// Emacs style mode select -*- C++ -*- //----------------------------------------------------------------------------- // // $Id:$ // // Copyright (C) 1993-1996 by id Software, Inc. // // This source is available for distribution and/or modification // only under the terms of the DOOM Source Code License as // published by id Software. All rights reserved. // // The source is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // FITNESS FOR A PARTICULAR PURPOSE. See the DOOM Source Code License // for more details. // // DESCRIPTION: // Refresh/rendering module, shared data struct definitions. // //----------------------------------------------------------------------------- #ifndef __R_DEFS_H__ #define __R_DEFS_H__ #include "doomdef.h" #include "templates.h" #include "memarena.h" #include "m_bbox.h" // Some more or less basic data types // we depend on. #include "m_fixed.h" // We rely on the thinker data struct // to handle sound origins in sectors. // SECTORS do store MObjs anyway. #include "actor.h" struct FLightNode; struct FGLSection; struct FPortal; struct seg_t; #include "dthinker.h" #define MAXWIDTH 5760 #define MAXHEIGHT 3600 const WORD NO_INDEX = 0xffffu; const DWORD NO_SIDE = 0xffffffffu; // Silhouette, needed for clipping Segs (mainly) // and sprites representing things. enum { SIL_NONE, SIL_BOTTOM, SIL_TOP, SIL_BOTH }; struct FDisplacement; // // INTERNAL MAP TYPES // used by play and refresh // // // Your plain vanilla vertex. // Note: transformed values not buffered locally, // like some DOOM-alikes ("wt", "WebView") did. // enum { VERTEXFLAG_ZCeilingEnabled = 0x01, VERTEXFLAG_ZFloorEnabled = 0x02 }; struct vertexdata_t { double zCeiling, zFloor; DWORD flags; }; #ifdef USE_FLOAT typedef float vtype; #elif !defined USE_FIXED typedef double vtype; #endif struct vertex_t { DVector2 p; void set(fixed_t x, fixed_t y) { p.X = x / 65536.; p.Y = y / 65536.; } void set(double x, double y) { p.X = x; p.Y = y; } void set(const DVector2 &pos) { p = pos; } double fX() const { return p.X; } double fY() const { return p.Y; } fixed_t fixX() const { return FLOAT2FIXED(p.X); } fixed_t fixY() const { return FLOAT2FIXED(p.Y); } DVector2 fPos() const { return p; } int Index() const; angle_t viewangle; // precalculated angle for clipping int angletime; // recalculation time for view angle bool dirty; // something has changed and needs to be recalculated int numheights; int numsectors; sector_t ** sectors; float * heightlist; vertex_t() { p = { 0,0 }; angletime = 0; viewangle = 0; dirty = true; numheights = numsectors = 0; sectors = NULL; heightlist = NULL; } ~vertex_t() { if (sectors != nullptr) delete[] sectors; if (heightlist != nullptr) delete[] heightlist; } bool operator== (const vertex_t &other) { return p == other.p; } bool operator!= (const vertex_t &other) { return p != other.p; } void clear() { p.Zero(); } angle_t GetClipAngle(); }; // Forward of LineDefs, for Sectors. struct line_t; class player_t; class FScanner; class FBitmap; struct FCopyInfo; class DInterpolation; enum { UDMF_Line, UDMF_Side, UDMF_Sector, UDMF_Thing }; struct FUDMFKey { enum { UDMF_Int, UDMF_Float, UDMF_String }; FName Key; int Type; int IntVal; double FloatVal; FString StringVal; FUDMFKey() { } FUDMFKey& operator =(int val) { Type = UDMF_Int; IntVal = val; FloatVal = val; StringVal = ""; return *this; } FUDMFKey& operator =(double val) { Type = UDMF_Float; IntVal = int(val); FloatVal = val; StringVal = ""; return *this; } FUDMFKey& operator =(const FString &val) { Type = UDMF_String; IntVal = (int)strtoll(val.GetChars(), NULL, 0); FloatVal = strtod(val.GetChars(), NULL); StringVal = val; return *this; } }; class FUDMFKeys : public TArray { bool mSorted = false; public: void Sort(); FUDMFKey *Find(FName key); }; // // The SECTORS record, at runtime. // Stores things/mobjs. // class DSectorEffect; struct sector_t; struct FRemapTable; enum { SECSPAC_Enter = 1, // Trigger when player enters SECSPAC_Exit = 2, // Trigger when player exits SECSPAC_HitFloor = 4, // Trigger when player hits floor SECSPAC_HitCeiling = 8, // Trigger when player hits ceiling SECSPAC_Use = 16, // Trigger when player uses SECSPAC_UseWall = 32, // Trigger when player uses a wall SECSPAC_EyesDive = 64, // Trigger when player eyes go below fake floor SECSPAC_EyesSurface = 128, // Trigger when player eyes go above fake floor