/* ** ** **--------------------------------------------------------------------------- ** Copyright 1999-2016 Randy Heit ** Copyright 2005-2016 Christoph Oelckers ** All rights reserved. ** ** Redistribution and use in source and binary forms, with or without ** modification, are permitted provided that the following conditions ** are met: ** ** 1. Redistributions of source code must retain the above copyright ** notice, this list of conditions and the following disclaimer. ** 2. Redistributions in binary form must reproduce the above copyright ** notice, this list of conditions and the following disclaimer in the ** documentation and/or other materials provided with the distribution. ** 3. The name of the author may not be used to endorse or promote products ** derived from this software without specific prior written permission. ** ** THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR ** IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES ** OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. ** IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, ** INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT ** NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, ** DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY ** THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT ** (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF ** THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. **--------------------------------------------------------------------------- ** */ //----------------------------------------------------------------------------- // // DESCRIPTION: // Functions to draw patches (by post) directly to screen-> // Functions to blit a block to the screen-> // //----------------------------------------------------------------------------- #include #include "i_system.h" #include "x86.h" #include "i_video.h" #include "r_state.h" #include "am_map.h" #include "doomstat.h" #include "c_console.h" #include "hu_stuff.h" #include "m_argv.h" #include "v_video.h" #include "v_text.h" #include "sc_man.h" #include "w_wad.h" #include "c_dispatch.h" #include "cmdlib.h" #include "sbar.h" #include "hardware.h" #include "m_png.h" #include "r_utility.h" #include "r_renderer.h" #include "menu/menu.h" #include "vm.h" #include "r_videoscale.h" #include "i_time.h" EXTERN_CVAR(Bool, cl_capfps) EXTERN_CVAR(Float, vid_brightness) EXTERN_CVAR(Float, vid_contrast) CVAR(Bool, gl_scale_viewport, true, CVAR_ARCHIVE); EXTERN_CVAR(Int, screenblocks) CUSTOM_CVAR(Int, vid_maxfps, 200, CVAR_ARCHIVE | CVAR_GLOBALCONFIG) { if (vid_maxfps < TICRATE && vid_maxfps != 0) { vid_maxfps = TICRATE; } else if (vid_maxfps > 1000) { vid_maxfps = 1000; } else if (cl_capfps == 0) { I_SetFPSLimit(vid_maxfps); } } CUSTOM_CVAR(Int, vid_rendermode, 4, CVAR_ARCHIVE | CVAR_GLOBALCONFIG | CVAR_NOINITCALL) { if (usergame) { // [SP] Update pitch limits to the netgame/gamesim. players[consoleplayer].SendPitchLimits(); } screen->SetTextureFilterMode(); // No further checks needed. All this changes now is which scene drawer the render backend calls. } EXTERN_CVAR(Bool, r_blendmethod) int active_con_scale(); FRenderer *SWRenderer; EXTERN_CVAR (Bool, fullscreen) #define DBGBREAK assert(0) class DDummyFrameBuffer : public DFrameBuffer { typedef DFrameBuffer Super; public: DDummyFrameBuffer (int width, int height) : DFrameBuffer (0, 0) { SetVirtualSize(width, height); } // These methods should never be called. void Update() { DBGBREAK; } bool IsFullscreen() { DBGBREAK; return 0; } int GetClientWidth() { DBGBREAK; return 0; } int GetClientHeight() { DBGBREAK; return 0; } float Gamma; }; int DisplayWidth, DisplayHeight; FFont *SmallFont, *SmallFont2, *BigFont, *ConFont, *IntermissionFont; uint32_t Col2RGB8[65][256]; uint32_t *Col2RGB8_LessPrecision[65]; uint32_t Col2RGB8_Inverse[65][256]; ColorTable32k RGB32k; ColorTable256k RGB256k; static uint32_t Col2RGB8_2[63][256]; // [RH] The framebuffer