/* * Copyright (C) 2013-2016 Alexey Khokholov (Nuke.YKT) * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * Lesser General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. * * Nuked OPL3 emulator. * Thanks: * MAME Development Team(Jarek Burczynski, Tatsuyuki Satoh): * Feedback and Rhythm part calculation information. * forums.submarine.org.uk(carbon14, opl3): * Tremolo and phase generator calculation information. * OPLx decapsulated(Matthew Gambrell, Olli Niemitalo): * OPL2 ROMs. * * version: 1.7.4 */ #include #include #include #include "nukedopl3_174.h" #define RSM_FRAC 10 /* Channel types */ enum { ch_2op = 0, ch_4op = 1, ch_4op2 = 2, ch_drum = 3 }; /* Envelope key types */ enum { egk_norm = 0x01, egk_drum = 0x02 }; /* * logsin table */ static const Bit16u logsinrom[512] = { 0x859, 0x6c3, 0x607, 0x58b, 0x52e, 0x4e4, 0x4a6, 0x471, 0x443, 0x41a, 0x3f5, 0x3d3, 0x3b5, 0x398, 0x37e, 0x365, 0x34e, 0x339, 0x324, 0x311, 0x2ff, 0x2ed, 0x2dc, 0x2cd, 0x2bd, 0x2af, 0x2a0, 0x293, 0x286, 0x279, 0x26d, 0x261, 0x256, 0x24b, 0x240, 0x236, 0x22c, 0x222, 0x218, 0x20f, 0x206, 0x1fd, 0x1f5, 0x1ec, 0x1e4, 0x1dc, 0x1d4, 0x1cd, 0x1c5, 0x1be, 0x1b7, 0x1b0, 0x1a9, 0x1a2, 0x19b, 0x195, 0x18f, 0x188, 0x182, 0x17c, 0x177, 0x171, 0x16b, 0x166, 0x160, 0x15b, 0x155, 0x150, 0x14b, 0x146, 0x141, 0x13c, 0x137, 0x133, 0x12e, 0x129, 0x125, 0x121, 0x11c, 0x118, 0x114, 0x10f, 0x10b, 0x107, 0x103, 0x0ff, 0x0fb, 0x0f8, 0x0f4, 0x0f0, 0x0ec, 0x0e9, 0x0e5, 0x0e2, 0x0de, 0x0db, 0x0d7, 0x0d4, 0x0d1, 0x0cd, 0x0ca, 0x0c7, 0x0c4, 0x0c1, 0x0be, 0x0bb, 0x0b8, 0x0b5, 0x0b2, 0x0af, 0x0ac, 0x0a9, 0x0a7, 0x0a4, 0x0a1, 0x09f, 0x09c, 0x099, 0x097, 0x094, 0x092, 0x08f, 0x08d, 0x08a, 0x088, 0x086, 0x083, 0x081, 0x07f, 0x07d, 0x07a, 0x078, 0x076, 0x074, 0x072, 0x070, 0x06e, 0x06c, 0x06a, 0x068, 0x066, 0x064, 0x062, 0x060, 0x05e, 0x05c, 0x05b, 0x059, 0x057, 0x055, 0x053, 0x052, 0x050, 0x04e, 0x04d, 0x04b, 0x04a, 0x048, 0x046, 0x045, 0x043, 0x042, 0x040, 0x03f, 0x03e, 0x03c, 0x03b, 0x039, 0x038, 0x037, 0x035, 0x034, 0x033, 0x031, 0x030, 0x02f, 0x02e, 0x02d, 0x02b, 0x02a, 0x029, 0x028, 0x027, 0x026, 0x025, 0x024, 0x023, 0x022, 0x021, 0x020, 0x01f, 0x01e, 0x01d, 0x01c, 0x01b, 0x01a, 0x019, 0x018, 0x017, 0x017, 0x016, 0x015, 0x014, 0x014, 0x013, 0x012, 0x011, 0x011, 0x010, 0x00f, 0x00f, 0x00e, 0x00d, 0x00d, 0x00c, 0x00c, 0x00b, 0x00a, 0x00a, 0x009, 0x009, 0x008, 0x008, 0x007, 0x007, 0x007, 0x006, 0x006, 0x005, 0x005, 0x005, 0x004, 0x004, 0x004, 0x003, 0x003, 0x003, 0x002, 0x002, 0x002, 0x002, 0x001, 0x001, 0x001, 0x001, 0x001, 0x001, 0x001, 0x000, 0x000, 0x000, 0x000, 0x000, 0x000, 0x000, 0x000, 0x000, 0x000, 0x000, 0x000, 0x000, 0x000, 0x000, 0x000, 0x001, 0x001, 0x001, 0x001, 0x001, 0x001, 0x001, 0x002, 0x002, 0x002, 0x002, 0x003, 0x003, 0x003, 0x004, 0x004, 0x004, 0x005, 0x005, 0x005, 0x006, 0x006, 0x007, 0x007, 0x007, 0x008, 0x008, 0x009, 0x009, 0x00a, 0x00a, 0x00b, 0x00c, 0x00c, 0x00d, 0x00d, 0x00e, 0x00f, 0x00f, 0x010, 0x011, 0x011, 0x012, 0x013, 0x014, 0x014, 0x015, 0x016, 0x017, 0x017, 0x018, 0x019, 0x01a, 0x01b, 0x01c, 0x01d, 0x01e, 0x01f, 0x020, 0x021, 0x022, 0x023, 0x024, 0x025, 0x026, 0x027, 0x028, 0x029, 0x02a, 0x02b, 0x02d, 0x02e, 0x02f, 0x030, 0x031, 0x033, 0x034, 0x035, 0x037, 0x038, 0x039, 0x03b, 0x03c, 0x03e, 0x03f, 0x040, 0x042, 0x043, 0x045, 0x046, 0x048, 0x04a, 0x04b, 0x04d, 0x04e, 0x050, 0x052, 0x053, 0x055, 0x057, 0x059, 0x05b, 0x05c, 0x05e, 0x060, 0x062, 0x064, 0x066, 0x068, 0x06a, 0x06c, 0x06e, 0x070, 0x072, 0x074, 0x076, 0x078, 0x07a, 0x07d, 0x07f, 0x081, 0x083, 0x086, 0x088, 0x08a, 0x08d, 0x08f, 0x092, 0x094, 0x097, 0x099, 0x09c, 0x09f, 0x0a1, 0x0a4, 0x0a7, 0x0a9, 0x0ac, 0x0af, 0x0b2, 0x0b5, 0x0b8, 0x0bb, 0x0be, 0x0c1, 0x0c4, 0x0c7, 0x0ca, 0x0cd, 0x0d1, 0x0d4, 0x0d7, 0x0db, 0x0de, 0x0e2, 0x0e5, 0x0e9, 0x0ec, 0x0f0, 0x0f4, 0x0f8, 0x0fb, 0x0ff, 0x103, 0x107, 0x10b, 0x10f, 0x114, 0x118, 0x11c, 0x121, 0x125, 0x129, 0x12e, 0x133, 0x137, 0x13c, 0x141, 0x146, 0x14b, 0x150, 0x155, 0x15b, 0x160, 0x166, 0x16b, 0x171, 0x177, 0x17c, 0x182, 0x188, 0x18f, 0x195, 0x19b, 0x1a2, 0x1a9, 0x1b0, 0x1b7, 0x1be, 0x1c5, 0x1cd, 0x1d4, 0x1dc, 0x1e4, 0x1ec, 0x1f5, 0x1fd, 0x206, 0x20f, 0x218, 0x222, 0x22c, 0x236, 0x240, 0x24b, 0x256, 0x261, 0x26d, 0x279, 0x286, 0x293, 0x2a0, 0x2af, 0x2bd, 0x2cd, 0x2dc, 0x2ed, 0x2ff, 0x311, 0x324, 0x339, 0x34e, 0x365, 0x37e, 0x398, 0x3b5, 0x3d3, 0x3f5, 0x41a, 0x443, 0x471, 0x4a6, 0x4e4, 