SECSPAC_EyesBelowC = 256, // Trigger when player eyes go below fake ceiling SECSPAC_EyesAboveC = 512, // Trigger when player eyes go above fake ceiling SECSPAC_HitFakeFloor= 1024, // Trigger when player hits fake floor }; struct secplane_t { // the plane is defined as a*x + b*y + c*z + d = 0 // ic is 1/c, for faster Z calculations //private: DVector3 normal; double D, negiC; // negative iC because that also saves a negation in all methods using this. public: friend FSerializer &Serialize(FSerializer &arc, const char *key, secplane_t &p, secplane_t *def); void set(double aa, double bb, double cc, double dd) { normal.X = aa; normal.Y = bb; normal.Z = cc; D = dd; negiC = -1 / cc; } void setD(double dd) { D = dd; } double fC() const { return normal.Z; } double fD() const { return D; } bool isSlope() const { return !normal.XY().isZero(); } DVector3 Normal() const { return normal; } // Returns < 0 : behind; == 0 : on; > 0 : in front int PointOnSide(const DVector3 &pos) const { double v = (normal | pos) + D; return v < -EQUAL_EPSILON ? -1 : v > EQUAL_EPSILON ? 1 : 0; } // Returns the value of z at (0,0) This is used by the 3D floor code which does not handle slopes double Zat0() const { return negiC*D; } // Returns the value of z at (x,y) fixed_t ZatPoint(fixed_t x, fixed_t y) const = delete; // it is not allowed to call this. // Returns the value of z at (x,y) as a double double ZatPoint (double x, double y) const { return (D + normal.X*x + normal.Y*y) * negiC; } double ZatPoint(const DVector2 &pos) const { return (D + normal.X*pos.X + normal.Y*pos.Y) * negiC; } double ZatPoint(const FVector2 &pos) const { return (D + normal.X*pos.X + normal.Y*pos.Y) * negiC; } double ZatPoint(const vertex_t *v) const { return (D + normal.X*v->fX() + normal.Y*v->fY()) * negiC; } double ZatPoint(const AActor *ac) const { return (D + normal.X*ac->X() + normal.Y*ac->Y()) * negiC; } // Returns the value of z at vertex v if d is equal to dist double ZatPointDist(const vertex_t *v, double dist) { return (dist + normal.X*v->fX() + normal.Y*v->fY()) * negiC; } // Flips the plane's vertical orientiation, so that if it pointed up, // it will point down, and vice versa. void FlipVert () { normal = -normal; D = -D; negiC = -negiC; } // Returns true if 2 planes are the same bool operator== (const secplane_t &other) const { return normal == other.normal && D == other.D; } // Returns true if 2 planes are different bool operator!= (const secplane_t &other) const { return normal != other.normal || D != other.D; } // Moves a plane up/down by hdiff units void ChangeHeight(double hdiff) { D = D - hdiff * normal.Z; } // Moves a plane up/down by hdiff units double GetChangedHeight(double hdiff) { return D - hdiff * normal.Z; } // Returns how much this plane's height would change if d were set to oldd double HeightDiff(double oldd) const { return (D - oldd) * negiC; } // Returns how much this plane's height would change if d were set to oldd double HeightDiff(double oldd, double newd) const { return (newd - oldd) * negiC; } double PointToDist(const DVector2 &xy, double z) const { return -(normal.X * xy.X + normal.Y * xy.Y + normal.Z * z); } double PointToDist(const vertex_t *v, double z) const { return -(normal.X * v->fX() + normal.Y * v->fY() + normal.Z * z); } void SetAtHeight(double height, int ceiling) { normal.X = normal.Y = 0; if (ceiling) { normal.Z = -1; negiC = 1; D = height; } else { normal.Z = 1; negiC = -1; D = -height; } } bool CopyPlaneIfValid (secplane_t *dest, const secplane_t *opp) const; }; #include "p_3dfloors.h" struct subsector_t; struct sector_t; struct side_t; extern bool gl_plane_reflection_i; // Ceiling/floor flags enum { PLANEF_ABSLIGHTING = 1, // floor/ceiling light is absolute, not relative PLANEF_BLOCKED = 2, // can not be moved anymore. PLANEF_ADDITIVE = 4, // rendered additive // linked portal stuff PLANEF_NORENDER = 8, PLANEF_NOPASS = 16, PLANEF_BLOCKSOUND = 32, PLANEF_DISABLED = 64, PLANEF_OBSTRUCTED = 128, // if the portal plane is beyond the sector's floor or ceiling. PLANEF_LINKED = 256 // plane is flagged as a linked portal }; // Internal sector flags enum { SECF_FAKEFLOORONLY = 2, // when used as heightsec in R_FakeFlat, only copies floor SECF_CLIPFAKEPLANES = 4, // as a heightsec, clip planes to target sector's planes SECF_NOFAKELIGHT = 8, // heightsec does not change lighting