is no longer a mere byte array. // There's also only one, not four. DFrameBuffer *screen; CVAR (Int, vid_defwidth, 640, CVAR_ARCHIVE|CVAR_GLOBALCONFIG) CVAR (Int, vid_defheight, 480, CVAR_ARCHIVE|CVAR_GLOBALCONFIG) CVAR (Int, vid_defbits, 8, CVAR_ARCHIVE|CVAR_GLOBALCONFIG) CVAR (Bool, vid_fps, false, 0) CVAR (Bool, ticker, false, 0) CVAR (Int, vid_showpalette, 0, 0) CUSTOM_CVAR (Bool, vid_vsync, false, CVAR_ARCHIVE|CVAR_GLOBALCONFIG) { if (screen != NULL) { screen->SetVSync (*self); } } // [RH] Set true when vid_setmode command has been executed bool setmodeneeded = false; // [RH] Resolution to change to when setmodeneeded is true int NewWidth, NewHeight, NewBits; void V_DrawPaletteTester(int pal); //========================================================================== // // DCanvas Constructor // //========================================================================== DCanvas::DCanvas (int _width, int _height, bool _bgra) { // Init member vars Width = _width; Height = _height; Bgra = _bgra; } //========================================================================== // // DCanvas Destructor // //========================================================================== DCanvas::~DCanvas () { } //========================================================================== // // V_GetColorFromString // // Passed a string of the form "#RGB", "#RRGGBB", "R G B", or "RR GG BB", // returns a number representing that color. If palette is non-NULL, the // index of the best match in the palette is returned, otherwise the // RRGGBB value is returned directly. // //========================================================================== int V_GetColorFromString (const uint32_t *palette, const char *cstr, FScriptPosition *sc) { int c[3], i, p; char val[3]; val[2] = '\0'; // Check for HTML-style #RRGGBB or #RGB color string if (cstr[0] == '#') { size_t len = strlen (cstr); if (len == 7) { // Extract each eight-bit component into c[]. for (i = 0; i < 3; ++i) { val[0] = cstr[1 + i*2]; val[1] = cstr[2 + i*2]; c[i] = ParseHex (val, sc); } } else if (len == 4) { // Extract each four-bit component into c[], expanding to eight bits. for (i = 0; i < 3; ++i) { val[1] = val[0] = cstr[1 + i]; c[i] = ParseHex (val, sc); } } else { // Bad HTML-style; pretend it's black. c[2] = c[1] = c[0] = 0; } } else { if (strlen(cstr) == 6) { char *p; int color = strtol(cstr, &p, 16); if (*p == 0) { // RRGGBB string c[0] = (color & 0xff0000) >> 16; c[1] = (color & 0xff00) >> 8; c[2] = (color & 0xff); } else goto normal; } else { normal: // Treat it as a space-delimited hexadecimal string for (i = 0; i < 3; ++i) { // Skip leading whitespace while (*cstr <= ' ' && *cstr != '\0') { cstr++; } // Extract a component and convert it to eight-bit for (p = 0; *cstr > ' '; ++p, ++cstr) { if (p < 2) { val[p] = *cstr; } } if (p == 0) { c[i] = 0; } else { if (p == 1) { val[1] = val[0]; } c[i] = ParseHex (val, sc); } } } } if (palette) return ColorMatcher.Pick (c[0], c[1], c[2]); else return MAKERGB(c[0], c[1], c[2]); } //========================================================================== // // V_GetColorStringByName // // Searches for the given color name in x11r6rgb.txt and returns an // HTML-ish "#RRGGBB" string for it if found or the empty string if not. // //========================================================================== FString V_GetColorStringByName (const char *name, FScriptPosition *sc) { FMemLump rgbNames; char *rgbEnd; char *rgb, *endp; int rgblump; int c[3], step; size_t namelen; if (Wads.GetNumLumps()==0) return FString(); rgblump = Wads.CheckNumForName ("X11R6RGB"); if (rgblump == -1) { if (!sc) Printf ("X11R6RGB lump not found\n"); else sc->Message(MSG_WARNING, "X11R6RGB lump not found"); return FString(); } rgbNames = Wads.ReadLump (rgblump); rgb = (char *)rgbNames.GetMem(); rgbEnd = rgb + Wads.LumpLength (rgblump); step = 0; namelen = strlen (name); while (rgb < rgbEnd) { // Skip white space if (*rgb <= ' ') { do { rgb++; } while (rgb < rgbEnd && *rgb <= ' '); } else if (step == 0 && *rgb == '!') { // skip comment lines do { rgb++; } while (rgb < rgbEnd && *rgb != '\n'); } else if (step < 3) { // collect RGB values c[step++] = strtoul (rgb, &endp, 10); if (endp == rgb) { break; } rgb = endp; } else { // Check color name endp = rgb; // Find the end of the line while (endp < rgbEnd && *endp != '\n') endp++; // Back up over any whitespace while (endp > rgb && *endp <= ' ') endp--; if (endp == rgb) { break; } size_t checklen = ++endp - rgb; if (checklen == namelen && strnicmp (rgb, name, checklen) == 0) { FString descr; descr.Format ("#%02x%02x%02x", c[0], c[1], c[2]); return descr; } rgb = endp; step = 0; } } if (rgb < rgbEnd) { if (!sc) Printf ("X11R6RGB lump is corrupt\n"); else sc->Message(MSG_WARNING, "X11R6RGB lump is corrupt"); } return FString(); } //========================================================================== // // V_GetColor // // Works like V_GetColorFromString(), but also understands X11 color names. // //========================================================================== int V_GetColor (const uint32_t *palette, const char *str, FScriptPosition *sc) { FString string = V_GetColorStringByName (str, sc); int res; if (!string.IsEmpty()) { res = V_GetColorFromString (palette, string, sc); } else { res = V_GetColorFromString (palette, str, sc); } return res; } int V_GetColor(const uint32_t *palette, FScanner &sc) { FScriptPosition scc = sc; return V_GetColor(palette, sc.String, &scc); } //========================================================================== // // BuildTransTable // // Build the tables necessary for blending // //========================================================================== static void BuildTransTable (const PalEntry *palette) { int r, g, b; // create the RGB555 lookup table for (r = 0; r < 32; r++) for (g = 0; g < 32; g++) for (b = 0; b < 32; b++) RGB32k.RGB[r][g][b] = ColorMatcher.Pick ((r<<3)|(r>>2), (g<<3)|(g>>2), (b<<3)|(b>>2)); // create the RGB666 lookup table for (r = 0; r < 64; r++) for (g = 0; g < 64; g++) for (b = 0; b < 64; b++) RGB256k.RGB[r][g][b] = ColorMatcher.Pick ((r<<2)|(r>>4), (g<<2)|(g>>4), (b<<2)|(b>>4)); int x, y; // create the swizzled palette for (x = 0; x < 65; x++) for (y = 0; y < 256; y++) Col2RGB8[x][y] = (((palette[y].r*x)>>4)<<20) | ((palette[y].g*x)>>4) | (((palette[y].b*x)>>4)<<10); // create the swizzled palette with the lsb of red and blue forced to 0 // (for green, a 1 is okay since it never gets added into) for (x = 1; x < 64; x++) { Col2RGB8_LessPrecision[x] = Col2RGB8_2[x-1]; for (y = 0; y < 256; y++) { Col2RGB8_2[x-1][y] = Col2RGB8[x][y] & 0x3feffbff; } } Col2RGB8_LessPrecision[0] = Col2RGB8[0]; Col2RGB8_LessPrecision[64] = Col2RGB8[64]; // create the inverse swizzled palette for (x = 0; x < 65; x++) for (y = 0; y < 256; y++) { Col2RGB8_Inverse[x][y] = (((((255-palette[y].r)*x)>>4)<<20) | (((255-palette[y].g)*x)>>4) | ((((255-palette[y].b)*x)>>4)<<10)) & 0x3feffbff; } } //========================================================================== // // DCanvas :: CalcGamma // //========================================================================== void DFrameBuffer::CalcGamma (float gamma, uint8_t gammalookup[256]) { // I found this formula on the web at // , // but that page no longer exits. double invgamma = 1.f / gamma; int i; for (i = 0; i < 256; i++) { gammalookup[i] = (uint8_t)(255.0 * pow (i / 255.0, invgamma) + 0.5); } } //========================================================================== // // DSimpleCanvas Constructor // // A simple canvas just holds a buffer in main memory. // //========================================================================== DSimpleCanvas::DSimpleCanvas (int width, int height, bool bgra) : DCanvas (width, height, bgra) { PixelBuffer = nullptr; Resize(width, height); } void