// // Copyright (C) 2014-2015 LunarG, Inc. // // All rights reserved. // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions // are met: // // Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // // Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following // disclaimer in the documentation and/or other materials provided // with the distribution. // // Neither the name of 3Dlabs Inc. Ltd. nor the names of its // contributors may be used to endorse or promote products derived // from this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS // FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE // COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, // INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, // BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; // LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER // CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT // LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN // ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE // POSSIBILITY OF SUCH DAMAGE. // // Disassembler for SPIR-V. // #include #include #include #include #include #include #include #include "disassemble.h" #include "doc.h" #include "SpvTools.h" namespace spv { extern "C" { // Include C-based headers that don't have a namespace #include "GLSL.std.450.h" #ifdef AMD_EXTENSIONS #include "GLSL.ext.AMD.h" #endif #ifdef NV_EXTENSIONS #include "GLSL.ext.NV.h" #endif } } const char* GlslStd450DebugNames[spv::GLSLstd450Count]; namespace spv { #ifdef AMD_EXTENSIONS static const char* GLSLextAMDGetDebugNames(const char*, unsigned); #endif #ifdef NV_EXTENSIONS static const char* GLSLextNVGetDebugNames(const char*, unsigned); #endif static void Kill(std::ostream& out, const char* message) { out << std::endl << "Disassembly failed: " << message << std::endl; exit(1); } // used to identify the extended instruction library imported when printing enum ExtInstSet { GLSL450Inst, #ifdef AMD_EXTENSIONS GLSLextAMDInst, #endif #ifdef NV_EXTENSIONS GLSLextNVInst, #endif OpenCLExtInst, }; // Container class for a single instance of a SPIR-V stream, with methods for disassembly. class SpirvStream { public: SpirvStream(std::ostream& out, const std::vector& stream) : out(out), stream(stream), word(0), nextNestedControl(0) { } virtual ~SpirvStream() { } void validate(); void processInstructions(); protected: SpirvStream(const SpirvStream&); SpirvStream& operator=(const SpirvStream&); Op getOpCode(int id) const { return idInstruction[id] ? (Op)(stream[idInstruction[id]] & OpCodeMask) : OpNop; } // Output methods void outputIndent(); void formatId(Id id, std::stringstream&); void outputResultId(Id id); void outputTypeId(Id id); void outputId(Id id); void outputMask(OperandClass operandClass, unsigned mask); void disassembleImmediates(int numOperands); void disassembleIds(int numOperands); int disassembleString(); void disassembleInstruction(Id resultId, Id typeId, Op opCode, int numOperands); // Data std::ostream& out; // where to write the disassembly const std::vector& stream; // the actual word stream int size; // the size of the word stream int word; // the next word of the stream to read // map each to the instruction that created it Id bound; std::vector idInstruction; // the word offset into the stream where the instruction for result [id] starts; 0 if not yet seen (forward reference or function parameter) std::vector idDescriptor; // the best text string known for explaining the // schema unsigned int schema; // stack of structured-merge points std::stack nestedControl; Id