SECF_IGNOREHEIGHTSEC= 16, // heightsec is only for triggering sector actions SECF_UNDERWATER = 32, // sector is underwater SECF_FORCEDUNDERWATER= 64, // sector is forced to be underwater SECF_UNDERWATERMASK = 32+64, SECF_DRAWN = 128, // sector has been drawn at least once SECF_HIDDEN = 256, // Do not draw on textured automap }; enum { SECF_SILENT = 1, // actors in sector make no noise SECF_NOFALLINGDAMAGE= 2, // No falling damage in this sector SECF_FLOORDROP = 4, // all actors standing on this floor will remain on it when it lowers very fast. SECF_NORESPAWN = 8, // players can not respawn in this sector SECF_FRICTION = 16, // sector has friction enabled SECF_PUSH = 32, // pushers enabled SECF_SILENTMOVE = 64, // Sector movement makes mo sound (Eternity got this so this may be useful for an extended cross-port standard.) SECF_DMGTERRAINFX = 128, // spawns terrain splash when inflicting damage SECF_ENDGODMODE = 256, // getting damaged by this sector ends god mode SECF_ENDLEVEL = 512, // ends level when health goes below 10 SECF_HAZARD = 1024, // Change to Strife's delayed damage handling. SECF_WASSECRET = 1 << 30, // a secret that was discovered SECF_SECRET = 1 << 31, // a secret sector SECF_DAMAGEFLAGS = SECF_ENDGODMODE|SECF_ENDLEVEL|SECF_DMGTERRAINFX|SECF_HAZARD, SECF_NOMODIFY = SECF_SECRET|SECF_WASSECRET, // not modifiable by Sector_ChangeFlags SECF_SPECIALFLAGS = SECF_DAMAGEFLAGS|SECF_FRICTION|SECF_PUSH, // these flags originate from 'special and must be transferrable by floor thinkers }; enum { PL_SKYFLAT = 0x40000000 }; struct FDynamicColormap; struct FLinkedSector { sector_t *Sector; int Type; }; // this substructure contains a few sector properties that are stored in dynamic arrays // These must not be copied by R_FakeFlat etc. or bad things will happen. struct extsector_t { // Boom sector transfer information struct fakefloor { TArray Sectors; } FakeFloor; // 3DMIDTEX information struct midtex { struct plane { TArray AttachedSectors; // all sectors containing 3dMidtex lines attached to this sector TArray AttachedLines; // all 3dMidtex lines attached to this sector } Floor, Ceiling; } Midtex; // Linked sector information struct linked { struct plane { TArray Sectors; } Floor, Ceiling; } Linked; // 3D floors struct xfloor { TDeletingArray ffloors; // 3D floors in this sector TArray lightlist; // 3D light list TArray attached; // 3D floors attached to this sector } XFloor; TArray vertices; }; struct FTransform { // killough 3/7/98: floor and ceiling texture offsets double xOffs, yOffs, baseyOffs; // [RH] floor and ceiling texture scales double xScale, yScale; // [RH] floor and ceiling texture rotation DAngle Angle, baseAngle; finline bool operator == (const FTransform &other) const { return xOffs == other.xOffs && yOffs + baseyOffs == other.yOffs + other.baseyOffs && xScale == other.xScale && yScale == other.yScale && Angle + baseAngle == other.Angle + other.baseAngle; } finline bool operator != (const FTransform &other) const { return !(*this == other); } }; struct secspecial_t { FNameNoInit damagetype; // [RH] Means-of-death for applied damage int damageamount; // [RH] Damage to do while standing on floor short special; short damageinterval; // Interval for damage application short leakydamage; // chance of leaking through radiation suit int Flags; secspecial_t() { Clear(); } void Clear() { memset(this, 0, sizeof(*this)); } }; FSerializer &Serialize(FSerializer &arc, const char *key, secspecial_t &spec, secspecial_t *def); enum class EMoveResult { ok, crushed, pastdest }; struct sector_t { // Member functions private: bool MoveAttached(int crush, double move, int floorOrCeiling, bool resetfailed, bool instant = false); public: EMoveResult MoveFloor(double speed, double dest, int crush, int direction, bool hexencrush, bool instant = false); EMoveResult MoveCeiling(double speed, double dest, int crush, int direction, bool hexencrush); inline EMoveResult MoveFloor(double speed, double dest, int direction) { return MoveFloor(speed, dest, -1, direction, false); } inline EMoveResult MoveCeiling(double speed, double dest, int direction) { return MoveCeiling(speed, dest, -1, direction, false); } bool IsLinked(sector_t *other, bool ceiling) const; double FindLowestFloorSurrounding(vertex_t **v) const; double FindHighestFloorSurrounding(vertex_t **v) const; double FindNextHighestFloor(vertex_t **v) const; double FindNextLowestFloor(vertex_t **v) const; double FindLowestCeilingSurrounding(vertex_t **v) const; // jff 2/04/98 double FindHighestCeilingSurrounding(vertex_t **v) const; // jff 2/04/98 double FindNextLowestCeiling(vertex_t **v) const; // jff 2/04/98 double FindNextHighestCeiling(vertex_t **v) const; // jff 2/04/98 double FindShortestTextureAround() const; // jff 2/04/98 double FindShortestUpperAround() const; // jff 2/04/98 sector_t *FindModelFloorSector(double floordestheight) const; // jff 2/04/98 sector_t *FindModelCeilingSector(double floordestheight) const; // jff 2/04/98 int FindMinSurroundingLight (int max) const; sector_t *NextSpecialSector (int type, sector_t *prev) const; // [RH] double FindLowestCeilingPoint(vertex_t **v) const; double FindHighestFloorPoint(vertex_t **v) const; void RemoveForceField(); int Index() const; void AdjustFloorClip () const; void SetColor(int r, int g, int b, int desat); void SetFade(int r, int g, int b); void ClosestPoint(const DVector2 &pos, DVector2 &out) const; int GetFloorLight () const; int GetCeilingLight () const; sector_t *GetHeightSec() const; double GetFriction(int plane = sector_t::floor, double *movefac = NULL) const; bool TriggerSectorActions(AActor *thing, int activation); DInterpolation *SetInterpolation(int position, bool attach); FSectorPortal *ValidatePortal(int which); void CheckPortalPlane(int plane); enum { floor, ceiling, // only used for specialcolors array walltop, wallbottom, sprites }; struct splane { FTransform xform; int Flags; int Light; double alpha; double TexZ; PalEntry GlowColor; float GlowHeight; FTextureID Texture; }; splane planes[2]; void SetXOffset(int pos, double o) { planes[pos].xform.xOffs = o; } void AddXOffset(int pos, double o) { planes[pos].xform.xOffs += o; } double GetXOffset(int pos) const { return planes[pos].xform.xOffs; } void SetYOffset(int pos, double o) { planes[pos].xform.yOffs = o; } void AddYOffset(int pos, double o) { planes[pos].xform.yOffs += o; } double GetYOffset(int pos, bool addbase = true) const { if (!addbase) { return planes[pos].xform.yOffs; } else { return planes[pos].xform.yOffs + planes[pos].xform.baseyOffs; } } void SetXScale(int pos, double o) { planes[pos].xform.xScale = o; } double GetXScale(int pos) const { return planes[pos].xform.xScale; } void SetYScale(int pos, double o) { planes[pos].xform.yScale = o; } double GetYScale(int pos) const { return planes[pos].xform.yScale; } void SetAngle(int pos, DAngle o) { planes[pos].xform.Angle = o; } DAngle GetAngle(int pos, bool addbase = true) const { if (!addbase) { return planes[pos].xform.Angle; } else { return planes[pos].xform.Angle + planes[pos].xform.baseAngle; } } void SetBase(int pos, double y, DAngle o) { planes[pos].xform.baseyOffs = y; planes[pos].xform.baseAngle = o; } void SetAlpha(int pos, double o) { planes[pos].alpha = o; } double GetAlpha(int pos) const { return planes[pos].alpha; } int GetFlags(int pos) const { return planes[pos].Flags; } // like the previous one but masks out all flags which are not relevant for rendering. int GetVisFlags(int pos) const { return planes[pos].Flags & ~(PLANEF_BLOCKED | PLANEF_NOPASS | PLANEF_BLOCKSOUND | PLANEF_LINKED); } void ChangeFlags(int pos, int And, int Or) { planes[pos].Flags &= ~And; planes[pos].Flags |= Or; } int GetPlaneLight(int pos) const { return planes[pos].Light; } void SetPlaneLight(int pos, int level) { planes[pos].Light = level; } FTextureID GetTexture(int pos) const { return planes[pos].Texture; } void SetTexture(int pos, FTextureID tex, bool floorclip = true) { FTextureID old = planes[pos].Texture; planes[pos].Texture = tex; if (floorclip && pos == floor && tex != old) AdjustFloorClip(); } double GetPlaneTexZ(int pos) const { return planes[pos].TexZ; } void SetPlaneTexZ(int pos, double val, bool dirtify = false) // This mainly gets used by init code. The only place where it must set the vertex to dirty is the interpolation code. { planes[pos].TexZ = val; if (dirtify) SetAllVerticesDirty(); } void ChangePlaneTexZ(int pos, double val) { planes[pos].TexZ += val; } static inline short ClampLight(int level) { return (short)clamp(level, SHRT_MIN, SHRT_MAX); } void ChangeLightLevel(int newval) { lightlevel = ClampLight(lightlevel + newval); } void SetLightLevel(int newval) { lightlevel = ClampLight(newval); } int GetLightLevel() const { return lightlevel; } secplane_t &GetSecPlane(int pos) { return pos == floor? floorplane:ceilingplane; } bool isSecret() const { return !!