DSimpleCanvas::Resize(int width, int height) { Width = width; Height = height; if (PixelBuffer != NULL) { delete[] PixelBuffer; PixelBuffer = NULL; } // Making the pitch a power of 2 is very bad for performance // Try to maximize the number of cache lines that can be filled // for each column drawing operation by making the pitch slightly // longer than the width. The values used here are all based on // empirical evidence. if (width <= 640) { // For low resolutions, just keep the pitch the same as the width. // Some speedup can be seen using the technique below, but the speedup // is so marginal that I don't consider it worthwhile. Pitch = width; } else { // If we couldn't figure out the CPU's L1 cache line size, assume // it's 32 bytes wide. if (CPU.DataL1LineSize == 0) { CPU.DataL1LineSize = 32; } // The Athlon and P3 have very different caches, apparently. // I am going to generalize the Athlon's performance to all AMD // processors and the P3's to all non-AMD processors. I don't know // how smart that is, but I don't have a vast plethora of // processors to test with. if (CPU.bIsAMD) { Pitch = width + CPU.DataL1LineSize; } else { Pitch = width + MAX(0, CPU.DataL1LineSize - 8); } } int bytes_per_pixel = Bgra ? 4 : 1; PixelBuffer = new uint8_t[Pitch * height * bytes_per_pixel]; memset (PixelBuffer, 0, Pitch * height * bytes_per_pixel); } //========================================================================== // // DSimpleCanvas Destructor // //========================================================================== DSimpleCanvas::~DSimpleCanvas () { if (PixelBuffer != NULL) { delete[] PixelBuffer; PixelBuffer = NULL; } } //========================================================================== // // DFrameBuffer Constructor // // A frame buffer canvas is the most common and represents the image that // gets drawn to the screen. // //========================================================================== DFrameBuffer::DFrameBuffer (int width, int height) { SetSize(width, height); } void DFrameBuffer::SetSize(int width, int height) { Width = ViewportScaledWidth(width, height); Height = ViewportScaledHeight(width, height); } //========================================================================== // // DFrameBuffer :: DrawRateStuff // // Draws the fps counter, dot ticker, and palette debug. // //========================================================================== void DFrameBuffer::DrawRateStuff () { // Draws frame time and cumulative fps if (vid_fps) { uint64_t ms = screen->FrameTime; uint64_t howlong = ms - LastMS; if ((signed)howlong >= 0) { char fpsbuff[40]; int chars; int rate_x; int textScale = active_con_scale(); chars = mysnprintf (fpsbuff, countof(fpsbuff), "%2" PRIu64 " ms (%3" PRIu64 " fps)", howlong, LastCount); rate_x = Width / textScale - ConFont->StringWidth(&fpsbuff[0]); Clear (rate_x * textScale, 0, Width, ConFont->GetHeight() * textScale, GPalette.BlackIndex, 0); DrawText (ConFont, CR_WHITE, rate_x, 0, (char *)&fpsbuff[0], DTA_VirtualWidth, screen->GetWidth() / textScale, DTA_VirtualHeight, screen->GetHeight() / textScale, DTA_KeepRatio, true, TAG_DONE); uint32_t thisSec = (uint32_t)(ms/1000); if (LastSec < thisSec) { LastCount = FrameCount / (thisSec - LastSec); LastSec = thisSec; FrameCount = 0; } FrameCount++; } LastMS = ms; } // draws little dots on the bottom of the screen if (ticker) { int64_t t = I_GetTime(); int64_t tics = t - LastTic; LastTic = t; if (tics > 20) tics = 20; int i; for (i = 0; i < tics*2; i += 2) Clear(i, Height-1, i+1, Height, 255, 0); for ( ; i < 20*2; i += 2) Clear(i, Height-1, i+1, Height, 0, 0); } // draws the palette for debugging if (vid_showpalette) { V_DrawPaletteTester(vid_showpalette); } } //========================================================================== // // Palette stuff. // //========================================================================== void DFrameBuffer::GetFlashedPalette(PalEntry