// //--------------------------------------------------------------------------- // // Copyright(C) 2005-2016 Christoph Oelckers // All rights reserved. // // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU Lesser General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU Lesser General Public License for more details. // // You should have received a copy of the GNU Lesser General Public License // along with this program. If not, see http://www.gnu.org/licenses/ // //-------------------------------------------------------------------------- // #include "doomtype.h" #include "p_local.h" #include "p_lnspec.h" #include "c_dispatch.h" #include "a_sharedglobal.h" #include "g_levellocals.h" #include "r_utility.h" //========================================================================== // // Helper types for portal grouping // //========================================================================== struct FPortalID { DVector2 mDisplacement; // for the hash code operator intptr_t() const { return (FLOAT2FIXED(mDisplacement.X) >> 8) + (FLOAT2FIXED(mDisplacement.Y) << 8); } bool operator != (const FPortalID &other) const { return mDisplacement != other.mDisplacement; } }; struct FPortalSector { sector_t *mSub; int mPlane; }; typedef TArray FPortalSectors; typedef TMap FPortalMap; //========================================================================== // // this is left as fixed_t because the nodes also are, it makes no sense // to convert this without converting the nodes as well. // //========================================================================== struct FCoverageVertex { fixed_t x, y; bool operator !=(FCoverageVertex &other) { return x != other.x || y != other.y; } }; struct FCoverageLine { FCoverageVertex v[2]; }; struct FCoverageBuilder { subsector_t *target; TArray collect; FCoverageVertex center; //========================================================================== // // // //========================================================================== FCoverageBuilder(subsector_t *sub) { target = sub; } //========================================================================== // // GetIntersection // // adapted from P_InterceptVector // //========================================================================== bool GetIntersection(FCoverageVertex *v1, FCoverageVertex *v2, node_t *bsp, FCoverageVertex *v) { double frac; double num; double den; double v2x = (double)v1->x; double v2y = (double)v1->y; double v2dx = (double)(v2->x - v1->x); double v2dy = (double)(v2->y - v1->y); double v1x = (double)bsp->x; double v1y = (double)bsp->y; double v1dx = (double)bsp->dx; double v1dy = (double)bsp->dy; den = v1dy*v2dx - v1dx*v2dy; if (den == 0) return false; // parallel num = (v1x - v2x)*v1dy + (v2y - v1y)*v1dx; frac = num / den; if (frac < 0. || frac > 1.) return false; v->x = xs_RoundToInt(v2x + frac * v2dx); v->y = xs_RoundToInt(v2y + frac * v2dy); return true; } //========================================================================== // // // //========================================================================== double PartitionDistance(FCoverageVertex *vt, node_t *node) { return fabs(double(-node->dy) * (vt->x - node->x) + double(node->dx) * (vt->y - node->y)) / (node->len * 65536.); } //========================================================================== // // // //========================================================================== int PointOnSide(FCoverageVertex *vt, node_t *node) { return R_PointOnSide(vt->x, vt->y, node); } //========================================================================== // // adapted from polyobject splitter // //========================================================================== void CollectNode(void *node, TArray &shape) { static TArray lists[2]; const double COVERAGE_EPSILON = 6.; // same epsilon as the node builder if (!