(Flags & SECF_SECRET); } bool wasSecret() const { return !!(Flags & SECF_WASSECRET); } void ClearSecret() { Flags &= ~SECF_SECRET; } void ClearSpecial() { // clears all variables that originate from 'special'. Used for sector type transferring thinkers special = 0; damageamount = 0; damageinterval = 0; damagetype = NAME_None; leakydamage = 0; Flags &= ~SECF_SPECIALFLAGS; } bool PortalBlocksView(int plane) { if (GetPortalType(plane) != PORTS_LINKEDPORTAL) return false; return !!(planes[plane].Flags & (PLANEF_NORENDER | PLANEF_DISABLED | PLANEF_OBSTRUCTED)); } bool PortalBlocksSight(int plane) { return PLANEF_LINKED != (planes[plane].Flags & (PLANEF_NORENDER | PLANEF_NOPASS | PLANEF_DISABLED | PLANEF_OBSTRUCTED | PLANEF_LINKED)); } bool PortalBlocksMovement(int plane) { return PLANEF_LINKED != (planes[plane].Flags & (PLANEF_NOPASS | PLANEF_DISABLED | PLANEF_OBSTRUCTED | PLANEF_LINKED)); } bool PortalBlocksSound(int plane) { return PLANEF_LINKED != (planes[plane].Flags & (PLANEF_BLOCKSOUND | PLANEF_DISABLED | PLANEF_OBSTRUCTED | PLANEF_LINKED)); } bool PortalIsLinked(int plane) { return (GetPortalType(plane) == PORTS_LINKEDPORTAL); } void ClearPortal(int plane) { Portals[plane] = 0; portals[plane] = nullptr; } FSectorPortal *GetPortal(int plane); double GetPortalPlaneZ(int plane); DVector2 GetPortalDisplacement(int plane); int GetPortalType(int plane); int GetOppositePortalGroup(int plane); void SetVerticesDirty() { for (unsigned i = 0; i < e->vertices.Size(); i++) e->vertices[i]->dirty = true; } void SetAllVerticesDirty() { SetVerticesDirty(); for (unsigned i = 0; i < e->FakeFloor.Sectors.Size(); i++) e->FakeFloor.Sectors[i]->SetVerticesDirty(); for (unsigned i = 0; i < e->XFloor.attached.Size(); i++) e->XFloor.attached[i]->SetVerticesDirty(); } int GetTerrain(int pos) const; void TransferSpecial(sector_t *model); void GetSpecial(secspecial_t *spec); void SetSpecial(const secspecial_t *spec); bool PlaneMoving(int pos); // Portal-aware height calculation double HighestCeilingAt(const DVector2 &a, sector_t **resultsec = NULL); double LowestFloorAt(const DVector2 &a, sector_t **resultsec = NULL); double HighestCeilingAt(AActor *a, sector_t **resultsec = NULL) { return HighestCeilingAt(a->Pos(), resultsec); } double LowestFloorAt(AActor *a, sector_t **resultsec = NULL) { return LowestFloorAt(a->Pos(), resultsec); } double NextHighestCeilingAt(double x, double y, double bottomz, double topz, int flags = 0, sector_t **resultsec = NULL, F3DFloor **resultffloor = NULL); double NextLowestFloorAt(double x, double y, double z, int flags = 0, double steph = 0, sector_t **resultsec = NULL, F3DFloor **resultffloor = NULL); // Member variables double CenterFloor() const { return floorplane.ZatPoint(centerspot); } double CenterCeiling() const { return ceilingplane.ZatPoint(centerspot); } // [RH] store floor and ceiling planes instead of heights secplane_t floorplane, ceilingplane; // [RH] give floor and ceiling even more properties FDynamicColormap *ColorMap; // [RH] Per-sector colormap PalEntry SpecialColors[5]; TObjPtr SoundTarget; short special; short lightlevel; short seqType; // this sector's sound sequence int sky; FNameNoInit SeqName; // Sound sequence name. Setting seqType non-negative will override this. DVector2 centerspot; // origin for any sounds played by the sector int validcount; // if == validcount, already checked AActor* thinglist; // list of mobjs in sector // killough 8/28/98: friction is a sector property, not an mobj property. // these fields used to be in AActor, but presented performance problems // when processed as mobj properties. Fix is to make them sector properties. double friction, movefactor; int terrainnum[2]; // thinker_t for reversable actions TObjPtr floordata; // jff 2/22/98 make thinkers on TObjPtr ceilingdata; // floors, ceilings, lighting, TObjPtr lightingdata; // independent of one another enum { CeilingMove, FloorMove, CeilingScroll, FloorScroll }; TObjPtr interpolations[4]; int prevsec; // -1 or number of sector for previous step int nextsec; // -1 or number of next step sector BYTE soundtraversed; // 0 = untraversed, 1,2 = sndlines -1 // jff 2/26/98 lockout machinery for stairbuilding SBYTE stairlock; // -2 