0x52e, 0x58b, 0x607, 0x6c3, 0x859 }; /* * exp table */ static const Bit16u exprom[256] = { 0xff4, 0xfea, 0xfde, 0xfd4, 0xfc8, 0xfbe, 0xfb4, 0xfa8, 0xf9e, 0xf92, 0xf88, 0xf7e, 0xf72, 0xf68, 0xf5c, 0xf52, 0xf48, 0xf3e, 0xf32, 0xf28, 0xf1e, 0xf14, 0xf08, 0xefe, 0xef4, 0xeea, 0xee0, 0xed4, 0xeca, 0xec0, 0xeb6, 0xeac, 0xea2, 0xe98, 0xe8e, 0xe84, 0xe7a, 0xe70, 0xe66, 0xe5c, 0xe52, 0xe48, 0xe3e, 0xe34, 0xe2a, 0xe20, 0xe16, 0xe0c, 0xe04, 0xdfa, 0xdf0, 0xde6, 0xddc, 0xdd2, 0xdca, 0xdc0, 0xdb6, 0xdac, 0xda4, 0xd9a, 0xd90, 0xd88, 0xd7e, 0xd74, 0xd6a, 0xd62, 0xd58, 0xd50, 0xd46, 0xd3c, 0xd34, 0xd2a, 0xd22, 0xd18, 0xd10, 0xd06, 0xcfe, 0xcf4, 0xcec, 0xce2, 0xcda, 0xcd0, 0xcc8, 0xcbe, 0xcb6, 0xcae, 0xca4, 0xc9c, 0xc92, 0xc8a, 0xc82, 0xc78, 0xc70, 0xc68, 0xc60, 0xc56, 0xc4e, 0xc46, 0xc3c, 0xc34, 0xc2c, 0xc24, 0xc1c, 0xc12, 0xc0a, 0xc02, 0xbfa, 0xbf2, 0xbea, 0xbe0, 0xbd8, 0xbd0, 0xbc8, 0xbc0, 0xbb8, 0xbb0, 0xba8, 0xba0, 0xb98, 0xb90, 0xb88, 0xb80, 0xb78, 0xb70, 0xb68, 0xb60, 0xb58, 0xb50, 0xb48, 0xb40, 0xb38, 0xb32, 0xb2a, 0xb22, 0xb1a, 0xb12, 0xb0a, 0xb02, 0xafc, 0xaf4, 0xaec, 0xae4, 0xade, 0xad6, 0xace, 0xac6, 0xac0, 0xab8, 0xab0, 0xaa8, 0xaa2, 0xa9a, 0xa92, 0xa8c, 0xa84, 0xa7c, 0xa76, 0xa6e, 0xa68, 0xa60, 0xa58, 0xa52, 0xa4a, 0xa44, 0xa3c, 0xa36, 0xa2e, 0xa28, 0xa20, 0xa18, 0xa12, 0xa0c, 0xa04, 0x9fe, 0x9f6, 0x9f0, 0x9e8, 0x9e2, 0x9da, 0x9d4, 0x9ce, 0x9c6, 0x9c0, 0x9b8, 0x9b2, 0x9ac, 0x9a4, 0x99e, 0x998, 0x990, 0x98a, 0x984, 0x97c, 0x976, 0x970, 0x96a, 0x962, 0x95c, 0x956, 0x950, 0x948, 0x942, 0x93c, 0x936, 0x930, 0x928, 0x922, 0x91c, 0x916, 0x910, 0x90a, 0x904, 0x8fc, 0x8f6, 0x8f0, 0x8ea, 0x8e4, 0x8de, 0x8d8, 0x8d2, 0x8cc, 0x8c6, 0x8c0, 0x8ba, 0x8b4, 0x8ae, 0x8a8, 0x8a2, 0x89c, 0x896, 0x890, 0x88a, 0x884, 0x87e, 0x878, 0x872, 0x86c, 0x866, 0x860, 0x85a, 0x854, 0x850, 0x84a, 0x844, 0x83e, 0x838, 0x832, 0x82c, 0x828, 0x822, 0x81c, 0x816, 0x810, 0x80c, 0x806, 0x800 }; /* * freq mult table multiplied by 2 * * 1/2, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 10, 12, 12, 15, 15 */ static const Bit8u mt[16] = { 1, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 20, 24, 24, 30, 30 }; /* * ksl table */ static const Bit8u kslrom[16] = { 0, 32, 40, 45, 48, 51, 53, 55, 56, 58, 59, 60, 61, 62, 63, 64 }; static const Bit8u kslshift[4] = { 8, 1, 2, 0 }; /* * envelope generator constants */ static const Bit8u eg_incstep[3][4][8] = { { { 0, 0, 0, 0, 0, 0, 0, 0 }, { 0, 0, 0, 0, 0, 0, 0, 0 }, { 0, 0, 0, 0, 0, 0, 0, 0 }, { 0, 0, 0, 0, 0, 0, 0, 0 } }, { { 0, 1, 0, 1, 0, 1, 0, 1 }, { 0, 1, 0, 1, 1, 1, 0, 1 }, { 0, 1, 1, 1, 0, 1, 1, 1 }, { 0, 1, 1, 1, 1, 1, 1, 1 } }, { { 1, 1, 1, 1, 1, 1, 1, 1 }, { 2, 2, 1, 1, 1, 1, 1, 1 }, { 2, 2, 1, 1, 2, 2, 1, 1 }, { 2, 2, 2, 2, 2, 2, 1, 1 } } }; static const Bit8u eg_incdesc[16] = { 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2 }; static const Bit8s eg_incsh[16] = { 0, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0, 0, -1, -2 }; /* * address decoding */ static const Bit8s ad_slot[0x20] = { 0, 1, 2, 3, 4, 5, -1, -1, 6, 7, 8, 9, 10, 11, -1, -1, 12, 13, 14, 15, 16, 17, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 }; static const Bit8u ch_slot[18] = { 0, 1, 2, 6, 7, 8, 12, 13, 14, 18, 19, 20, 24, 25, 26, 30, 31, 32 }; /* * Pan law table */ static const Bit16u panlawtable[] = { 65535, 65529, 65514, 65489, 65454, 65409, 65354, 65289, 65214, 65129, 65034, 64929, 64814, 64689, 64554, 64410, 64255, 64091, 63917, 63733, 63540, 63336, 63123, 62901, 62668, 62426, 62175, 61914, 61644, 61364, 61075, 60776, 60468, 60151, 59825, 59489, 59145, 58791, 58428, 58057, 57676, 57287, 56889, 56482, 56067, 55643, 55211, 54770, 54320, 53863, 53397, 52923, 52441, 51951, 51453, 50947, 50433, 49912, 49383, 48846, 48302, 47750, 47191, 46340, /* Center left */ 46340, /* Center right */ 45472, 44885, 44291, 43690, 43083, 42469, 41848, 41221, 40588, 39948, 39303, 38651, 37994, 37330, 36661, 35986, 35306, 34621, 33930, 33234, 32533, 31827, 31116, 30400, 29680, 28955, 28225, 27492, 26754, 26012, 25266, 24516, 23762, 23005, 22244, 21480, 20713, 19942, 19169, 18392, 17613, 16831, 16046, 15259, 14469, 13678, 12884, 12088, 11291, 10492, 9691, 8888, 8085, 7280, 6473, 5666, 4858, 4050, 3240, 2431, 1620, 810, 0 }; /* * Envelope generator */ static void OPL3_EnvelopeGenOff(opl3_slot *slot); static void OPL3_EnvelopeGenAttack(opl3_slot *slot); static void