each // extra space - 16 byte boundary struct VMFrame { VMFrame *ParentFrame; VMFunction *Func; VM_UBYTE NumRegD; VM_UBYTE NumRegF; VM_UBYTE NumRegS; VM_UBYTE NumRegA; VM_UHALF MaxParam; VM_UHALF NumParam; // current number of parameters static int FrameSize(int numregd, int numregf, int numregs, int numrega, int numparam, int numextra) { int size = (sizeof(VMFrame) + 15) & ~15; size += numparam * sizeof(VMValue); size += numregf * sizeof(double); size += numrega * (sizeof(void *) + sizeof(VM_UBYTE)); size += numregs * sizeof(FString); size += numregd * sizeof(int); if (numextra != 0) { size = (size + 15) & ~15; size += numextra; } return size; } int *GetRegD() const { return (int *)(GetRegA() + NumRegA); } double *GetRegF() const { return (double *)(GetParam() + MaxParam); } FString *GetRegS() const { return (FString *)(GetRegF() + NumRegF); } void **GetRegA() const { return (void **)(GetRegS() + NumRegS); } VM_UBYTE *GetRegATag() const { return (VM_UBYTE *)(GetRegD() + NumRegD); } VMValue *GetParam() const { return (VMValue *)(((size_t)(this + 1) + 15) & ~15); } void *GetExtra() const { VM_UBYTE *ptag = GetRegATag(); ptrdiff_t ofs = ptag - (VM_UBYTE *)this; return (VM_UBYTE *)this + ((ofs + NumRegA + 15) & ~15); } void GetAllRegs(int *&d, double *&f, FString *&s, void **&a, VM_UBYTE *&atag, VMValue *¶m) const { // Calling the individual functions produces suboptimal code. :( param = GetParam(); f = (double *)(param + MaxParam); s = (FString *)(f + NumRegF); a = (void **)(s + NumRegS); d = (int *)(a + NumRegA); atag = (VM_UBYTE *)(d + NumRegD); } void InitRegS(); }; struct VMRegisters { VMRegisters(const VMFrame *frame) { frame->GetAllRegs(d, f, s, a, atag, param); } VMRegisters(const VMRegisters &o) : d(o.d), f(o.f), s(o.s), a(o.a), atag(o.atag), param(o.param) { } int *d; double *f; FString *s; void **a; VM_UBYTE *atag; VMValue *param; }; struct VMException : public DObject { DECLARE_CLASS(VMFunction, DObject); }; class VMScriptFunction : public VMFunction { DECLARE_CLASS(VMScriptFunction, VMFunction); public: const VM_UBYTE *Code; int *KonstD; double *KonstF; FString *KonstS; void **KonstA; int ExtraSpace; int NumCodeBytes; VM_UBYTE NumRegD; VM_UBYTE NumRegF; VM_UBYTE NumRegS; VM_UBYTE NumRegA; VM_UBYTE NumKonstD; VM_UBYTE NumKonstF; VM_UBYTE NumKonstS; VM_UBYTE NumKonstA; VM_UHALF MaxParam; // Maximum number of parameters this function has on the stack at once VM_UBYTE NumArgs; // Number of arguments this function takes }; class VMFrameStack { public: VMFrameStack(); ~VMFrameStack(); VMFrame *AllocFrame(int numregd, int numregf, int numregs, int numrega); VMFrame *AllocFrame(VMScriptFunction *func); VMFrame *PopFrame(); VMFrame *TopFrame() { assert(Blocks != NULL && Blocks->LastFrame != NULL); return Blocks->LastFrame; } int Call(VMFunction *func, VMValue *params, int numparams, VMReturn *results, int numresults, VMException **trap=NULL); private: enum { BLOCK_SIZE = 4096 }; // Default block size struct BlockHeader { BlockHeader *NextBlock; VMFrame *LastFrame; VM_UBYTE *FreeSpace; int BlockSize; }; BlockHeader *Blocks; BlockHeader *UnusedBlocks; VMFrame *Alloc(int size); }; class VMNativeFunction : public VMFunction { DECLARE_CLASS(VMNativeFunction, VMFunction); public: // Return value is the number of results. int (*NativeCall)(VMFrameStack *stack, VMValue *param, int numparam, VMReturn *ret, int numret); }; class VMParamFiller { public: VMParamFiller(const VMFrame *frame) : Reg(frame), RegD(0), RegF(0), RegS(0), RegA(0) {} VMParamFiller(const VMRegisters *reg) : Reg(*reg), RegD(0), RegF(0), RegS(0), RegA(0) {} void ParamInt(int val) { Reg.d[RegD++] = val; } void ParamFloat(double val) { Reg.f[RegF++] = val; } void ParamString(FString &val) { Reg.s[RegS++] = val; } void ParamString(const char *val) { Reg.s[RegS++] = val; } void ParamObject(DObject *obj) { Reg.a[RegA] = obj; Reg.atag[RegA] = ATAG_OBJECT; RegA++; } void ParamPointer(void *ptr, VM_UBYTE atag) { Reg.a[RegA] = ptr; Reg.atag[RegA] = atag; RegA++; } private: const VMRegisters Reg; int RegD, RegF, RegS, RegA; }; enum EVMEngine { VMEngine_Default, VMEngine_Unchecked, VMEngine_Checked }; void VMSelectEngine(EVMEngine engine); extern int (*VMExec)(VMFrameStack *stack, const VM_UBYTE *pc, VMReturn *ret, int numret); void VMFillParams(VMValue *params, VMFrame *callee, int numparam); void VMDisasm(const VM_UBYTE *code, int codesize, const VMScriptFunction *func); #endif