on first locked -1 after thinker done 0 normally TStaticPointedArray Lines; // killough 3/7/98: support flat heights drawn at another sector's heights sector_t *heightsec; // other sector, or NULL if no other sector DWORD bottommap, midmap, topmap; // killough 4/4/98: dynamic colormaps // [RH] these can also be blend values if // the alpha mask is non-zero // list of mobjs that are at least partially in the sector // thinglist is a subset of touching_thinglist struct msecnode_t *touching_thinglist; // phares 3/14/98 struct msecnode_t *sectorportal_thinglist; // for cross-portal rendering. struct msecnode_t *touching_renderthings; // this is used to allow wide things to be rendered not only from their main sector. double gravity; // [RH] Sector gravity (1.0 is normal) FNameNoInit damagetype; // [RH] Means-of-death for applied damage int damageamount; // [RH] Damage to do while standing on floor short damageinterval; // Interval for damage application short leakydamage; // chance of leaking through radiation suit WORD ZoneNumber; // [RH] Zone this sector belongs to WORD MoreFlags; // [RH] Internal sector flags DWORD Flags; // Sector flags // [RH] Action specials for sectors. Like Skull Tag, but more // flexible in a Bloody way. SecActTarget forms a list of actors // joined by their tracer fields. When a potential sector action // occurs, SecActTarget's TriggerAction method is called. TObjPtr SecActTarget; // [RH] The portal or skybox to render for this sector. unsigned Portals[2]; int PortalGroup; int sectornum; // for comparing sector copies extsector_t * e; // This stores data that requires construction/destruction. Such data must not be copied by R_FakeFlat. // GL only stuff starts here float reflect[2]; bool transdoor; // For transparent door hacks int subsectorcount; // list of subsectors double transdoorheight; // for transparent door hacks subsector_t ** subsectors; FPortal * portals[2]; // floor and ceiling portals FLightNode * lighthead; enum { vbo_fakefloor = floor+2, vbo_fakeceiling = ceiling+2, }; int vboindex[4]; // VBO indices of the 4 planes this sector uses during rendering double vboheight[2]; // Last calculated height for the 2 planes of this actual sector int vbocount[2]; // Total count of vertices belonging to this sector's planes float GetReflect(int pos) { return gl_plane_reflection_i? reflect[pos] : 0; } bool VBOHeightcheck(int pos) const { return vboheight[pos] == GetPlaneTexZ(pos); } FPortal *GetGLPortal(int plane) { return portals[plane]; } enum { INVALIDATE_PLANES = 1, INVALIDATE_OTHER = 2 }; }; struct ReverbContainer; struct zone_t { ReverbContainer *Environment; }; // // The SideDef. // class DBaseDecal; enum { WALLF_ABSLIGHTING = 1, // Light is absolute instead of relative WALLF_NOAUTODECALS = 2, // Do not attach impact decals to this wall WALLF_NOFAKECONTRAST = 4, // Don't do fake contrast for this wall in side_t::GetLightLevel WALLF_SMOOTHLIGHTING = 8, // Similar to autocontrast but applies to all angles. WALLF_CLIP_MIDTEX = 16, // Like the line counterpart, but only for this side. WALLF_WRAP_MIDTEX = 32, // Like the line counterpart, but only for this side. WALLF_POLYOBJ = 64, // This wall belongs to a polyobject. WALLF_LIGHT_FOG = 128, // This wall's Light is used even in fog. }; struct side_t { enum ETexpart { top=0, mid=1, bottom=2 }; struct part { double xOffset; double yOffset; double xScale; double yScale; FTextureID texture; TObjPtr interpolation; //int Light; }; sector_t* sector; // Sector the SideDef is facing. DBaseDecal* AttachedDecals; // [RH] Decals bound to the wall part textures[3]; line_t *linedef; //DWORD linenum; DWORD LeftSide, RightSide; // [RH] Group walls into loops WORD TexelLength; SWORD Light; BYTE Flags; int UDMFIndex; // needed to access custom UDMF fields which are stored in loading order. int GetLightLevel (bool foggy, int baselight, bool is3dlight=false, int *pfakecontrast_usedbygzdoom=NULL) const; void SetLight(SWORD l) { Light = l; } FTextureID GetTexture(int which) const { return textures[which].texture; } void SetTexture(int which, FTextureID tex) { textures[which].texture = tex; } void SetTextureXOffset(int which, double offset) { textures[which].xOffset = offset;; } void SetTextureXOffset(double offset) { textures[top].xOffset = textures[mid].xOffset = textures[bottom].xOffset = offset; } double GetTextureXOffset(int which) const { return textures[which].xOffset; } void AddTextureXOffset(int which, double delta) { textures[which].xOffset += delta; } void SetTextureYOffset(int which, double offset) { textures[which].yOffset = offset; } void SetTextureYOffset(double offset) { textures[top].yOffset = textures[mid].yOffset = textures[bottom].yOffset = offset; } double GetTextureYOffset(int which) const { return textures[which].yOffset; } void AddTextureYOffset(int which, double delta) { textures[which].yOffset += delta; } void SetTextureXScale(int which, double scale) { textures[which].xScale = scale == 0 ? 