OPL3_EnvelopeGenDecay(opl3_slot *slot); static void OPL3_EnvelopeGenSustain(opl3_slot *slot); static void OPL3_EnvelopeGenRelease(opl3_slot *slot); typedef void(*envelope_genfunc)(opl3_slot *slot); envelope_genfunc envelope_gen[5] = { OPL3_EnvelopeGenOff, OPL3_EnvelopeGenAttack, OPL3_EnvelopeGenDecay, OPL3_EnvelopeGenSustain, OPL3_EnvelopeGenRelease }; enum envelope_gen_num { envelope_gen_num_off = 0, envelope_gen_num_attack = 1, envelope_gen_num_decay = 2, envelope_gen_num_sustain = 3, envelope_gen_num_release = 4 }; static Bit8u OPL3_EnvelopeCalcRate(opl3_slot *slot, Bit8u reg_rate) { Bit8u rate; if (reg_rate == 0x00) { return 0x00; } rate = (reg_rate << 2) + (slot->reg_ksr ? slot->channel->ksv : (slot->channel->ksv >> 2)); if (rate > 0x3c) { rate = 0x3c; } return rate; } static void OPL3_EnvelopeUpdateKSL(opl3_slot *slot) { Bit16s ksl = (kslrom[slot->channel->f_num >> 6] << 2) - ((0x08 - slot->channel->block) << 5); if (ksl < 0) { ksl = 0; } slot->eg_ksl = (Bit8u)ksl; } static void OPL3_EnvelopeUpdateRate(opl3_slot *slot) { switch (slot->eg_gen) { case envelope_gen_num_off: case envelope_gen_num_attack: slot->eg_rate = OPL3_EnvelopeCalcRate(slot, slot->reg_ar); break; case envelope_gen_num_decay: slot->eg_rate = OPL3_EnvelopeCalcRate(slot, slot->reg_dr); break; case envelope_gen_num_sustain: case envelope_gen_num_release: slot->eg_rate = OPL3_EnvelopeCalcRate(slot, slot->reg_rr); break; } } static void OPL3_EnvelopeGenOff(opl3_slot *slot) { slot->eg_rout = 0x1ff; } static void OPL3_EnvelopeGenAttack(opl3_slot *slot) { if (slot->eg_rout == 0x00) { slot->eg_gen = envelope_gen_num_decay; OPL3_EnvelopeUpdateRate(slot); return; } slot->eg_rout += ((~slot->eg_rout) * slot->eg_inc) >> 3; if (slot->eg_rout < 0x00) { slot->eg_rout = 0x00; } } static void OPL3_EnvelopeGenDecay(opl3_slot *slot) { if (slot->eg_rout >= slot->reg_sl << 4) { slot->eg_gen = envelope_gen_num_sustain; OPL3_EnvelopeUpdateRate(slot); return; } slot->eg_rout += slot->eg_inc; } static void OPL3_EnvelopeGenSustain(opl3_slot *slot) { if (!slot->reg_type) { OPL3_EnvelopeGenRelease(slot); } } static void OPL3_EnvelopeGenRelease(opl3_slot *slot) { if (slot->eg_rout >= 0x1ff) { slot->eg_gen = envelope_gen_num_off; slot->eg_rout = 0x1ff; OPL3_EnvelopeUpdateRate(slot); return; } slot->eg_rout += slot->eg_inc; } static void OPL3_EnvelopeCalc(opl3_slot *slot) { Bit8u rate_h, rate_l; Bit8u inc = 0; rate_h = slot->eg_rate >> 2; rate_l = slot->eg_rate & 3; if (eg_incsh[rate_h] > 0) { if ((slot->chip->timer & ((1 << eg_incsh[rate_h]) - 1)) == 0) { inc = eg_incstep[eg_incdesc[rate_h]][rate_l] [((slot->chip->timer)>> eg_incsh[rate_h]) & 0x07]; } } else { inc = eg_incstep[eg_incdesc[rate_h]][rate_l] [slot->chip->timer & 0x07] << (-eg_incsh[rate_h]); } slot->eg_inc = inc; slot->eg_out = slot->eg_rout + (slot->reg_tl << 2) + (slot->eg_ksl >> kslshift[slot->reg_ksl]) + *slot->trem; if (slot->eg_out > 0x1ff) /* TODO: Remove this if possible */ { slot->eg_out = 0x1ff; } slot->eg_out <<= 3; envelope_gen[slot->eg_gen](slot); } static void OPL3_EnvelopeKeyOn(opl3_slot *slot, Bit8u type) { if (!slot->key) { slot->eg_gen = envelope_gen_num_attack; OPL3_EnvelopeUpdateRate(slot); if ((slot->eg_rate >> 2) == 0x0f) { slot->eg_gen = envelope_gen_num_decay; OPL3_EnvelopeUpdateRate(slot); slot->eg_rout = 0x00; } slot->pg_phase = 0x00; } slot->key |= type; } static void OPL3_EnvelopeKeyOff(opl3_slot *slot, Bit8u type) { if (slot->key) { slot->key &= (~type); if (!slot->key) { slot->eg_gen = envelope_gen_num_release; OPL3_EnvelopeUpdateRate(slot); } } } /* * Phase Generator */ static void OPL3_PhaseGenerate(opl3_slot *slot) { Bit16u f_num; Bit32u basefreq; f_num = slot->channel->f_num; if (slot->reg_vib) { Bit8s range; Bit8u vibpos; range = (f_num >> 7) & 7; vibpos = slot->chip->vibpos; if (!