pal[256]) { DoBlending(SourcePalette, pal, 256, Flash.r, Flash.g, Flash.b, Flash.a); } PalEntry *DFrameBuffer::GetPalette() { return SourcePalette; } bool DFrameBuffer::SetFlash(PalEntry rgb, int amount) { Flash = PalEntry(amount, rgb.r, rgb.g, rgb.b); return true; } void DFrameBuffer::GetFlash(PalEntry &rgb, int &amount) { rgb = Flash; rgb.a = 0; amount = Flash.a; } //========================================================================== // // DFrameBuffer :: SetVSync // // Turns vertical sync on and off, if supported. // //========================================================================== void DFrameBuffer::SetVSync (bool vsync) { } //========================================================================== // // DFrameBuffer :: WipeStartScreen // // Grabs a copy of the screen currently displayed to serve as the initial // frame of a screen wipe. Also determines which screenwipe will be // performed. // //========================================================================== bool DFrameBuffer::WipeStartScreen(int type) { return false; } //========================================================================== // // DFrameBuffer :: WipeEndScreen // // Grabs a copy of the most-recently drawn, but not yet displayed, screen // to serve as the final frame of a screen wipe. // //========================================================================== void DFrameBuffer::WipeEndScreen() { } //========================================================================== // // DFrameBuffer :: WipeDo // // Draws one frame of a screenwipe. Should be called no more than 35 // times per second. If called less than that, ticks indicates how many // ticks have passed since the last call. // //========================================================================== bool DFrameBuffer::WipeDo(int ticks) { return false; } //========================================================================== // // DFrameBuffer :: WipeCleanup // //========================================================================== void DFrameBuffer::WipeCleanup() { } //========================================================================== // // DFrameBuffer :: InitPalette // //========================================================================== void DFrameBuffer::InitPalette() { memcpy(SourcePalette, GPalette.BaseColors, sizeof(PalEntry) * 256); UpdatePalette(); } //========================================================================== // // // //========================================================================== void DFrameBuffer::BuildGammaTable(uint16_t *gammaTable) { float gamma = clamp(Gamma, 0.1f, 4.f); float contrast = clamp(vid_contrast, 0.1f, 3.f); float bright = clamp(vid_brightness, -0.8f, 0.8f); double invgamma = 1 / gamma; double norm = pow(255., invgamma - 1); for (int i = 0; i < 256; i++) { double val = i * contrast - (contrast - 1) * 127; val += bright * 128; if (gamma != 1) val = pow(val, invgamma) / norm; gammaTable[i] = gammaTable[i + 256] = gammaTable[i + 512] = (uint16_t)clamp(val * 256, 0, 0xffff); } } //========================================================================== // // DFrameBuffer :: GetCaps // //========================================================================== EXTERN_CVAR(Bool, r_drawvoxels) uint32_t DFrameBuffer::GetCaps() { ActorRenderFeatureFlags FlagSet = 0; if (V_IsPolyRenderer()) FlagSet |= RFF_POLYGONAL | RFF_TILTPITCH | RFF_SLOPE3DFLOORS; else { FlagSet |= RFF_UNCLIPPEDTEX; if (r_drawvoxels) FlagSet |= RFF_VOXELS; } if (V_IsTrueColor()) FlagSet |= RFF_TRUECOLOR; else FlagSet |= RFF_COLORMAP; return (uint32_t)FlagSet; } void DFrameBuffer::RenderTextureView(FCanvasTexture *tex, AActor *Viewpoint, double FOV) { SWRenderer->RenderTextureView(tex, Viewpoint, FOV); } void DFrameBuffer::WriteSavePic(player_t *player, FileWriter *file, int width, int