1. : scale; } void SetTextureXScale(double scale) { textures[top].xScale = textures[mid].xScale = textures[bottom].xScale = scale == 0 ? 1. : scale; } double GetTextureXScale(int which) const { return textures[which].xScale; } void MultiplyTextureXScale(int which, double delta) { textures[which].xScale *= delta; } void SetTextureYScale(int which, double scale) { textures[which].yScale = scale == 0 ? 1. : scale; } void SetTextureYScale(double scale) { textures[top].yScale = textures[mid].yScale = textures[bottom].yScale = scale == 0 ? 1. : scale; } double GetTextureYScale(int which) const { return textures[which].yScale; } void MultiplyTextureYScale(int which, double delta) { textures[which].yScale *= delta; } DInterpolation *SetInterpolation(int position); void StopInterpolation(int position); vertex_t *V1() const; vertex_t *V2() const; int Index() const; //For GL FLightNode * lighthead; // all blended lights that may affect this wall seg_t **segs; // all segs belonging to this sidedef in ascending order. Used for precise rendering int numsegs; }; struct line_t { vertex_t *v1, *v2; // vertices, from v1 to v2 DVector2 delta; // precalculated v2 - v1 for side checking uint32_t flags; uint32_t activation; // activation type int special; int args[5]; // <--- hexen-style arguments (expanded to ZDoom's full width) double alpha; // <--- translucency (0=invisibile, FRACUNIT=opaque) side_t *sidedef[2]; double bbox[4]; // bounding box, for the extent of the LineDef. sector_t *frontsector, *backsector; int validcount; // if == validcount, already checked int locknumber; // [Dusk] lock number for special unsigned portalindex; unsigned portaltransferred; DVector2 Delta() const { return delta; } void setDelta(double x, double y) { delta = { x, y }; } void setAlpha(double a) { alpha = a; } FSectorPortal *GetTransferredPortal(); FLinePortal *getPortal() const { return portalindex >= linePortals.Size() ? (FLinePortal*)NULL : &linePortals[portalindex]; } // returns true if the portal is crossable by actors bool isLinePortal() const { return portalindex >= linePortals.Size() ? false : !!(linePortals[portalindex].mFlags & PORTF_PASSABLE); } // returns true if the portal needs to be handled by the renderer bool isVisualPortal() const { return portalindex >= linePortals.Size() ? false : !!(linePortals[portalindex].mFlags & PORTF_VISIBLE); } line_t *getPortalDestination() const { return portalindex >= linePortals.Size() ? (line_t*)NULL : linePortals[portalindex].mDestination; } int getPortalAlignment() const { return portalindex >= linePortals.Size() ? 0 : linePortals[portalindex].mAlign; } int Index() const; }; inline vertex_t *side_t::V1() const { return this == linedef->sidedef[0] ? linedef->v1 : linedef->v2; } inline vertex_t *side_t::V2() const { return this == linedef->sidedef[0] ? linedef->v2 : linedef->v1; } // phares 3/14/98 // // Sector list node showing all sectors an object appears in. // // There are two threads that flow through these nodes. The first thread // starts at touching_thinglist in a sector_t and flows through the m_snext // links to find all mobjs that are entirely or partially in the sector. // The second thread starts at touching_sectorlist in a AActor and flows // through the m_tnext links to find all sectors a thing touches. This is // useful when applying friction or push effects to sectors. These effects // can be done as thinkers that act upon all objects touching their sectors. // As an mobj moves through the world, these nodes are created and // destroyed, with the links changed appropriately. // // For the links, NULL means top or end of list. struct msecnode_t { sector_t *m_sector; // a sector containing this object AActor *m_thing; // this object struct msecnode_t *m_tprev; // prev msecnode_t for this thing struct msecnode_t *m_tnext; // next msecnode_t for this thing struct msecnode_t *m_sprev; // prev msecnode_t for this sector struct msecnode_t *m_snext; // next msecnode_t for this sector bool visited; // killough 4/4/98, 4/7/98: used in search algorithms }; // use the same memory layout as msecnode_t so both can be used from the same freelist. struct portnode_t { FLinePortal *m_sector; // a portal containing this object (no, this isn't a sector, but if we want to use templates it needs the same variable names as msecnode_t.) AActor *m_thing; // this object struct portnode_t *m_tprev; // prev msecnode_t for this thing struct portnode_t *m_tnext; // next msecnode_t for this thing struct portnode_t *m_sprev; // prev msecnode_t for this portal struct portnode_t *m_snext; // next msecnode_t for this portal bool visited; }; struct FPolyNode; struct FMiniBSP; // // The LineSeg. // struct seg_t { vertex_t* v1; vertex_t* v2; side_t* sidedef; line_t* linedef; // Sector references. Could be retrieved from linedef, too. sector_t* frontsector; sector_t* backsector; // NULL for one-sided lines seg_t* PartnerSeg; subsector_t* Subsector; float sidefrac; // relative position of seg's ending vertex on owning sidedef }; extern seg_t *segs; // // A SubSector. // References a Sector. // Basically, this is a list of LineSegs indicating the visible walls that // define (all or some) sides of a convex BSP leaf. // enum { SSECF_DEGENERATE = 1, SSECF_DRAWN = 2, SSECF_POLYORG = 4, }; struct FPortalCoverage { DWORD * subsectors; int sscount; }; struct subsector_t { sector_t *sector; FPolyNode *polys; FMiniBSP *BSP; seg_t *firstline; sector_t *render_sector; DWORD numlines; int flags; void BuildPolyBSP(); // subsector related GL data FLightNode * lighthead; // Light nodes (blended and additive) int validcount; short mapsection; char hacked; // 1: is part of a render hack // 2: has one-sided walls FPortalCoverage portalcoverage[2]; }; // // BSP node. // struct node_t { // Partition line. fixed_t x; fixed_t y; fixed_t dx; fixed_t dy; union { float bbox[2][4]; // Bounding box for each child. fixed_t nb_bbox[2][4]; // Used by nodebuilder. }; float len; union { void *children[2]; // If bit 0 is set, it's a subsector. int intchildren[2]; // Used by nodebuilder. }; }; // An entire BSP tree. struct FMiniBSP { bool bDirty; TArray Nodes; TArray Segs; TArray Subsectors; TArray Verts; }; // // OTHER TYPES // typedef BYTE lighttable_t; // This could be wider for >8 bit display. // This encapsulates the fields of vissprite_t that can be altered by AlterWeaponSprite struct visstyle_t { bool Invert; float Alpha; ERenderStyle RenderStyle; }; //---------------------------------------------------------------------------------- // // The playsim can use different nodes than the renderer so this is // not the same as R_PointInSubsector // //---------------------------------------------------------------------------------- subsector_t *P_PointInSubsector(double x, double y); inline sector_t *P_PointInSector(const DVector2 &pos) { return P_PointInSubsector(pos.X, pos.Y)->sector; } inline sector_t *P_PointInSector(double X, double Y) { return P_PointInSubsector(X, Y)->sector; } inline DVector3 AActor::PosRelative(int portalgroup) const { return Pos() + Displacements.getOffset(Sector->PortalGroup, portalgroup); } inline DVector3 AActor::PosRelative(const AActor *other) const { return Pos() + Displacements.getOffset(Sector->PortalGroup, other->Sector->PortalGroup); } inline DVector3 AActor::PosRelative(sector_t *sec) const { return Pos() + Displacements.getOffset(Sector->PortalGroup, sec->PortalGroup); } inline DVector3 AActor::PosRelative(line_t *line) const { return Pos() + Displacements.getOffset(Sector->PortalGroup, line->frontsector->PortalGroup); } inline DVector3 PosRelative(const DVector3 &pos, line_t *line, sector_t *refsec = NULL) { return pos + Displacements.getOffset(refsec->PortalGroup, line->frontsector->PortalGroup); } inline void AActor::ClearInterpolation() { Prev = Pos(); PrevAngles = Angles; if (Sector) PrevPortalGroup = Sector->PortalGroup; else PrevPortalGroup = 0; } inline bool FBoundingBox::inRange(const line_t *ld) const { return Left() < ld->bbox[BOXRIGHT] && Right() > ld->bbox[BOXLEFT] && Top() > ld->bbox[BOXBOTTOM] && Bottom() < ld->bbox[BOXTOP]; } #endif