(vibpos & 3)) { range = 0; } else if (vibpos & 1) { range >>= 1; } range >>= slot->chip->vibshift; if (vibpos & 4) { range = -range; } f_num += range; } basefreq = (f_num << slot->channel->block) >> 1; slot->pg_phase += (basefreq * mt[slot->reg_mult]) >> 1; } /* * Noise Generator */ static void OPL3_NoiseGenerate(opl3_chip *chip) { if (chip->noise & 0x01) { chip->noise ^= 0x800302; } chip->noise >>= 1; } /* * Slot */ static void OPL3_SlotWrite20(opl3_slot *slot, Bit8u data) { if ((data >> 7) & 0x01) { slot->trem = &slot->chip->tremolo; } else { slot->trem = (Bit8u*)&slot->chip->zeromod; } slot->reg_vib = (data >> 6) & 0x01; slot->reg_type = (data >> 5) & 0x01; slot->reg_ksr = (data >> 4) & 0x01; slot->reg_mult = data & 0x0f; OPL3_EnvelopeUpdateRate(slot); } static void OPL3_SlotWrite40(opl3_slot *slot, Bit8u data) { slot->reg_ksl = (data >> 6) & 0x03; slot->reg_tl = data & 0x3f; OPL3_EnvelopeUpdateKSL(slot); } static void OPL3_SlotWrite60(opl3_slot *slot, Bit8u data) { slot->reg_ar = (data >> 4) & 0x0f; slot->reg_dr = data & 0x0f; OPL3_EnvelopeUpdateRate(slot); } static void OPL3_SlotWrite80(opl3_slot *slot, Bit8u data) { slot->reg_sl = (data >> 4) & 0x0f; if (slot->reg_sl == 0x0f) { slot->reg_sl = 0x1f; } slot->reg_rr = data & 0x0f; OPL3_EnvelopeUpdateRate(slot); } static void OPL3_SlotWriteE0(opl3_slot *slot, Bit8u data) { slot->reg_wf = data & 0x07; if (slot->chip->newm == 0x00) { slot->reg_wf &= 0x03; } switch (slot->reg_wf) { case 1: case 4: case 5: slot->maskzero = 0x200; break; case 3: slot->maskzero = 0x100; break; default: slot->maskzero = 0; break; } switch (slot->reg_wf) { case 4: slot->signpos = (31-8); /* sigext of (phase & 0x100) */ break; case 0: case 6: case 7: slot->signpos = (31-9); /* sigext of (phase & 0x200) */ break; default: slot->signpos = (31-16); /* set "neg" to zero */ break; } switch (slot->reg_wf) { case 4: case 5: slot->phaseshift = 1; break; case 6: slot->phaseshift = 16; /* set phase to zero and flag for non-sin wave */ break; case 7: slot->phaseshift = 32; /* no shift (work by mod 32), but flag for non-sin wave */ break; default: slot->phaseshift = 0; break; } } static void OPL3_SlotGeneratePhase(opl3_slot *slot, Bit16u phase) { Bit32u neg, level; Bit8u phaseshift; /* Fast paths for mute segments */ if (phase & slot->maskzero) { slot->out = 0; return; } neg = (Bit32s)((Bit32u)phase << slot->signpos) >> 31; phaseshift = slot->phaseshift; level = slot->eg_out; phase <<= phaseshift; if (phaseshift <= 1) { level += logsinrom[phase & 0x1ff]; } else { level += ((phase ^ neg) & 0x3ff) << 3; } slot->out = exprom[level & 0xff] >> (level >> 8) ^ neg; } static void OPL3_SlotGenerate(opl3_slot *slot) { OPL3_SlotGeneratePhase(slot, (Bit16u)(slot->pg_phase >> 9) + *slot->mod); } static void OPL3_SlotGenerateZM(opl3_slot *slot) { OPL3_SlotGeneratePhase(slot, (Bit16u)(slot->pg_phase >> 9)); } static void OPL3_SlotCalcFB(opl3_slot *slot) { if (slot->channel->fb != 0x00) { slot->fbmod = (slot->prout + slot->out) >> (0x09 - slot->channel->fb); } else { slot->fbmod = 0; } slot->prout = slot->out; } /* * Channel */ static void OPL3_ChannelSetupAlg(opl3_channel *channel); static void OPL3_ChannelUpdateRhythm(opl3_chip *chip, Bit8u data) { opl3_channel *channel6; opl3_channel *channel7; opl3_channel *channel8; Bit8u chnum; chip->rhy = data & 0x3f; if (chip->rhy & 0x20) { channel6 = &chip->channel[6]; channel7 = &chip->channel[7]; channel8 = &chip->channel[8]; channel6->out[0] = &channel6->slotz[1]->out; channel6->out[1] = &channel6->slotz[1]->out; channel6->out[2] = &chip->zeromod; channel6->out[3] = &chip->zeromod; channel7->out[0] = &channel7->slotz[0]->out; channel7->out[1] = &channel7->slotz[0]->out; channel7->out[2] = &channel7->slotz[1]->out; channel7->out[3] = &channel7->slotz[1]->out; channel8->out[0] = &channel8->slotz[0]->out; channel8->out[1] = &channel8->slotz[0]->out; channel8->out[2] = &channel8->slotz[1]->out; channel8->out[3] = &channel8->slotz[1]->out; for (chnum = 6; chnum < 9; chnum++) { chip->channel[chnum].chtype = ch_drum; } OPL3_ChannelSetupAlg(channel6); /*hh*/ if (chip->rhy & 0x01) { OPL3_EnvelopeKeyOn(channel7->slotz[0], egk_drum); } else { OPL3_EnvelopeKeyOff(channel7->slotz[0], egk_drum); } /*tc*/ if (chip->rhy & 0x02) { OPL3_EnvelopeKeyOn(channel8->slotz[1], egk_drum); } else { OPL3_EnvelopeKeyOff(channel8->slotz[1], egk_drum); } /*tom*/ if (chip->rhy & 0x04) { OPL3_EnvelopeKeyOn(channel8->slotz[0], egk_drum); } else { OPL3_EnvelopeKeyOff(channel8->slotz[0], egk_drum); } /*sd*/ if (chip->rhy & 0x08) { OPL3_EnvelopeKeyOn(channel7->slotz[1], egk_drum); } else { OPL3_EnvelopeKeyOff(channel7->slotz[1], egk_drum); } /*bd*/ if (chip->rhy & 0x10) { OPL3_EnvelopeKeyOn(channel6->slotz[0], egk_drum); OPL3_EnvelopeKeyOn(channel6->slotz[1], egk_drum); } else { OPL3_EnvelopeKeyOff(channel6->slotz[0], egk_drum); OPL3_EnvelopeKeyOff(channel6->slotz[1], egk_drum); } } else { for (chnum = 