nextNestedControl; // need a slight delay for when we are nested }; void SpirvStream::validate() { size = (int)stream.size(); if (size < 4) Kill(out, "stream is too short"); // Magic number if (stream[word++] != MagicNumber) { out << "Bad magic number"; return; } // Version out << "// Module Version " << std::hex << stream[word++] << std::endl; // Generator's magic number out << "// Generated by (magic number): " << std::hex << stream[word++] << std::dec << std::endl; // Result bound bound = stream[word++]; idInstruction.resize(bound); idDescriptor.resize(bound); out << "// Id's are bound by " << bound << std::endl; out << std::endl; // Reserved schema, must be 0 for now schema = stream[word++]; if (schema != 0) Kill(out, "bad schema, must be 0"); } // Loop over all the instructions, in order, processing each. // Boiler plate for each is handled here directly, the rest is dispatched. void SpirvStream::processInstructions() { // Instructions while (word < size) { int instructionStart = word; // Instruction wordCount and opcode unsigned int firstWord = stream[word]; unsigned wordCount = firstWord >> WordCountShift; Op opCode = (Op)(firstWord & OpCodeMask); int nextInst = word + wordCount; ++word; // Presence of full instruction if (nextInst > size) Kill(out, "stream instruction terminated too early"); // Base for computing number of operands; will be updated as more is learned unsigned numOperands = wordCount - 1; // Type Id typeId = 0; if (InstructionDesc[opCode].hasType()) { typeId = stream[word++]; --numOperands; } // Result Id resultId = 0; if (InstructionDesc[opCode].hasResult()) { resultId = stream[word++]; --numOperands; // save instruction for future reference idInstruction[resultId] = instructionStart; } outputResultId(resultId); outputTypeId(typeId); outputIndent(); // Hand off the Op and all its operands disassembleInstruction(resultId, typeId, opCode, numOperands); if (word != nextInst) { out << " ERROR, incorrect number of operands consumed. At " << word << " instead of " << nextInst << " instruction start was " << instructionStart; word = nextInst; } out << std::endl; } } void SpirvStream::outputIndent() { for (int i = 0; i < (int)nestedControl.size(); ++i) out << " "; } void SpirvStream::formatId(Id id, std::stringstream& idStream) { if (id != 0) { // On instructions with no IDs, this is called with "0", which does not // have to be within ID bounds on null shaders. if (id >= bound) Kill(out, "Bad "); idStream << id; if (idDescriptor[id].size() > 0) idStream << "(" << idDescriptor[id] << ")"; } } void SpirvStream::outputResultId(Id id) { const int width = 16; std::stringstream idStream; formatId(id, idStream); out << std::setw(width) << std::right << idStream.str(); if (id != 0) out << ":"; else out << " "; if (nestedControl.size() && id == nestedControl.top()) nestedControl.pop(); } void SpirvStream::outputTypeId(Id id) { const int width = 12; std::stringstream idStream; formatId(id, idStream); out << std::setw(width) << std::right << idStream.str() << " "; } void SpirvStream::outputId(Id id) { if (id >= bound) Kill(out, "Bad "); out << id; if (idDescriptor[id].size() > 0) out << "(" << idDescriptor[id] << ")"; } void SpirvStream::outputMask(OperandClass operandClass, unsigned mask) { if (mask == 0) out << "None"; else { for (int m = 0; m < OperandClassParams[operandClass].ceiling; ++m) { if (mask & (1 << m)) out << OperandClassParams[operandClass].getName(m) << " "; } } } void SpirvStream::disassembleImmediates(int numOperands) { for (int i = 0; i < numOperands; ++i) { out << stream[word++]; if (i < numOperands - 1) out << " "; } } void SpirvStream::disassembleIds(int numOperands) { for (int i = 0; i < numOperands; ++i) { outputId(stream[word++]); if (i < numOperands - 1) out << " "; } } // return the number of operands consumed by the string int SpirvStream::disassembleString() { int startWord = word; out << " \""; const char* wordString; bool done = false; do { unsigned int content = stream[word]; wordString = (const char*)&content; for (int charCount = 0; charCount < 4; ++charCount) { if (*wordString == 0) { done = true; break; } out << *(wordString++); } ++word; } while (! done); out << "\""; return word - startWord; } void SpirvStream::disassembleInstruction(Id resultId, Id /*typeId*/, Op opCode, int numOperands) { // Process the opcode out << (OpcodeString(opCode) + 2); // leave out the "Op" if (opCode == OpLoopMerge || opCode == OpSelectionMerge) nextNestedControl = stream[word]; else if (opCode == OpBranchConditional || opCode == OpSwitch) { if (nextNestedControl) { nestedControl.push(nextNestedControl); nextNestedControl = 0; } } else if (opCode == OpExtInstImport) { idDescriptor[resultId] = (const char*)(&stream[word]); } else { if (resultId != 0 && idDescriptor[resultId].size() == 0) { switch (opCode) { case OpTypeInt: switch (stream[word]) { case 8: idDescriptor[resultId] = "int8_t"; break; case 16: idDescriptor[resultId] = "int16_t"; break; default: assert(0); // fallthrough case 32: idDescriptor[resultId] = "int"; break; case 64: idDescriptor[resultId] = "int64_t"; break; } break; case OpTypeFloat: switch (stream[word]) { case 16: idDescriptor[resultId] = "float16_t"; break; default: assert(0); // fallthrough case 32: idDescriptor[resultId] = "float"; break; case 64: idDescriptor[resultId] = "float64_t"; break; } break; case OpTypeBool: idDescriptor[resultId] = "bool"; break; case OpTypeStruct: idDescriptor[resultId] = "struct"; break; case OpTypePointer: idDescriptor[resultId] = "ptr"; break; case OpTypeVector: if (idDescriptor[stream[word]].size() > 0) { idDescriptor[resultId].append(idDescriptor[stream[word]].begin(), idDescriptor[stream[word]].begin() + 1); if (strstr(idDescriptor[stream[word]].c_str(), "8")) { idDescriptor[resultId].append("8"); } if (strstr(idDescriptor[stream[word]].c_str(), "16")) { idDescriptor[resultId].append("16"); } if (strstr(idDescriptor[stream[word]].c_str(), "64")) { idDescriptor[resultId].append("64"); } } idDescriptor[resultId].append("vec"); switch (stream[word + 1]) { case 2: idDescriptor[resultId].append("2"); break; case 3: idDescriptor[resultId].append("3"); break; case 4: idDescriptor[resultId].append("4"); break; case 8: idDescriptor[resultId].append("8"); break; case 16: idDescriptor[resultId].append("16"); break; case 32: idDescriptor[resultId].append("32"); break; default: break; } break; default: break; } } } // Process the operands. Note, a new context-dependent set could be // swapped in mid-traversal. // Handle images specially, so can put out helpful strings. if (opCode == OpTypeImage) { out << " "; disassembleIds(1); out << " " << DimensionString((Dim)stream[word++]); out << (stream[word++] != 0 ? " depth" : ""); out << (stream[word++] != 0 ? " array" : ""); out << (stream[word++] != 0 ? " multi-sampled" : ""); switch (stream[word++]) { case 0: out << " runtime"; break; case 1: out << " sampled"; break; case 2: out << " nonsampled"; break; } out << " format:" << ImageFormatString((ImageFormat)stream[word++]); if (numOperands == 8) { out << " " << AccessQualifierString(stream[word++]); } return; } // Handle all the