height) { SWRenderer->WriteSavePic(player, file, width, height); } //========================================================================== // // Calculates the viewport values needed for 2D and 3D operations // //========================================================================== void DFrameBuffer::SetViewportRects(IntRect *bounds) { if (bounds) { mSceneViewport = *bounds; mScreenViewport = *bounds; mOutputLetterbox = *bounds; return; } // Special handling so the view with a visible status bar displays properly int height, width; if (screenblocks >= 10) { height = GetHeight(); width = GetWidth(); } else { height = (screenblocks*GetHeight() / 10) & ~7; width = (screenblocks*GetWidth() / 10); } // Back buffer letterbox for the final output int clientWidth = GetClientWidth(); int clientHeight = GetClientHeight(); if (clientWidth == 0 || clientHeight == 0) { // When window is minimized there may not be any client area. // Pretend to the rest of the render code that we just have a very small window. clientWidth = 160; clientHeight = 120; } int screenWidth = GetWidth(); int screenHeight = GetHeight(); float scaleX, scaleY; if (ViewportIsScaled43()) { scaleX = MIN(clientWidth / (float)screenWidth, clientHeight / (screenHeight * 1.2f)); scaleY = scaleX * 1.2f; } else { scaleX = MIN(clientWidth / (float)screenWidth, clientHeight / (float)screenHeight); scaleY = scaleX; } mOutputLetterbox.width = (int)round(screenWidth * scaleX); mOutputLetterbox.height = (int)round(screenHeight * scaleY); mOutputLetterbox.left = (clientWidth - mOutputLetterbox.width) / 2; mOutputLetterbox.top = (clientHeight - mOutputLetterbox.height) / 2; // The entire renderable area, including the 2D HUD mScreenViewport.left = 0; mScreenViewport.top = 0; mScreenViewport.width = screenWidth; mScreenViewport.height = screenHeight; // Viewport for the 3D scene mSceneViewport.left = viewwindowx; mSceneViewport.top = screenHeight - (height + viewwindowy - ((height - viewheight) / 2)); mSceneViewport.width = viewwidth; mSceneViewport.height = height; // Scale viewports to fit letterbox bool notScaled = ((mScreenViewport.width == ViewportScaledWidth(mScreenViewport.width, mScreenViewport.height)) && (mScreenViewport.width == ViewportScaledHeight(mScreenViewport.width, mScreenViewport.height)) && !ViewportIsScaled43()); if (gl_scale_viewport && !IsFullscreen() && notScaled) { mScreenViewport.width = mOutputLetterbox.width; mScreenViewport.height = mOutputLetterbox.height; mSceneViewport.left = (int)round(mSceneViewport.left * scaleX); mSceneViewport.top = (int)round(mSceneViewport.top * scaleY); mSceneViewport.width = (int)round(mSceneViewport.width * scaleX); mSceneViewport.height = (int)round(mSceneViewport.height * scaleY); } } //=========================================================================== // // Calculates the OpenGL window coordinates for a zdoom screen position // //=========================================================================== int DFrameBuffer::ScreenToWindowX(int x) { return mScreenViewport.left + (int)round(x * mScreenViewport.width / (float)GetWidth()); } int DFrameBuffer::ScreenToWindowY(int y) { return mScreenViewport.top + mScreenViewport.height - (int)round(y * mScreenViewport.height / (float)GetHeight()); } void DFrameBuffer::ScaleCoordsFromWindow(int16_t &x, int16_t &y) { int letterboxX = mOutputLetterbox.left; int letterboxY = mOutputLetterbox.top; int letterboxWidth = mOutputLetterbox.width; int letterboxHeight = mOutputLetterbox.height; x = int16_t((x - letterboxX) * Width / letterboxWidth); y = int16_t((y - letterboxY) * Height / letterboxHeight); } CCMD(clean) { Printf ("CleanXfac: %d\nCleanYfac: %d\n", CleanXfac, CleanYfac); } void V_UpdateModeSize (int width, int height) { int cx1, cx2; V_CalcCleanFacs(320, 200, width, height, &CleanXfac, &CleanYfac, &cx1, &cx2); CleanWidth = width / CleanXfac; CleanHeight = height / CleanYfac; assert(CleanWidth >= 320); assert(CleanHeight >= 200); if (width < 800 || width >= 