6; chnum < 9; chnum++) { chip->channel[chnum].chtype = ch_2op; OPL3_ChannelSetupAlg(&chip->channel[chnum]); OPL3_EnvelopeKeyOff(chip->channel[chnum].slotz[0], egk_drum); OPL3_EnvelopeKeyOff(chip->channel[chnum].slotz[1], egk_drum); } } } static void OPL3_ChannelWriteA0(opl3_channel *channel, Bit8u data) { if (channel->chip->newm && channel->chtype == ch_4op2) { return; } channel->f_num = (channel->f_num & 0x300) | data; channel->ksv = (channel->block << 1) | ((channel->f_num >> (0x09 - channel->chip->nts)) & 0x01); OPL3_EnvelopeUpdateKSL(channel->slotz[0]); OPL3_EnvelopeUpdateKSL(channel->slotz[1]); OPL3_EnvelopeUpdateRate(channel->slotz[0]); OPL3_EnvelopeUpdateRate(channel->slotz[1]); if (channel->chip->newm && channel->chtype == ch_4op) { channel->pair->f_num = channel->f_num; channel->pair->ksv = channel->ksv; OPL3_EnvelopeUpdateKSL(channel->pair->slotz[0]); OPL3_EnvelopeUpdateKSL(channel->pair->slotz[1]); OPL3_EnvelopeUpdateRate(channel->pair->slotz[0]); OPL3_EnvelopeUpdateRate(channel->pair->slotz[1]); } } static void OPL3_ChannelWriteB0(opl3_channel *channel, Bit8u data) { if (channel->chip->newm && channel->chtype == ch_4op2) { return; } channel->f_num = (channel->f_num & 0xff) | ((data & 0x03) << 8); channel->block = (data >> 2) & 0x07; channel->ksv = (channel->block << 1) | ((channel->f_num >> (0x09 - channel->chip->nts)) & 0x01); OPL3_EnvelopeUpdateKSL(channel->slotz[0]); OPL3_EnvelopeUpdateKSL(channel->slotz[1]); OPL3_EnvelopeUpdateRate(channel->slotz[0]); OPL3_EnvelopeUpdateRate(channel->slotz[1]); if (channel->chip->newm && channel->chtype == ch_4op) { channel->pair->f_num = channel->f_num; channel->pair->block = channel->block; channel->pair->ksv = channel->ksv; OPL3_EnvelopeUpdateKSL(channel->pair->slotz[0]); OPL3_EnvelopeUpdateKSL(channel->pair->slotz[1]); OPL3_EnvelopeUpdateRate(channel->pair->slotz[0]); OPL3_EnvelopeUpdateRate(channel->pair->slotz[1]); } } static void OPL3_ChannelSetupAlg(opl3_channel *channel) { if (channel->chtype == ch_drum) { switch (channel->alg & 0x01) { case 0x00: channel->slotz[0]->mod = &channel->slotz[0]->fbmod; channel->slotz[1]->mod = &channel->slotz[0]->out; break; case 0x01: channel->slotz[0]->mod = &channel->slotz[0]->fbmod; channel->slotz[1]->mod = &channel->chip->zeromod; break; } return; } if (channel->alg & 0x08) { return; } if (channel->alg & 0x04) { channel->pair->out[0] = &channel->chip->zeromod; channel->pair->out[1] = &channel->chip->zeromod; channel->pair->out[2] = &channel->chip->zeromod; channel->pair->out[3] = &channel->chip->zeromod; switch (channel->alg & 0x03) { case 0x00: channel->pair->slotz[0]->mod = &channel->pair->slotz[0]->fbmod; channel->pair->slotz[1]->mod = &channel->pair->slotz[0]->out; channel->slotz[0]->mod = &channel->pair->slotz[1]->out; channel->slotz[1]->mod = &channel->slotz[0]->out; channel->out[0] = &channel->slotz[1]->out; channel->out[1] = &channel->chip->zeromod; channel->out[2] = &channel->chip->zeromod; channel->out[3] = &channel->chip->zeromod; break; case 0x01: channel->pair->slotz[0]->mod = &channel->pair->slotz[0]->fbmod; channel->pair->slotz[1]->mod = &channel->pair->slotz[0]->out; channel->slotz[0]->mod = &channel->chip->zeromod; channel->slotz[1]->mod = &channel->slotz[0]->out; channel->out[0] = &channel->pair->slotz[1]->out; channel->out[1] = &channel->slotz[1]->out; channel->out[2] = &channel->chip->zeromod; channel->out[3] = &channel->chip->zeromod; break; case 0x02: channel->pair->slotz[0]->mod = &channel->pair->slotz[0]->fbmod; channel->pair->slotz[1]->mod = &channel->chip->zeromod; channel->slotz[0]->mod = &channel->pair->slotz[1]->out; channel->slotz[1]->mod = &channel->slotz[0]->out; channel->out[0] = &channel->pair->slotz[0]->out; channel->out[1] = &channel->slotz[1]->out; channel->out[2] = &channel->chip->zeromod; channel->out[3] = &channel->chip->zeromod; break; case 0x03: channel->pair->slotz[0]->mod = &channel->pair->slotz[0]->fbmod; channel->pair->slotz[1]->mod = &channel->chip->zeromod; channel->slotz[0]->mod = &channel->pair->slotz[1]->out; channel->slotz[1]->mod = &channel->chip->zeromod; channel->out[0] = &channel->pair->slotz[0]->out; channel->out[1] = &channel->slotz[0]->out; channel->out[2] = &channel->slotz[1]->out; channel->out[3] = &channel->chip->zeromod; break; } } else { switch (channel->alg & 0x01) { case 0x00: channel->slotz[0]->mod = &channel->slotz[0]->fbmod; channel->slotz[1]->mod = &channel->slotz[0]->out; channel->out[0] = &channel->slotz[1]->out; channel->out[1] = &channel->chip->zeromod; channel->out[2] = &channel->chip->zeromod; channel->out[3] = &channel->chip->zeromod; break; case 0x01: channel->slotz[0]->mod = &channel->slotz[0]->fbmod; channel->slotz[1]->mod = &channel->chip->zeromod; channel->out[0] = &channel->slotz[0]->out; channel->out[1] = &channel->slotz[1]->out; channel->out[2] = &channel->chip->zeromod; channel->out[3] = &channel->chip->zeromod; break; } } } static void OPL3_ChannelWriteC0(opl3_channel *channel, Bit8u data) { channel->fb = (data & 0x0e) >> 1; channel->con = data & 0x01; channel->alg = channel->con; if (channel->chip->newm) { if (channel->chtype == ch_4op) { channel->pair->alg = 0x04 | (channel->con << 1) | (channel->pair->con); channel->alg = 0x08; OPL3_ChannelSetupAlg(channel->pair); } else if (channel->chtype == ch_4op2) { channel->alg = 0x04 | (channel->pair->con << 1) | (channel->con); channel->pair->alg = 0x08; OPL3_ChannelSetupAlg(channel); } else { OPL3_ChannelSetupAlg(channel); } } else { OPL3_ChannelSetupAlg(channel); } if (channel->chip->newm) { channel->cha = ((data >> 4) & 0x01) ? ~0 : 0; channel->chb = ((data >> 5) & 0x01) ? ~0 : 0; } else { channel->cha = channel->chb = ~0; } } static void OPL3_ChannelKeyOn(opl3_channel *channel) { if (channel->chip->newm) { if (channel->chtype == ch_4op) { OPL3_EnvelopeKeyOn(channel->slotz[0], egk_norm); OPL3_EnvelopeKeyOn(channel->slotz[1], egk_norm); OPL3_EnvelopeKeyOn(channel->pair->slotz[0], egk_norm); OPL3_EnvelopeKeyOn(channel->pair->slotz[1], egk_norm); } else if (channel->chtype == ch_2op || channel->chtype == ch_drum) { OPL3_EnvelopeKeyOn(channel->slotz[0], egk_norm); OPL3_EnvelopeKeyOn(channel->slotz[1], egk_norm); } } else { OPL3_EnvelopeKeyOn(channel->slotz[0], egk_norm); OPL3_EnvelopeKeyOn(channel->slotz[1], egk_norm); } } static void OPL3_ChannelKeyOff(opl3_channel *channel) { if (channel->chip->newm) { if (channel->chtype == ch_4op) { OPL3_EnvelopeKeyOff(channel->slotz[0], egk_norm); OPL3_EnvelopeKeyOff(channel->slotz[1], egk_norm); OPL3_EnvelopeKeyOff(channel->pair->slotz[0], egk_norm); OPL3_EnvelopeKeyOff(channel->pair->slotz[1], egk_norm); } else if (channel->chtype == ch_2op || channel->chtype == ch_drum) { OPL3_EnvelopeKeyOff(channel->slotz[0], egk_norm); OPL3_EnvelopeKeyOff(channel->slotz[1], egk_norm); } } else { OPL3_EnvelopeKeyOff(channel->slotz[0], egk_norm); OPL3_EnvelopeKeyOff(channel->slotz[1], egk_norm); } } static void OPL3_ChannelSet4Op(opl3_chip *chip, Bit8u data) { Bit8u bit; Bit8u chnum; for (bit = 0; bit < 6; bit++) { chnum = bit; if (bit >= 3) { chnum += 9 - 3; } if ((data >> bit) & 0x01) { chip->channel[chnum].chtype = ch_4op; chip->channel[chnum + 3].chtype = ch_4op2; } else { chip->channel[chnum].chtype = ch_2op; chip->channel[chnum + 3].chtype = ch_2op; } } } static Bit16s OPL3_ClipSample(Bit32s sample) { if (sample > 32767) { sample = 32767; } else if (sample < -32768) { sample = -32768; } return (Bit16s)sample; } static void OPL3_GenerateRhythm1(opl3_chip *chip) { opl3_channel *channel6; opl3_channel *channel7; opl3_channel *channel8; Bit16u phase14; Bit16u phase17; Bit16u phase; Bit16u phasebit; channel6 = &chip->channel[6]; channel7 = &chip->channel[7]; channel8 = &chip->channel[8]; OPL3_SlotGenerate(channel6->slotz[0]); phase14 = (channel7->slotz[0]->pg_phase >> 9) & 0x3ff; phase17 = (channel8->slotz[1]->pg_phase >> 9) & 0x3ff; phase = 0x00; /*hh tc phase bit*/ phasebit = ((phase14 & 0x08) | (((phase14 >> 5) ^ phase14) & 0x04) | (((phase17 >> 2) ^ phase17) & 0x08)) ? 0x01 : 0x00; /*hh*/ phase = (phasebit << 9) | (0x34 << ((phasebit ^ (chip->noise & 0x01)) << 1)); OPL3_SlotGeneratePhase(channel7->slotz[0], phase); /*tt*/ OPL3_SlotGenerateZM(channel8->slotz[0]); } static void OPL3_GenerateRhythm2(opl3_chip *chip) { opl3_channel *channel6; opl3_channel *channel7; opl3_channel *channel8; Bit16u phase14; Bit16u phase17; Bit16u phase; Bit16u phasebit; channel6 = &chip->channel[6]; channel7 = &chip->channel[7]; channel8 = &chip->channel[8]; OPL3_SlotGenerate(channel6->slotz[1]); phase14 = (channel7->slotz[0]->pg_phase >> 9) & 0x3ff; phase17 = (channel8->slotz[1]->pg_phase >> 9) & 0x3ff; phase = 0x00; /*hh tc phase bit*/ phasebit = ((phase14 & 0x08) | (((phase14 >> 5) ^ phase14) & 0x04) | (((phase17 >> 2) ^ phase17) & 0x08)) ? 