parameterized operands for (int op = 0; op < InstructionDesc[opCode].operands.getNum() && numOperands > 0; ++op) { out << " "; OperandClass operandClass = InstructionDesc[opCode].operands.getClass(op); switch (operandClass) { case OperandId: case OperandScope: case OperandMemorySemantics: disassembleIds(1); --numOperands; // Get names for printing "(XXX)" for readability, *after* this id if (opCode == OpName) idDescriptor[stream[word - 1]] = (const char*)(&stream[word]); break; case OperandVariableIds: disassembleIds(numOperands); return; case OperandImageOperands: outputMask(OperandImageOperands, stream[word++]); --numOperands; disassembleIds(numOperands); return; case OperandOptionalLiteral: case OperandVariableLiterals: if ((opCode == OpDecorate && stream[word - 1] == DecorationBuiltIn) || (opCode == OpMemberDecorate && stream[word - 1] == DecorationBuiltIn)) { out << BuiltInString(stream[word++]); --numOperands; ++op; } disassembleImmediates(numOperands); return; case OperandVariableIdLiteral: while (numOperands > 0) { out << std::endl; outputResultId(0); outputTypeId(0); outputIndent(); out << " Type "; disassembleIds(1); out << ", member "; disassembleImmediates(1); numOperands -= 2; } return; case OperandVariableLiteralId: while (numOperands > 0) { out << std::endl; outputResultId(0); outputTypeId(0); outputIndent(); out << " case "; disassembleImmediates(1); out << ": "; disassembleIds(1); numOperands -= 2; } return; case OperandLiteralNumber: disassembleImmediates(1); --numOperands; if (opCode == OpExtInst) { ExtInstSet extInstSet = GLSL450Inst; const char* name = idDescriptor[stream[word - 2]].c_str(); if (0 == memcmp("OpenCL", name, 6)) { extInstSet = OpenCLExtInst; #ifdef AMD_EXTENSIONS } else if (strcmp(spv::E_SPV_AMD_shader_ballot, name) == 0 || strcmp(spv::E_SPV_AMD_shader_trinary_minmax, name) == 0 || strcmp(spv::E_SPV_AMD_shader_explicit_vertex_parameter, name) == 0 || strcmp(spv::E_SPV_AMD_gcn_shader, name) == 0) { extInstSet = GLSLextAMDInst; #endif #ifdef NV_EXTENSIONS }else if (strcmp(spv::E_SPV_NV_sample_mask_override_coverage, name) == 0 || strcmp(spv::E_SPV_NV_geometry_shader_passthrough, name) == 0 || strcmp(spv::E_SPV_NV_viewport_array2, name) == 0 || strcmp(spv::E_SPV_NVX_multiview_per_view_attributes, name) == 0 || strcmp(spv::E_SPV_NV_fragment_shader_barycentric, name) == 0 || strcmp(spv::E_SPV_NV_mesh_shader, name) == 0) { extInstSet = GLSLextNVInst; #endif } unsigned entrypoint = stream[word - 1]; if (extInstSet == GLSL450Inst) { if (entrypoint < GLSLstd450Count) { out << "(" << GlslStd450DebugNames[entrypoint] << ")"; } #ifdef AMD_EXTENSIONS } else if (extInstSet == GLSLextAMDInst) { out << "(" << GLSLextAMDGetDebugNames(name, entrypoint) << ")"; #endif #ifdef NV_EXTENSIONS } else if (extInstSet == GLSLextNVInst) { out << "(" << GLSLextNVGetDebugNames(name, entrypoint) << ")"; #endif } } break; case OperandOptionalLiteralString: case OperandLiteralString: numOperands -= disassembleString(); break; case OperandMemoryAccess: outputMask(OperandMemoryAccess, stream[word++]); --numOperands; // Aligned is the only memory access operand that uses an immediate // value, and it is also the first operand that uses a value at all. if (stream[word-1] & MemoryAccessAlignedMask) { disassembleImmediates(1); numOperands--; if (numOperands) out << " "; } disassembleIds(numOperands); return; default: assert(operandClass >= OperandSource && operandClass < OperandOpcode); if (OperandClassParams[operandClass].bitmask) outputMask(operandClass, stream[word++]); else out << OperandClassParams[operandClass].getName(stream[word++]); --numOperands; break; } } return; } static void GLSLstd450GetDebugNames(const char** names) { for (int i = 0; i < GLSLstd450Count; ++i) names[i] = "Unknown"; names[GLSLstd450Round] = "Round"; names[GLSLstd450RoundEven] = "RoundEven"; names[GLSLstd450Trunc] = "Trunc"; names[GLSLstd450FAbs] = "FAbs"; names[GLSLstd450SAbs] = "SAbs"; names[GLSLstd450FSign] = "FSign"; names[GLSLstd450SSign] = "SSign"; names[GLSLstd450Floor] = "Floor"; names[GLSLstd450Ceil] = "Ceil"; names[GLSLstd450Fract] = "Fract"; names[GLSLstd450Radians] = "Radians"; names[GLSLstd450Degrees] = "Degrees"; names[GLSLstd450Sin] = "Sin"; names[GLSLstd450Cos] = "Cos"; names[GLSLstd450Tan] = "Tan"; names[GLSLstd450Asin] = "Asin"; names[GLSLstd450Acos] = "Acos"; names[GLSLstd450Atan] = "Atan"; names[GLSLstd450Sinh] = "Sinh"; names[GLSLstd450Cosh] = "Cosh"; names[GLSLstd450Tanh] = "Tanh"; names[GLSLstd450Asinh] = "Asinh"; names[GLSLstd450Acosh] = "Acosh"; names[GLSLstd450Atanh] = "Atanh"; names[GLSLstd450Atan2] = "Atan2"; names[GLSLstd450Pow] = "Pow"; names[GLSLstd450Exp] = "Exp"; names[GLSLstd450Log] = "Log"; names[GLSLstd450Exp2] = "Exp2"; names[GLSLstd450Log2] = "Log2"; names[GLSLstd450Sqrt] = "Sqrt"; names[GLSLstd450InverseSqrt] = "InverseSqrt"; names[GLSLstd450Determinant] = "Determinant"; names[GLSLstd450MatrixInverse] = "MatrixInverse"; names[GLSLstd450Modf] = "Modf"; names[GLSLstd450ModfStruct] = "ModfStruct"; names[GLSLstd450FMin] = "FMin"; names[GLSLstd450SMin] = "SMin"; names[GLSLstd450UMin] = "UMin"; names[GLSLstd450FMax] = "FMax"; names[GLSLstd450SMax] = "SMax"; names[GLSLstd450UMax] = "UMax"; names[GLSLstd450FClamp] = "FClamp"; names[GLSLstd450SClamp] = "SClamp"; names[GLSLstd450UClamp] = "UClamp"; names[GLSLstd450FMix] = "FMix"; names[GLSLstd450Step] = "Step"; names[GLSLstd450SmoothStep] = "SmoothStep"; names[GLSLstd450Fma] = "Fma"; names[GLSLstd450Frexp] = "Frexp"; names[GLSLstd450FrexpStruct] = "FrexpStruct"; names[GLSLstd450Ldexp] = "Ldexp"; names[GLSLstd450PackSnorm4x8] = "PackSnorm4x8"; names[GLSLstd450PackUnorm4x8] = "PackUnorm4x8"; names[GLSLstd450PackSnorm2x16] = "PackSnorm2x16"; names[GLSLstd450PackUnorm2x16] = "PackUnorm2x16"; names[GLSLstd450PackHalf2x16] = "PackHalf2x16"; names[GLSLstd450PackDouble2x32] = "PackDouble2x32"; names[GLSLstd450UnpackSnorm2x16] = "UnpackSnorm2x16"; names[GLSLstd450UnpackUnorm2x16] = "UnpackUnorm2x16"; names[GLSLstd450UnpackHalf2x16] = "UnpackHalf2x16"; names[GLSLstd450UnpackSnorm4x8] = "UnpackSnorm4x8"; names[GLSLstd450UnpackUnorm4x8] = "UnpackUnorm4x8"; names[GLSLstd450UnpackDouble2x32] = "UnpackDouble2x32"; names[GLSLstd450Length] = "Length"; names[GLSLstd450Distance] = "Distance"; names[GLSLstd450Cross] = "Cross"; names[GLSLstd450Normalize] = "Normalize"; names[GLSLstd450FaceForward] = "FaceForward"; names[GLSLstd450Reflect] = "Reflect"; names[GLSLstd450Refract] = "Refract"; names[GLSLstd450FindILsb] = "FindILsb"; names[GLSLstd450FindSMsb] = "FindSMsb"; names[GLSLstd450FindUMsb] = "FindUMsb"; names[GLSLstd450InterpolateAtCentroid] = "InterpolateAtCentroid"; names[GLSLstd450InterpolateAtSample] = "InterpolateAtSample"; names[GLSLstd450InterpolateAtOffset] = "InterpolateAtOffset"; } #ifdef AMD_EXTENSIONS static const char* GLSLextAMDGetDebugNames(const char* name, unsigned entrypoint) { if (strcmp(name, spv::E_SPV_AMD_shader_ballot) == 0) { switch (entrypoint) { case SwizzleInvocationsAMD: return "SwizzleInvocationsAMD"; case SwizzleInvocationsMaskedAMD: return "SwizzleInvocationsMaskedAMD"; case WriteInvocationAMD: return "WriteInvocationAMD"; case MbcntAMD: return "MbcntAMD"; default: return "Bad"; } } else if (strcmp(name, spv::E_SPV_AMD_shader_trinary_minmax) == 0) { switch (entrypoint) { case FMin3AMD: return "FMin3AMD"; case UMin3AMD: return "UMin3AMD"; case SMin3AMD: return "SMin3AMD"; case FMax3AMD: return "FMax3AMD"; case UMax3AMD: return "UMax3AMD"; case SMax3AMD: return "SMax3AMD"; case FMid3AMD: return "FMid3AMD"; case UMid3AMD: return "UMid3AMD"; case SMid3AMD: return "SMid3AMD"; default: return "Bad"; } } else if (strcmp(name, spv::E_SPV_AMD_shader_explicit_vertex_parameter) == 0) { switch (entrypoint) { case InterpolateAtVertexAMD: return "InterpolateAtVertexAMD"; default: return "Bad"; } } else if (strcmp(name, spv::E_SPV_AMD_gcn_shader) == 0) { switch (entrypoint) { case CubeFaceIndexAMD: return "CubeFaceIndexAMD"; case CubeFaceCoordAMD: return "CubeFaceCoordAMD"; case TimeAMD: return "TimeAMD"; default: break; } } return "Bad"; } #endif #ifdef NV_EXTENSIONS static const char* GLSLextNVGetDebugNames(const char* name, unsigned entrypoint) { if (strcmp(name, spv::E_SPV_NV_sample_mask_override_coverage) == 0 || strcmp(name, spv::E_SPV_NV_geometry_shader_passthrough) == 0 || strcmp(name, spv::E_ARB_shader_viewport_layer_array) == 0 || strcmp(name, spv::E_SPV_NV_viewport_array2) == 0 || strcmp(spv::E_SPV_NVX_multiview_per_view_attributes, name) == 0 || strcmp(spv::E_SPV_NV_fragment_shader_barycentric, name) == 0 || strcmp(name, spv::E_SPV_NV_mesh_shader) == 0) { switch (entrypoint) { // NV builtins case BuiltInViewportMaskNV: return "ViewportMaskNV"; case BuiltInSecondaryPositionNV: return "SecondaryPositionNV"; case BuiltInSecondaryViewportMaskNV: return "SecondaryViewportMaskNV"; case BuiltInPositionPerViewNV: return "PositionPerViewNV"; case BuiltInViewportMaskPerViewNV: return "ViewportMaskPerViewNV"; case BuiltInBaryCoordNV: return "BaryCoordNV"; case BuiltInBaryCoordNoPerspNV: return "BaryCoordNoPerspNV"; case BuiltInTaskCountNV: return "TaskCountNV"; case BuiltInPrimitiveCountNV: return "PrimitiveCountNV"; case BuiltInPrimitiveIndicesNV: return "PrimitiveIndicesNV"; case BuiltInClipDistancePerViewNV: return "ClipDistancePerViewNV"; case BuiltInCullDistancePerViewNV: return "CullDistancePerViewNV"; case BuiltInLayerPerViewNV: return "LayerPerViewNV"; case BuiltInMeshViewCountNV: return "MeshViewCountNV"; case BuiltInMeshViewIndicesNV: return "MeshViewIndicesNV"; // NV Capabilities case CapabilityGeometryShaderPassthroughNV: return "GeometryShaderPassthroughNV"; case CapabilityShaderViewportMaskNV: return "ShaderViewportMaskNV"; case CapabilityShaderStereoViewNV: return "ShaderStereoViewNV"; case CapabilityPerViewAttributesNV: return "PerViewAttributesNV"; case CapabilityFragmentBarycentricNV: return "FragmentBarycentricNV"; case CapabilityMeshShadingNV: return "MeshShadingNV"; // NV Decorations case DecorationOverrideCoverageNV: return "OverrideCoverageNV"; case DecorationPassthroughNV: return "PassthroughNV"; case DecorationViewportRelativeNV: return "ViewportRelativeNV"; case DecorationSecondaryViewportRelativeNV: return "SecondaryViewportRelativeNV"; case DecorationPerVertexNV: return "PerVertexNV"; case DecorationPerPrimitiveNV: return "PerPrimitiveNV"; case DecorationPerViewNV: return "PerViewNV"; case DecorationPerTaskNV: return "PerTaskNV"; default: return "Bad"; } } return "Bad"; } #endif void Disassemble(std::ostream& out, const std::vector& stream) { SpirvStream SpirvStream(out, stream); spv::Parameterize(); GLSLstd450GetDebugNames(GlslStd450DebugNames); SpirvStream.validate(); SpirvStream.processInstructions(); } }; // end namespace spv