((size_t)node & 1)) // Keep going until found a subsector { node_t *bsp = (node_t *)node; int centerside = R_PointOnSide(center.x, center.y, bsp); lists[0].Clear(); lists[1].Clear(); for(unsigned i=0;ichildren[0], shape); } else if (lists[0].Size() == 0) { CollectNode(bsp->children[1], shape); } else { // copy the static arrays into local ones TArray locallists[2]; for(int l=0;l<2;l++) { for (unsigned i=0;ichildren[0], locallists[0]); CollectNode(bsp->children[1], locallists[1]); } } else { // we reached a subsector so we can link the node with this subsector subsector_t *sub = (subsector_t *)((uint8_t *)node - 1); collect.Push(int(sub->Index())); } } }; //========================================================================== // // Calculate portal coverage for a single subsector // This data is used by the clipper to free up the ranges covered by a portal. // // This also gets called by the render hack code because ZDoom was really lax // with its stacked sector things and allowed partial tagging of affected sectors // Any such sector will only be found during rendering and must create its // coverage info then. // //========================================================================== void BuildPortalCoverage(FPortalCoverage *coverage, subsector_t *subsector, const DVector2 &displacement) { TArray shape; double centerx=0, centery=0; shape.Resize(subsector->numlines); for(unsigned i=0; inumlines; i++) { centerx += (shape[i].x = FLOAT2FIXED(subsector->firstline[i].v1->fX() + displacement.X)); centery += (shape[i].y = FLOAT2FIXED(subsector->firstline[i].v1->fY() + displacement.Y)); } FCoverageBuilder build(subsector); build.center.x = xs_CRoundToInt(centerx / subsector->numlines); build.center.y = xs_CRoundToInt(centery / subsector->numlines); build.CollectNode(level.HeadNode(), shape); coverage->subsectors = new uint32_t[build.collect.Size()]; coverage->sscount = build.collect.Size(); memcpy(coverage->subsectors, &build.collect[0], build.collect.Size() * sizeof(uint32_t)); } //========================================================================== // // // //========================================================================== static void CollectPortalSectors(FPortalMap &collection) { for (auto &sec : level.sectors) { for (int j = 0; j < 2; j++) { int ptype = sec.GetPortalType(j); if (ptype== PORTS_STACKEDSECTORTHING || ptype == PORTS_PORTAL || ptype == PORTS_LINKEDPORTAL) // only offset-displacing portal types { FPortalID id = { sec.GetPortalDisplacement(j) }; FPortalSectors &sss = collection[id]; FPortalSector ss = { &sec, j }; sss.Push(ss); } } } } //========================================================================== // // group sector portals by displacement // The renderer can handle such a group in one go to avoid multiple // BSP traversals // //========================================================================== static void GroupSectorPortals() { FPortalMap collection; CollectPortalSectors(collection); level.portalGroups.Clear(); FPortalMap::Iterator it(collection); FPortalMap::Pair *pair; int c = 0; int planeflags = 0; while (it.NextPair(pair)) { for (unsigned i = 0; i < pair->Value.Size(); i++) { if (pair->Value[i].mPlane == sector_t::floor) planeflags |= 1; else if (pair->Value[i].mPlane == sector_t::ceiling) planeflags |= 2; } for (int i = 1; i <= 2; i <<= 1) { // add separate portals for floor and ceiling. if (planeflags & i) { FSectorPortalGroup *portal = new FSectorPortalGroup; portal->mDisplacement = pair->Key.mDisplacement; portal->plane = (i == 1 ? sector_t::floor : sector_t::ceiling); /**/ portal->glportal = NULL; level.portalGroups.Push(portal); for (unsigned j = 0; j < pair->Value.Size(); j++) { sector_t *sec = pair->Value[j].mSub; int plane = pair->Value[j].mPlane; if (portal->plane == plane) { for (int k = 0; k < sec->subsectorcount; k++) { subsector_t *sub = sec->subsectors[k]; BuildPortalCoverage(&sub->portalcoverage[plane], sub, pair->Key.mDisplacement); } sec->portals[plane] = portal; } } } } } } //========================================================================== // // Group the line portals // Each group must be a continuous set of colinear linedefs with no gaps // //========================================================================== static void GroupLinePortals() { level.linePortalSpans.Clear(); TArray tempindex; tempindex.Reserve(level.linePortals.Size()); memset(&tempindex[0], -1, level.linePortals.Size() * sizeof(int)); for (unsigned i = 0; i < level.linePortals.Size(); i++) { auto port = level.linePortals[i]; bool gotsome; if (tempindex[i] == -1) { tempindex[i] = level.linePortalSpans.Size(); line_t *pSrcLine = level.linePortals[i].mOrigin; line_t *pLine = level.linePortals[i].mDestination; FLinePortalSpan &glport = level.linePortalSpans[level.linePortalSpans.Reserve(1)]; glport.lines.Push(&level.linePortals[i]); // We cannot do this grouping for non-linked portals because they can be changed at run time. if (level.linePortals[i].mType == PORTT_LINKED && pLine != nullptr) { glport.v1 = pLine->v1; glport.v2 = pLine->v2; do { // now collect all other colinear lines connected to this one. We run this loop as long as it still finds a match gotsome = false; for (unsigned j = 0; j < level.linePortals.Size(); j++) { if (tempindex[j] == -1) { line_t *pSrcLine2 = level.linePortals[j].mOrigin; line_t *pLine2 = level.linePortals[j].mDestination; // angular precision is intentionally reduced to 32 bit BAM to account for precision problems (otherwise many not perfectly horizontal or vertical portals aren't found here.) unsigned srcang = pSrcLine->Delta().Angle().BAMs(); unsigned dstang = pLine->Delta().Angle().BAMs(); if ((pSrcLine->v2 == pSrcLine2->v1 && pLine->v1 == pLine2->v2) || (pSrcLine->v1 == pSrcLine2->v2 && pLine->v2 == pLine2->v1)) { // The line connects, now check the translation unsigned srcang2 = pSrcLine2->Delta().Angle().BAMs(); unsigned dstang2 = pLine2->Delta().Angle().BAMs(); if (srcang == srcang2 && dstang == dstang2) { // The lines connect and both source and destination are colinear, so this is a match gotsome = true; tempindex[j] = tempindex[i]; if (pLine->v1 == pLine2->v2) glport.v1 = pLine2->v1; else glport.v2 = pLine2->v2; glport.lines.Push(&level.linePortals[j]); } } } } } while (gotsome); } } } // Final assignment can only be done when all allocations are finished. Otherwise the array may be moved. for (unsigned i = 0; i < level.linePortals.Size(); i++) { level.linePortals[i].mGroup = &level.linePortalSpans[tempindex[i]]; } } void InitPortalGroups() { if (level.nodes.Size() == 0) return; GroupSectorPortals(); GroupLinePortals(); } CCMD(dumpportals) { for(unsigned i=0;imDisplacement.X; double ydisp = p->mDisplacement.Y; Printf(PRINT_LOG, "Portal #%d, %s, displacement = (%f,%f)\n", i, p->plane==0? "floor":"ceiling", xdisp, ydisp); Printf(PRINT_LOG, "Coverage:\n"); for(auto &sub : level.subsectors) { auto port = sub.render_sector->GetPortalGroup(p->plane); if (port == p) { Printf(PRINT_LOG, "\tSubsector %d (%d):\n\t\t", sub.Index(), sub.render_sector->sectornum); for(unsigned k = 0;k< sub.numlines; k++) { Printf(PRINT_LOG, "(%.3f,%.3f), ", sub.firstline[k].v1->fX() + xdisp, sub.firstline[k].v1->fY() + ydisp); } Printf(PRINT_LOG, "\n\t\tCovered by subsectors:\n"); FPortalCoverage *cov = &sub.portalcoverage[p->plane]; for(int l = 0;l< cov->sscount; l++) { subsector_t *csub = &level.subsectors[cov->subsectors[l]]; Printf(PRINT_LOG, "\t\t\t%5d (%4d): ", cov->subsectors[l], csub->render_sector->sectornum); for(unsigned m = 0;m< csub->numlines; m++) { Printf(PRINT_LOG, "(%.3f,%.3f), ", csub->firstline[m].v1->fX(), csub->firstline[m].v1->fY()); } Printf(PRINT_LOG, "\n"); } } } } }