#ifdef _WIN32 #include "i_musicinterns.h" #include "templates.h" #include "doomdef.h" #include "m_swap.h" EXTERN_CVAR (Float, snd_midivolume) struct MIDISong2::TrackInfo { const BYTE *TrackBegin; size_t TrackP; size_t MaxTrackP; DWORD Delay; bool Finished; BYTE RunningStatus; SBYTE LoopCount; bool Designated; bool EProgramChange; bool EVolume; WORD Designation; size_t LoopBegin; DWORD LoopDelay; bool LoopFinished; DWORD ReadVarLen (); }; extern DWORD midivolume; extern UINT mididevice; static BYTE EventLengths[7] = { 2, 2, 2, 2, 1, 1, 2 }; static BYTE CommonLengths[15] = { 0, 1, 2, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }; MIDISong2::MIDISong2 (FILE *file, char * musiccache, int len) : MidiOut (0), PlayerThread (0), PauseEvent (0), ExitEvent (0), VolumeChangeEvent (0), MusHeader (0) { int p; int i; MusHeader = new BYTE[len]; if (file != NULL) { if (fread (MusHeader, 1, len, file) != (size_t)len) return; } else { memcpy(MusHeader, musiccache, len); } // Do some validation of the MIDI file if (MusHeader[4] != 0 || MusHeader[5] != 0 || MusHeader[6] != 0 || MusHeader[7] != 6) return; if (MusHeader[8] != 0 || MusHeader[9] > 2) return; Format = MusHeader[9]; if (Format == 0) { NumTracks = 1; } else { NumTracks = MusHeader[10] * 256 + MusHeader[11]; } // The timers only have millisecond accuracy, not microsecond. Division = (MusHeader[12] * 256 + MusHeader[13]) * 1000; Tracks = new TrackInfo[NumTracks]; // Gather information about each track for (i = 0, p = 14; i < NumTracks && p < len + 8; ++i) { DWORD chunkLen = (MusHeader[p+4]<<24) | (MusHeader[p+5]<<16) | (MusHeader[p+6]<<8) | (MusHeader[p+7]); if (chunkLen + p + 8 > (DWORD)len) { // Track too long, so truncate it chunkLen = len - p - 8; } if (MusHeader[p+0] == 'M' && MusHeader[p+1] == 'T' && MusHeader[p+2] == 'r' && MusHeader[p+3] == 'k') { Tracks[i].TrackBegin = MusHeader + p + 8; Tracks[i].TrackP = 0; Tracks[i].MaxTrackP = chunkLen; } p += chunkLen + 8; } // In case there were fewer actual chunks in the file than the // header specified, update NumTracks with the current value of i NumTracks = i; if (NumTracks == 0) { // No tracks, so nothing to play return; } ExitEvent = CreateEvent (NULL, FALSE, FALSE, NULL); if (ExitEvent == NULL) { Printf (PRINT_BOLD, "Could not create exit event for MIDI playback\n"); return; } VolumeChangeEvent = CreateEvent (NULL, FALSE, FALSE, NULL); if (VolumeChangeEvent == NULL) { Printf (PRINT_BOLD, "Could not create volume event for MIDI playback\n"); return; } PauseEvent = CreateEvent (NULL, FALSE, FALSE, NULL); if (PauseEvent == NULL) { Printf (PRINT_BOLD, "Could not create pause event for MIDI playback\n"); } } MIDISong2::~MIDISong2 () { Stop (); if (PauseEvent != NULL) { CloseHandle (PauseEvent); } if (ExitEvent != NULL) { CloseHandle (ExitEvent); } if (VolumeChangeEvent != NULL) { CloseHandle (VolumeChangeEvent); } if (Tracks != NULL) { delete[] Tracks; } if (MusHeader != NULL) { delete[] MusHeader; } } bool MIDISong2::IsMIDI () const { return true; } bool MIDISong2::IsValid () const { return PauseEvent != 0; } void MIDISong2::Play (bool looping) { MIDIOUTCAPS caps; DWORD tid; m_Status = STATE_Stopped; m_Looping = looping; // Find out if this an FM synth or not for EMIDI DesignationMask = 0xFF0F; if (MMSYSERR_NOERROR == midiOutGetDevCaps (mididevice, &caps, sizeof(caps))) { if (caps.wTechnology == MOD_FMSYNTH) { DesignationMask = 0x00F0; } else if (caps.wTechnology == MOD_MIDIPORT) { DesignationMask = 0x0001; } } if (MMSYSERR_NOERROR != midiOutOpen (&MidiOut, mididevice, 0, 0, CALLBACK_NULL)) { Printf (PRINT_BOLD, "Could not open MIDI out device\n"); return; } // Try two different methods for setting the stream to full volume. // Unfortunately, this isn't as reliable as it once was, which is a pity. // The real volume selection is done by setting the volume controller for // each channel. Because every General MIDI-compliant device must support // this controller, it is the most reliable means of setting the volume. VolumeWorks = (MMSYSERR_NOERROR == midiOutGetVolume (MidiOut, &SavedVolume)); if (VolumeWorks) { VolumeWorks &= (MMSYSERR_NOERROR == midiOutSetVolume (MidiOut, 0xffffffff)); } else { // Send the standard SysEx message for full master volume BYTE volmess[] = { 0xf0, 0x7f, 0x7f, 0x04, 0x01, 0x7f, 0x7f, 0xf7 }; MIDIHDR hdr = { (LPSTR)volmess, sizeof(volmess), }; if (MMSYSERR_NOERROR == midiOutPrepareHeader (MidiOut, &hdr, sizeof(hdr))) { midiOutLongMsg (MidiOut, &hdr, sizeof(hdr)); while (MIDIERR_STILLPLAYING == midiOutUnprepareHeader (MidiOut, &hdr, sizeof(hdr))) { Sleep (10); } } } snd_midivolume.Callback(); // set volume to current music's properties PlayerThread = CreateThread (NULL, 0, PlayerProc, this, 0, &tid); if (PlayerThread == NULL) { if (VolumeWorks) { midiOutSetVolume (MidiOut, SavedVolume); } midiOutClose (MidiOut); MidiOut = NULL; } m_Status = STATE_Playing; } void MIDISong2::Pause () { if (m_Status == STATE_Playing) { SetEvent (PauseEvent); m_Status = STATE_Paused; } } void MIDISong2::Resume () { if (m_Status == STATE_Paused) { SetEvent (PauseEvent); m_Status = STATE_Playing; } } void MIDISong2::Stop () { if (PlayerThread) { SetEvent (ExitEvent); WaitForSingleObject (PlayerThread, INFINITE); CloseHandle (PlayerThread); PlayerThread = NULL; } if (MidiOut) { midiOutReset (MidiOut); if (VolumeWorks) { midiOutSetVolume (MidiOut, SavedVolume); } midiOutClose (MidiOut); MidiOut = NULL; } } bool MIDISong2::IsPlaying () { return m_Status != STATE_Stopped; } void MIDISong2::SetVolume (float volume) { SetEvent (VolumeChangeEvent); } DWORD WINAPI MIDISong2::PlayerProc (LPVOID lpParameter) { MIDISong2 *song = (MIDISong2 *)lpParameter; HANDLE events[2] = { song->ExitEvent, song->PauseEvent }; bool waited = false; int i; DWORD wait; SetThreadPriority (GetCurrentThread (), THREAD_PRIORITY_TIME_CRITICAL); for (i = 0; i < 16; ++i) { // The ASS uses a default volume of 90, but all the other // sources I can find say it's 100. Ideally, any song that // cares about its volume is going to initialize it to // whatever it wants and override this default. song->ChannelVolumes[i] = 100; } song->OutputVolume (midivolume & 0xffff); song->Tempo = 500000; do { for (i = 0; i < song->NumTracks; ++i) { song->Tracks[i].TrackP = 0; song->Tracks[i].Finished = false; song->Tracks[i].RunningStatus = 0; song->Tracks[i].Designated = false; song->Tracks[i].Designation = 0; song->Tracks[i].LoopCount = -1; song->Tracks[i].EProgramChange = false; song->Tracks[i].EVolume = false; } song->ProcessInitialMetaEvents (); for (i = 0; i < song->NumTracks; ++i) { song->Tracks[i].Delay = song->Tracks[i].ReadVarLen (); } song->TrackDue = song->Tracks; song->TrackDue = song->FindNextDue (); while (0 != (wait = song->SendCommands ())) { waited = true; // Wait for the exit or pause event or the next note switch (WaitForMultipleObjects (2, events, FALSE, wait * song->Tempo / song->Division)) { case WAIT_OBJECT_0: song->m_Status = STATE_Stopped; return 0; case WAIT_OBJECT_0+1: // Go paused song->OutputVolume (0); // Wait for the exit or pause event if (WAIT_OBJECT_0 == WaitForMultipleObjects (2, events, FALSE, INFINITE)) { song->m_Status = STATE_Stopped; return 0; } song->OutputVolume (midivolume & 0xffff); } for (i = 0; i < song->NumTracks; ++i) { if (!song->Tracks[i].Finished) { song->Tracks[i].Delay -= wait; } } song->TrackDue = song->FindNextDue (); // Check if the volume needs changing if (WAIT_OBJECT_0 == WaitForSingleObject (song->VolumeChangeEvent, 0)) { song->OutputVolume (midivolume & 0xffff); } } } while (waited && song->m_Looping); song->m_Status = STATE_Stopped; return 0; } void MIDISong2::OutputVolume (DWORD volume) { for (int i = 0; i < 16; ++i) { BYTE courseVol = (BYTE)(((ChannelVolumes[i]+1) * volume) >> 16); midiOutShortMsg (MidiOut, i | MIDI_CTRLCHANGE | (7<<8) | (courseVol<<16)); } } DWORD MIDISong2::SendCommands () { while (TrackDue && TrackDue->Delay == 0) { SendCommand (TrackDue); TrackDue = FindNextDue (); } return TrackDue ? TrackDue->Delay : 0; } #define CHECK_FINISHED \ if (track->TrackP >= track->MaxTrackP) \ { \ track->Finished = true; \ return; \ } void MIDISong2::SendCommand (TrackInfo *track) { DWORD len; BYTE event, data1 = 0, data2 = 0; int i; CHECK_FINISHED event = track->TrackBegin[track->TrackP++]; CHECK_FINISHED if (event != 0xF0 && event != 0xFF && event != 0xF7) { // Normal short message if ((event & 0xF0) == 0xF0) { if (CommonLengths[event & 15] > 0) { data1 = track->TrackBegin[track->TrackP++]; if (CommonLengths[event & 15] > 1) { data2 = track->TrackBegin[track->TrackP++]; } } } else if ((event & 0x80) == 0) { data1 = event; event = track->RunningStatus; } else { track->RunningStatus = event; data1 = track->TrackBegin[track->TrackP++]; } CHECK_FINISHED if (EventLengths[(event&0x70)>>4] == 2) { data2 = track->TrackBegin[track->TrackP++]; } switch (event & 0x70) { case 0x40: if (track->EProgramChange) { event = 0xFF; } break; case 0x30: switch (data1) { case 7: if (track->EVolume) { event = 0xFF; } else { // Some devices don't support master volume // (e.g. the Audigy's software MIDI synth--but not its two hardware ones), // so assume none of them do and scale channel volumes manually. ChannelVolumes[event & 15] = data2; data2 = (BYTE)(((data2 + 1) * (midivolume & 0xffff)) >> 16); } break; case 39: // Skip fine volume adjustment because I am lazy. // (And it doesn't seem to be used much anyway.) event = 0xFF; break; case 110: // EMIDI Track Designation // Instruments 4, 5, 6, and 7 are all FM syth. // The rest are all wavetable. if (data2 == 127) { track->Designation = ~0; } else { if (data2 <= 9) { track->Designation |= 1 << data2; } } track->Designated = true; event = 0xFF; break; case 111: // EMIDI Track Exclusion if (track->Designated) { track->Designation &= ~(1 << data2); } event = 0xFF; break; case 112: // EMIDI Program Change track->EProgramChange = true; event = 0xC0 | (event & 0x0F); data1 = data2; data2 = 0; break; case 113: // EMIDI Volume track->EVolume = true; data1 = 7; ChannelVolumes[event & 15] = data2; data2 = (BYTE)(((data2 + 1) * (midivolume & 0xffff)) >> 16); break; case 116: // EMIDI Loop Begin track->LoopBegin = track->TrackP; track->LoopDelay = 0; track->LoopCount = data2; track->LoopFinished = track->Finished; event = 0xFF; break; case 117: // EMIDI Loop End if (track->LoopCount >= 0 && data2 == 127) { if (track->LoopCount == 0 && !m_Looping) { track->Finished = true; } else { if (track->LoopCount > 0 && --track->LoopCount == 0) { track->LoopCount = -1; } track->TrackP = track->LoopBegin; track->Delay = track->LoopDelay; track->Finished = track->LoopFinished; } } event = 0xFF; break; case 118: // EMIDI Global Loop Begin for (i = 0; i < NumTracks; ++i) { Tracks[i].LoopBegin = Tracks[i].TrackP; Tracks[i].LoopDelay = Tracks[i].Delay; Tracks[i].LoopCount = data2; Tracks[i].LoopFinished = Tracks[i].Finished; } event = 0xFF; break; case 119: // EMIDI Global Loop End if (data2 == 127) { for (i = 0; i < NumTracks; ++i) { if (Tracks[i].LoopCount >= 0) { if (Tracks[i].LoopCount == 0 && !m_Looping) { Tracks[i].Finished = true; } else { if (Tracks[i].LoopCount > 0 && --Tracks[i].LoopCount == 0) { Tracks[i].LoopCount = -1; } Tracks[i].TrackP = Tracks[i].LoopBegin; Tracks[i].Delay = Tracks[i].LoopDelay; Tracks[i].Finished = Tracks[i].LoopFinished; } } } } event = 0xFF; break; } } if (event != 0xFF && (!track->Designated || (track->Designation & DesignationMask))) { if (MMSYSERR_NOERROR != midiOutShortMsg (MidiOut, event | (data1<<8) | (data2<<16))) { track->Finished = true; return; } } } else { // Skip SysEx events just because I don't want to bother with // preparing headers and sending them out. The old MIDI player // ignores them too, so this won't break anything that played // before. if (event == 0xF0 || event == 0xF7) { len = track->ReadVarLen (); track->TrackP += len; } else if (event == 0xFF) { // It's a meta-event event = track->TrackBegin[track->TrackP++]; CHECK_FINISHED len = track->ReadVarLen (); CHECK_FINISHED if (track->TrackP + len <= track->MaxTrackP) { switch (event) { case 0x2F: track->Finished = true; break; case 0x51: Tempo = (track->TrackBegin[track->TrackP+0]<<16) | (track->TrackBegin[track->TrackP+1]<<8) | (track->TrackBegin[track->TrackP+2]); break; } track->TrackP += len; if (track->TrackP == track->MaxTrackP) { track->Finished = true; } } else { track->Finished = true; } } } if (!track->Finished) { track->Delay = track->ReadVarLen (); } } #undef CHECK_FINISHED void MIDISong2::ProcessInitialMetaEvents () { TrackInfo *track; int i; BYTE event; DWORD len; for (i = 0; i < NumTracks; ++i) { track = &Tracks[i]; while (!track->Finished && track->TrackP < track->MaxTrackP - 4 && track->TrackBegin[track->TrackP] == 0 && track->TrackBegin[track->TrackP+1] == 0xFF) { event = track->TrackBegin[track->TrackP+2]; track->TrackP += 3; len = track->ReadVarLen (); if (track->TrackP + len <= track->MaxTrackP) { switch (event) { case 0x2F: track->Finished = true; break; case 0x51: Tempo = (track->TrackBegin[track->TrackP+0]<<16) | (track->TrackBegin[track->TrackP+1]<<8) | (track->TrackBegin[track->TrackP+2]); break; } } track->TrackP += len; } if (track->TrackP >= track->MaxTrackP - 4) { track->Finished = true; } } } DWORD MIDISong2::TrackInfo::ReadVarLen () { DWORD time = 0, t = 0x80; while ((t & 0x80) && TrackP < MaxTrackP) { t = TrackBegin[TrackP++]; time = (time << 7) | (t & 127); } return time; } MIDISong2::TrackInfo *MIDISong2::FindNextDue () { TrackInfo *track; DWORD best; int i; if (!TrackDue->Finished && TrackDue->Delay == 0) { return TrackDue; } switch (Format) { case 0: return Tracks[0].Finished ? NULL : Tracks; case 1: track = NULL; best = 0xFFFFFFFF; for (i = 0; i < NumTracks; ++i) { if (!Tracks[i].Finished) { if (Tracks[i].Delay < best) { best = Tracks[i].Delay; track = &Tracks[i]; } } } return track; case 2: track = TrackDue; if (track->Finished) { track++; } return track < &Tracks[NumTracks] ? track : NULL; } return NULL; } #endif