960) { if (cx1 < cx2) { // Special case in which we don't need to scale down. CleanXfac_1 = CleanYfac_1 = cx1; } else { CleanXfac_1 = MAX(CleanXfac - 1, 1); CleanYfac_1 = MAX(CleanYfac - 1, 1); // On larger screens this is not enough so make sure it's at most 3/4 of the screen's width while (CleanXfac_1 * 320 > screen->GetWidth()*3/4 && CleanXfac_1 > 2) { CleanXfac_1--; CleanYfac_1--; } } CleanWidth_1 = width / CleanXfac_1; CleanHeight_1 = height / CleanYfac_1; } else // if the width is between 800 and 960 the ratio between the screensize and CleanXFac-1 becomes too large. { CleanXfac_1 = CleanXfac; CleanYfac_1 = CleanYfac; CleanWidth_1 = CleanWidth; CleanHeight_1 = CleanHeight; } DisplayWidth = width; DisplayHeight = height; R_OldBlend = ~0; } void V_OutputResized (int width, int height) { V_UpdateModeSize(width, height); setsizeneeded = true; if (StatusBar != NULL) { StatusBar->CallScreenSizeChanged(); } C_NewModeAdjust(); // Reload crosshair if transitioned to a different size ST_LoadCrosshair(true); AM_NewResolution(); } void V_CalcCleanFacs (int designwidth, int designheight, int realwidth, int realheight, int *cleanx, int *cleany, int *_cx1, int *_cx2) { float ratio; int cwidth; int cheight; int cx1, cy1, cx2, cy2; // For larger screems always use at least a 16:9 ratio for clean factor calculation, even if the actual ratio is narrower. if (realwidth > 1280 && (double)realwidth / realheight < 16./9) { realheight = realwidth * 9 / 16; } ratio = ActiveRatio(realwidth, realheight); if (AspectTallerThanWide(ratio)) { cwidth = realwidth; cheight = realheight * AspectMultiplier(ratio) / 48; } else { cwidth = realwidth * AspectMultiplier(ratio) / 48; cheight = realheight; } // Use whichever pair of cwidth/cheight or width/height that produces less difference // between CleanXfac and CleanYfac. cx1 = MAX(cwidth / designwidth, 1); cy1 = MAX(cheight / designheight, 1); cx2 = MAX(realwidth / designwidth, 1); cy2 = MAX(realheight / designheight, 1); if (abs(cx1 - cy1) <= abs(cx2 - cy2) || MAX(cx1, cx2) >= 4) { // e.g. 640x360 looks better with this. *cleanx = cx1; *cleany = cy1; } else { // e.g. 720x480 looks better with this. *cleanx = cx2; *cleany = cy2; } if (*cleanx < *cleany) *cleany = *cleanx; else *cleanx = *cleany; if (_cx1 != NULL) *_cx1 = cx1; if (_cx2 != NULL) *_cx2 = cx2; } bool IVideo::SetResolution () { DFrameBuffer *buff = CreateFrameBuffer(); if (buff == NULL) // this cannot really happen { return false; } screen = buff; screen->SetGamma(); V_UpdateModeSize(screen->GetWidth(), screen->GetHeight()); return true; } // // V_Init // void V_Init (bool restart) { const char *i; int width, height, bits; atterm (V_Shutdown); // [RH] Initialize palette management InitPalette (); if (!restart) { width = height = bits = 0; if ( (i = Args->CheckValue ("-width")) ) width = atoi (i); if ( (i = Args->CheckValue ("-height")) ) height = atoi (i); if ( (i = Args->CheckValue ("-bits")) ) bits = atoi (i); if (width == 0) { if (height == 0) { width = vid_defwidth; height = vid_defheight; } else { width = (height * 8) / 6; } } else if (height == 0) { height = (width * 6) / 8; } if (bits == 0) { bits = vid_defbits; } screen = new DDummyFrameBuffer (width, height); } // Update screen palette when restarting else { PalEntry *palette = screen->GetPalette (); for (int i = 0; i < 256; ++i) *palette++ = GPalette.BaseColors[i]; screen->UpdatePalette(); } BuildTransTable (GPalette.BaseColors); } void V_Init2() { float gamma = static_cast(screen)->Gamma; { DFrameBuffer *s = screen; screen = NULL; delete s; } UCVarValue val; val.Bool = !!Args->CheckParm("-devparm"); ticker.SetGenericRepDefault(val, CVAR_Bool); I_InitGraphics(); Video->SetResolution(); // this only fails via exceptions. Printf ("Resolution: %d x %d\n", SCREENWIDTH, SCREENHEIGHT); screen->SetGamma (); FBaseCVar::ResetColors (); C_NewModeAdjust(); setsizeneeded = true; } void V_Shutdown() { if (screen) { DFrameBuffer *s = screen; screen = NULL; delete s; } V_ClearFonts(); } CUSTOM_CVAR (Int, vid_aspect, 0, CVAR_GLOBALCONFIG|CVAR_ARCHIVE) { setsizeneeded = true; if (StatusBar != NULL) { StatusBar->CallScreenSizeChanged(); } } // Helper for ActiveRatio and CheckRatio. Returns the forced ratio type, or -1 if none. int ActiveFakeRatio(int width, int height) { int fakeratio = -1; if ((vid_aspect >= 1) && (vid_aspect <= 6)) { // [SP] User wants to force aspect ratio; let them. fakeratio = int(vid_aspect); if (fakeratio == 3) { fakeratio = 0; } else if (fakeratio == 5) { fakeratio = 3; } } else if (vid_aspect == 0 && ViewportIsScaled43()) { fakeratio = 0; } return fakeratio; } // Active screen ratio based on cvars and size float ActiveRatio(int width, int height, float *trueratio) { static float forcedRatioTypes[] = { 4 / 3.0f, 16 / 9.0f, 16 / 10.0f, 17 / 10.0f, 5 / 4.0f, 17 / 10.0f, 21 / 9.0f }; float ratio = width / (float)height; int fakeratio = ActiveFakeRatio(width, height); if (trueratio) *trueratio = ratio; return (fakeratio != -1) ? forcedRatioTypes[fakeratio] : ratio; } DEFINE_ACTION_FUNCTION(_Screen, GetAspectRatio) { ACTION_RETURN_FLOAT(ActiveRatio(screen->GetWidth(), screen->GetHeight(), nullptr)); } // Tries to guess the physical dimensions of the screen based on the // screen's pixel dimensions. Can return: // 0: 4:3 // 1: 16:9 // 2: 16:10 // 3: 17:10 // 4: 5:4 // 5: 17:10 (redundant, never returned) // 6: 21:9 int CheckRatio (int width, int height, int *trueratio) { float aspect = width / (float)height; static std::pair ratioTypes[] = { { 21 / 9.0f , 6 }, { 16 / 9.0f , 1 }, { 17 / 10.0f , 3 }, { 16 / 10.0f , 2 }, { 4 / 3.0f , 0 }, { 5 / 4.0f , 4 }, { 0.0f, 0 } }; int ratio = ratioTypes[0].second; float distance = fabs(ratioTypes[0].first - aspect); for (int i = 1; ratioTypes[i].first != 0.0f; i++) { float d = fabs(ratioTypes[i].first - aspect); if (d < distance) { ratio = ratioTypes[i].second; distance = d; } } int fakeratio = ActiveFakeRatio(width, height); if (fakeratio == -1) fakeratio = ratio; if (trueratio) *trueratio = ratio; return fakeratio; } int AspectBaseWidth(float aspect) { return (int)round(240.0f * aspect * 3.0f); } int AspectBaseHeight(float aspect) { if (!AspectTallerThanWide(aspect)) return (int)round(200.0f * (320.0f / (AspectBaseWidth(aspect) / 3.0f)) * 3.0f); else return (int)round((200.0f * (4.0f / 3.0f)) / aspect * 3.0f); } double AspectPspriteOffset(float aspect) { if (!AspectTallerThanWide(aspect)) return 0.0; else return ((4.0 / 3.0) / aspect - 1.0) * 97.5; } int AspectMultiplier(float aspect) { if (!AspectTallerThanWide(aspect)) return (int)round(320.0f / (AspectBaseWidth(aspect) / 3.0f) * 48.0f); else return (int)round(200.0f / (AspectBaseHeight(aspect) / 3.0f) * 48.0f); } bool AspectTallerThanWide(float aspect) { return aspect < 1.333f; } void ScaleWithAspect (int &w, int &h, int Width, int Height) { int resRatio = CheckRatio (Width, Height); int screenRatio; CheckRatio (w, h, &screenRatio); if (resRatio == screenRatio) return; double yratio; switch(resRatio) { case 0: yratio = 4./3.; break; case 1: yratio = 16./9.; break; case 2: yratio = 16./10.; break; case 3: yratio = 17./10.; break; case 4: yratio = 5./4.; break; case 6: yratio = 21./9.; break; default: return; } double y = w/yratio; if (y > h) w = static_cast(h * yratio); else h = static_cast(y); } void IVideo::DumpAdapters () { Printf("Multi-monitor support unavailable.\n"); } CUSTOM_CVAR(Bool, fullscreen, false, CVAR_ARCHIVE | CVAR_GLOBALCONFIG | CVAR_NOINITCALL) { setmodeneeded = true; } CCMD(vid_listadapters) { if (Video != NULL) Video->DumpAdapters(); } DEFINE_GLOBAL(SmallFont) DEFINE_GLOBAL(SmallFont2) DEFINE_GLOBAL(BigFont) DEFINE_GLOBAL(ConFont) DEFINE_GLOBAL(IntermissionFont) DEFINE_GLOBAL(CleanXfac) DEFINE_GLOBAL(CleanYfac) DEFINE_GLOBAL(CleanWidth) DEFINE_GLOBAL(CleanHeight) DEFINE_GLOBAL(CleanXfac_1) DEFINE_GLOBAL(CleanYfac_1) DEFINE_GLOBAL(CleanWidth_1) DEFINE_GLOBAL(CleanHeight_1)