0x01 : 0x00; /*sd*/ phase = (0x100 << ((phase14 >> 8) & 0x01)) ^ ((chip->noise & 0x01) << 8); OPL3_SlotGeneratePhase(channel7->slotz[1], phase); /*tc*/ phase = 0x100 | (phasebit << 9); OPL3_SlotGeneratePhase(channel8->slotz[1], phase); } void OPL3v17_Generate(opl3_chip *chip, Bit16s *buf) { Bit8u ii; Bit8u jj; Bit16s accm; buf[1] = OPL3_ClipSample(chip->mixbuff[1]); for (ii = 0; ii < 12; ii++) { OPL3_SlotCalcFB(&chip->chipslot[ii]); OPL3_PhaseGenerate(&chip->chipslot[ii]); OPL3_EnvelopeCalc(&chip->chipslot[ii]); OPL3_SlotGenerate(&chip->chipslot[ii]); } for (ii = 12; ii < 15; ii++) { OPL3_SlotCalcFB(&chip->chipslot[ii]); OPL3_PhaseGenerate(&chip->chipslot[ii]); OPL3_EnvelopeCalc(&chip->chipslot[ii]); } if (chip->rhy & 0x20) { OPL3_GenerateRhythm1(chip); } else { OPL3_SlotGenerate(&chip->chipslot[12]); OPL3_SlotGenerate(&chip->chipslot[13]); OPL3_SlotGenerate(&chip->chipslot[14]); } chip->mixbuff[0] = 0; for (ii = 0; ii < 18; ii++) { accm = 0; for (jj = 0; jj < 4; jj++) { accm += *chip->channel[ii].out[jj]; } chip->mixbuff[0] += (Bit16s)((accm * chip->channel[ii].chl / 65535) & chip->channel[ii].cha); } for (ii = 15; ii < 18; ii++) { OPL3_SlotCalcFB(&chip->chipslot[ii]); OPL3_PhaseGenerate(&chip->chipslot[ii]); OPL3_EnvelopeCalc(&chip->chipslot[ii]); } if (chip->rhy & 0x20) { OPL3_GenerateRhythm2(chip); } else { OPL3_SlotGenerate(&chip->chipslot[15]); OPL3_SlotGenerate(&chip->chipslot[16]); OPL3_SlotGenerate(&chip->chipslot[17]); } buf[0] = OPL3_ClipSample(chip->mixbuff[0]); for (ii = 18; ii < 33; ii++) { OPL3_SlotCalcFB(&chip->chipslot[ii]); OPL3_PhaseGenerate(&chip->chipslot[ii]); OPL3_EnvelopeCalc(&chip->chipslot[ii]); OPL3_SlotGenerate(&chip->chipslot[ii]); } chip->mixbuff[1] = 0; for (ii = 0; ii < 18; ii++) { accm = 0; for (jj = 0; jj < 4; jj++) { accm += *chip->channel[ii].out[jj]; } chip->mixbuff[1] += (Bit16s)((accm * chip->channel[ii].chr / 65535) & chip->channel[ii].chb); } for (ii = 33; ii < 36; ii++) { OPL3_SlotCalcFB(&chip->chipslot[ii]); OPL3_PhaseGenerate(&chip->chipslot[ii]); OPL3_EnvelopeCalc(&chip->chipslot[ii]); OPL3_SlotGenerate(&chip->chipslot[ii]); } OPL3_NoiseGenerate(chip); if ((chip->timer & 0x3f) == 0x3f) { chip->tremolopos = (chip->tremolopos + 1) % 210; } if (chip->tremolopos < 105) { chip->tremolo = chip->tremolopos >> chip->tremoloshift; } else { chip->tremolo = (210 - chip->tremolopos) >> chip->tremoloshift; } if ((chip->timer & 0x3ff) == 0x3ff) { chip->vibpos = (chip->vibpos + 1) & 7; } chip->timer++; while (chip->writebuf[chip->writebuf_cur].time <= chip->writebuf_samplecnt) { if (!(chip->writebuf[chip->writebuf_cur].reg & 0x200)) { break; } chip->writebuf[chip->writebuf_cur].reg &= 0x1ff; OPL3v17_WriteReg(chip, chip->writebuf[chip->writebuf_cur].reg, chip->writebuf[chip->writebuf_cur].data); chip->writebuf_cur = (chip->writebuf_cur + 1) % OPL_WRITEBUF_SIZE; } chip->writebuf_samplecnt++; } void OPL3v17_GenerateResampled(opl3_chip *chip, Bit16s *buf) { while (chip->samplecnt >= chip->rateratio) { chip->oldsamples[0] = chip->samples[0]; chip->oldsamples[1] = chip->samples[1]; OPL3v17_Generate(chip, chip->samples); chip->samplecnt -= chip->rateratio; } buf[0] = (Bit16s)((chip->oldsamples[0] * (chip->rateratio - chip->samplecnt) + chip->samples[0] * chip->samplecnt) / chip->rateratio); buf[1] = (Bit16s)((chip->oldsamples[1] * (chip->rateratio - chip->samplecnt) + chip->samples[1] * chip->samplecnt) / chip->rateratio); chip->samplecnt += 1 << RSM_FRAC; } void OPL3v17_Reset(opl3_chip *chip, Bit32u samplerate) { Bit8u slotnum; Bit8u channum; memset(chip, 0, sizeof(opl3_chip)); for (slotnum = 0; slotnum < 36; slotnum++) { chip->chipslot[slotnum].chip = chip; chip->chipslot[slotnum].mod = &chip->zeromod; chip->chipslot[slotnum].eg_rout = 0x1ff; chip->chipslot[slotnum].eg_out = 0x1ff << 3; chip->chipslot[slotnum].eg_gen = envelope_gen_num_off; chip->chipslot[slotnum].trem = (Bit8u*)&chip->zeromod; chip->chipslot[slotnum].signpos = (31-9); /* for wf=0 need use sigext of (phase & 0x200) */ } for (channum = 0; channum < 18; channum++) { chip->channel[channum].slotz[0] = &chip->chipslot[ch_slot[channum]]; chip->channel[channum].slotz[1] = &chip->chipslot[ch_slot[channum] + 3]; chip->chipslot[ch_slot[channum]].channel = &chip->channel[channum]; chip->chipslot[ch_slot[channum] + 3].channel = &chip->channel[channum]; if ((channum % 9) < 3) { chip->channel[channum].pair = &chip->channel[channum + 3]; } else if ((channum % 9) < 6) { chip->channel[channum].pair = &chip->channel[channum - 3]; } chip->channel[channum].chip = chip; chip->channel[channum].out[0] = &chip->zeromod; chip->channel[channum].out[1] = &chip->zeromod; chip->channel[channum].out[2] = &chip->zeromod; chip->channel[channum].out[3] = &chip->zeromod; chip->channel[channum].chtype = ch_2op; chip->channel[channum].cha = 0xffff; chip->channel[channum].chb = 0xffff; chip->channel[channum].chl = 46340; chip->channel[channum].chr = 46340; OPL3_ChannelSetupAlg(&chip->channel[channum]); } chip->noise = 0x306600; chip->rateratio = (samplerate << RSM_FRAC) / 49716; chip->tremoloshift = 4; chip->vibshift = 1; } static void OPL3v17_ChannelWritePan(opl3_channel *channel, Bit8u data) { channel->chl = panlawtable[data & 0x7F]; channel->chr = panlawtable[0x7F - (data & 0x7F)]; } void OPL3v17_WritePan(opl3_chip *chip, Bit16u reg, Bit8u v) { Bit8u high = (reg >> 8) & 0x01; Bit8u regm = reg & 0xff; OPL3v17_ChannelWritePan(&chip->channel[9 * high + (regm & 0x0f)], v); } void OPL3v17_WriteReg(opl3_chip *chip, Bit16u reg, Bit8u v) { Bit8u high = (reg >> 8) & 0x01; Bit8u regm = reg & 0xff; switch (regm & 0xf0) { case 0x00: if (high) { switch (regm & 0x0f) { case 0x04: OPL3_ChannelSet4Op(chip, v); break; case 0x05: chip->newm = v & 0x01; break; } } else { switch (regm & 0x0f) { case 0x08: chip->nts = (v >> 6) & 0x01; break; } } break; case 0x20: case 0x30: if (ad_slot[regm & 0x1f] >= 0) { OPL3_SlotWrite20(&chip->chipslot[18 * high + ad_slot[regm & 0x1f]], v); } break; case 0x40: case 0x50: if (ad_slot[regm & 0x1f] >= 0) { OPL3_SlotWrite40(&chip->chipslot[18 * high + ad_slot[regm & 0x1f]], v); } break; case 0x60: case 0x70: if (ad_slot[regm & 0x1f] >= 0) { OPL3_SlotWrite60(&chip->chipslot[18 * high + ad_slot[regm & 0x1f]], v); } break; case 0x80: case 0x90: if (ad_slot[regm & 0x1f] >= 0) { OPL3_SlotWrite80(&chip->chipslot[18 * high + ad_slot[regm & 0x1f]], v); } break; case 0xe0: case 0xf0: if (ad_slot[regm & 0x1f] >= 0) { OPL3_SlotWriteE0(&chip->chipslot[18 * high + ad_slot[regm & 0x1f]], v); } break; case 0xa0: if ((regm & 0x0f) < 9) { OPL3_ChannelWriteA0(&chip->channel[9 * high + (regm & 0x0f)], v); } break; case 0xb0: if (regm == 0xbd && !high) { chip->tremoloshift = (((v >> 7) ^ 1) << 1) + 2; chip->vibshift = ((v >> 6) & 0x01) ^ 1; OPL3_ChannelUpdateRhythm(chip, v); } else if ((regm & 0x0f) < 9) { OPL3_ChannelWriteB0(&chip->channel[9 * high + (regm & 0x0f)], v); if (v & 0x20) { OPL3_ChannelKeyOn(&chip->channel[9 * high + (regm & 0x0f)]); } else { OPL3_ChannelKeyOff(&chip->channel[9 * high + (regm & 0x0f)]); } } break; case 0xc0: if ((regm & 0x0f) < 9) { OPL3_ChannelWriteC0(&chip->channel[9 * high + (regm & 0x0f)], v); } break; } } void OPL3v17_WriteRegBuffered(opl3_chip *chip, Bit16u reg, Bit8u v) { Bit64u time1, time2; if (chip->writebuf[chip->writebuf_last].reg & 0x200) { OPL3v17_WriteReg(chip, chip->writebuf[chip->writebuf_last].reg & 0x1ff, chip->writebuf[chip->writebuf_last].data); chip->writebuf_cur = (chip->writebuf_last + 1) % OPL_WRITEBUF_SIZE; chip->writebuf_samplecnt = chip->writebuf[chip->writebuf_last].time; } chip->writebuf[chip->writebuf_last].reg = reg | 0x200; chip->writebuf[chip->writebuf_last].data = v; time1 = chip->writebuf_lasttime + OPL_WRITEBUF_DELAY; time2 = chip->writebuf_samplecnt; if (time1 < time2) { time1 = time2; } chip->writebuf[chip->writebuf_last].time = time1; chip->writebuf_lasttime = time1; chip->writebuf_last = (chip->writebuf_last + 1) % OPL_WRITEBUF_SIZE; } void OPL3v17_GenerateStream(opl3_chip *chip, Bit16s *sndptr, Bit32u numsamples) { Bit32u i; for(i = 0; i < numsamples; i++) { OPL3v17_GenerateResampled(chip, sndptr); sndptr += 2; } } #define OPL3_MIN(A, B) (((A) > (B)) ? (B) : (A)) #define OPL3_MAX(A, B) (((A) < (B)) ? (B) : (A)) #define OPL3_CLAMP(V, MIN, MAX) OPL3_MAX(OPL3_MIN(V, MAX), MIN) void OPL3v17_GenerateStreamMix(opl3_chip *chip, Bit16s *sndptr, Bit32u numsamples) { Bit32u i; Bit16s sample[2]; Bit32s mix[2]; for(i = 0; i < numsamples; i++) { OPL3v17_GenerateResampled(chip, sample); mix[0] = sndptr[0] + sample[0]; mix[1] = sndptr[1] + sample[1]; sndptr[0] = OPL3_CLAMP(mix[0], INT16_MIN, INT16_MAX); sndptr[1] = OPL3_CLAMP(mix[1], INT16_MIN, INT16_MAX); sndptr += 2; } }