mirror of
https://github.com/ZDoom/gzdoom.git
synced 2025-01-18 15:42:34 +00:00
- Add new function for the new slope calculations.
Fixed also two MSVC warnings.
This commit is contained in:
parent
a67ac5d940
commit
8fbed78c21
1 changed files with 65 additions and 45 deletions
110
src/p_map.cpp
110
src/p_map.cpp
|
@ -74,6 +74,69 @@ TArray<line_t *> spechit;
|
|||
// Temporary holder for thing_sectorlist threads
|
||||
msecnode_t* sector_list = NULL; // phares 3/16/98
|
||||
|
||||
//==========================================================================
|
||||
//
|
||||
// GetCoefficientClosestPointInLine24
|
||||
//
|
||||
// Formula: (dotProduct(ldv1 - tm, ld) << 24) / dotProduct(ld, ld)
|
||||
// with: ldv1 = (ld->v1->x, ld->v1->y), tm = (tm.x, tm.y)
|
||||
// and ld = (ld->dx, ld->dy)
|
||||
// Returns truncated to range [0, 1 << 24].
|
||||
//
|
||||
//==========================================================================
|
||||
|
||||
static fixed_t GetCoefficientClosestPointInLine24(line_t *ld, FCheckPosition &tm)
|
||||
{
|
||||
// [EP] Use 64 bit integers in order to keep the exact result of the
|
||||
// multiplication, because in the case the vertexes have both the
|
||||
// distance coordinates equal to the map limit (32767 units, which is
|
||||
// 2147418112 in fixed_t notation), the product result would occupy
|
||||
// 62 bits and the sum of two products would occupy 63 bits
|
||||
// in the worst case. If instead the vertexes are very close (1 in
|
||||
// fixed_t notation, which is 1.52587890625e-05 in float notation), the
|
||||
// product and the sum can be 1 in the worst case, which is very tiny.
|
||||
|
||||
SQWORD r_num = ((SQWORD(tm.x - ld->v1->x)*ld->dx) +
|
||||
(SQWORD(tm.y - ld->v1->y)*ld->dy));
|
||||
|
||||
// The denominator is always positive. Use this to avoid useless
|
||||
// calculations.
|
||||
SQWORD r_den = (SQWORD(ld->dx)*ld->dx + SQWORD(ld->dy)*ld->dy);
|
||||
|
||||
if (r_num <= 0) {
|
||||
// [EP] The numerator is less or equal to zero, hence the closest
|
||||
// point on the line is the first vertex. Truncate the result to 0.
|
||||
return 0;
|
||||
}
|
||||
|
||||
if (r_num >= r_den) {
|
||||
// [EP] The division is greater or equal to 1, hence the closest
|
||||
// point on the line is the second vertex. Truncate the result to
|
||||
// 1 << 24.
|
||||
return (1 << 24);
|
||||
}
|
||||
|
||||
// [EP] Deal with the limited bits. The original formula is:
|
||||
// r = (r_num << 24) / r_den,
|
||||
// but r_num might be big enough to make the shift overflow.
|
||||
// Since the numerator can't be saved in a 128bit integer,
|
||||
// the denominator must be right shifted. If the denominator is
|
||||
// less than (1 << 24), there would be a division by zero.
|
||||
// Thanks to the fact that in this code path the denominator is greater
|
||||
// than the numerator, it's possible to avoid this bad situation by
|
||||
// just checking the last 24 bits of the numerator.
|
||||
if ((r_num >> (63-24)) != 0) {
|
||||
// [EP] In fact, if the numerator is greater than
|
||||
// (1 << (63-24)), the denominator must be greater than
|
||||
// (1 << (63-24)), hence the denominator won't be zero after
|
||||
// the right shift by 24 places.
|
||||
return (fixed_t)(r_num/(r_den >> 24));
|
||||
}
|
||||
// [EP] Having the last 24 bits all zero allows right shifting
|
||||
// the numerator by 24 bits.
|
||||
return (fixed_t)((r_num << 24)/r_den);
|
||||
}
|
||||
|
||||
//==========================================================================
|
||||
//
|
||||
// PIT_FindFloorCeiling
|
||||
|
@ -736,51 +799,8 @@ bool PIT_CheckLine(line_t *ld, const FBoundingBox &box, FCheckPosition &tm)
|
|||
else
|
||||
{ // Find the point on the line closest to the actor's center, and use
|
||||
// that to calculate openings
|
||||
// [EP] Use 64 bit integers in order to keep the exact result of the
|
||||
// multiplication, because in the case the vertexes have both the
|
||||
// distance coordinates equal to the map limit (32767 units, which is
|
||||
// 2147418112 in fixed_t notation), the product result would occupy
|
||||
// 62 bits and the sum of two products would occupy 63 bits
|
||||
// in the worst case. If instead the vertexes are very close (1 in
|
||||
// fixed_t notation, which is 1.52587890625e-05 in float notation), the
|
||||
// product and the sum can be 1 in the worst case, which is very tiny.
|
||||
SQWORD r_num = ((SQWORD(tm.x - ld->v1->x)*ld->dx) +
|
||||
(SQWORD(tm.y - ld->v1->y)*ld->dy));
|
||||
// The denominator is always positive. Use this to avoid useless
|
||||
// calculations.
|
||||
SQWORD r_den = (SQWORD(ld->dx)*ld->dx + SQWORD(ld->dy)*ld->dy);
|
||||
fixed_t r = 0;
|
||||
if (r_num <= 0) {
|
||||
// [EP] The numerator is less or equal to zero, hence the closest
|
||||
// point on the line is the first vertex. Truncate the result to 0.
|
||||
r = 0;
|
||||
} else if (r_num >= r_den) {
|
||||
// [EP] The division is greater or equal to 1, hence the closest
|
||||
// point on the line is the second vertex. Truncate the result to
|
||||
// 1 << 24.
|
||||
r = (1 << 24);
|
||||
} else {
|
||||
// [EP] Deal with the limited bits. The original formula is:
|
||||
// r = (r_num << 24) / r_den,
|
||||
// but r_num might be big enough to make the shift overflow.
|
||||
// Since the numerator can't be saved in a 128bit integer,
|
||||
// the denominator must be right shifted. If the denominator is
|
||||
// less than (1 << 24), there would be a division by zero.
|
||||
// Thanks to the fact that in this code path the denominator is less
|
||||
// than the numerator, it's possible to avoid this bad situation by
|
||||
// just checking the last 24 bits of the numerator.
|
||||
if ((r_num >> (63-24)) != 0) {
|
||||
// [EP] In fact, if the numerator is greater than
|
||||
// (1 << (63-24)), the denominator must be greater than
|
||||
// (1 << (63-24)), hence the denominator won't be zero after
|
||||
// the right shift by 24 places.
|
||||
r = (r_num)/(r_den >> 24);
|
||||
} else {
|
||||
// [EP] Having the last 24 bits all zero allows right shifting
|
||||
// the numerator by 24 bits.
|
||||
r = (r_num << 24)/r_den;
|
||||
}
|
||||
}
|
||||
fixed_t r = GetCoefficientClosestPointInLine24(ld, tm);
|
||||
|
||||
/* Printf ("%d:%d: %d (%d %d %d %d) (%d %d %d %d)\n", level.time, ld-lines, r,
|
||||
ld->frontsector->floorplane.a,
|
||||
ld->frontsector->floorplane.b,
|
||||
|
|
Loading…
Reference in a new issue