- Renamed music_midi_midiout.cpp to music_smf_midiout.cpp.

- Moved MIDI precaching logic into MIDIStreamer so that SMF and HMI files can both use the
  same implementation.
- Added a player for HMI midi files.

SVN r2675 (trunk)
This commit is contained in:
Randy Heit 2010-09-02 23:17:58 +00:00
parent 77ca7f7a87
commit 81e21b0688
7 changed files with 1106 additions and 154 deletions

View file

@ -812,11 +812,12 @@ add_executable( zdoom WIN32
sound/music_cd.cpp
sound/music_dumb.cpp
sound/music_gme.cpp
sound/music_mus_midiout.cpp
sound/music_smf_midiout.cpp
sound/music_hmi_midiout.cpp
sound/music_midistream.cpp
sound/music_midi_base.cpp
sound/music_midi_midiout.cpp
sound/music_midi_timidity.cpp
sound/music_mus_midiout.cpp
sound/music_mus_opl.cpp
sound/music_stream.cpp
sound/music_fluidsynth_mididevice.cpp

View file

@ -489,10 +489,36 @@ MusInfo *I_RegisterSong (const char *filename, BYTE *musiccache, int offset, int
}
#endif // _WIN32
}
// Check for MIDI format
else
{
if (id[0] == MAKE_ID('M','T','h','d'))
// Check for HMI format
if (id[0] == MAKE_ID('H','M','I','-') &&
id[1] == MAKE_ID('M','I','D','I') &&
id[2] == MAKE_ID('S','O','N','G'))
{
if ((snd_mididevice == -3 && device == MDEV_DEFAULT) || device == MDEV_OPL)
{
info = new HMISong(file, musiccache, len, MIDI_OPL);
}
else if (snd_mididevice == -4 && device == MDEV_DEFAULT)
{
info = new HMISong(file, musiccache, len, MIDI_Timidity);
}
#ifdef HAVE_FLUIDSYNTH
else if (device == MDEV_FLUIDSYNTH || (snd_mididevice == -5 && device == MDEV_DEFAULT))
{
info = new HMISong(file, musiccache, len, MIDI_Fluid);
}
#endif
#ifdef _WIN32
else
{
info = new HMISong(file, musiccache, len, MIDI_Win);
}
#endif
}
// Check for MIDI format
else if (id[0] == MAKE_ID('M','T','h','d'))
{
// This is a midi file

View file

@ -373,7 +373,7 @@ protected:
virtual void DoInitialSetup() = 0;
virtual void DoRestart() = 0;
virtual bool CheckDone() = 0;
virtual void Precache() = 0;
virtual void Precache();
virtual DWORD *MakeEvents(DWORD *events, DWORD *max_event_p, DWORD max_time) = 0;
enum
@ -413,6 +413,7 @@ protected:
DWORD Volume;
EMIDIDevice DeviceType;
bool CallbackIsThreaded;
bool IgnoreLoops;
FString DumpFilename;
};
@ -460,7 +461,6 @@ protected:
void DoInitialSetup();
void DoRestart();
bool CheckDone();
void Precache();
DWORD *MakeEvents(DWORD *events, DWORD *max_events_p, DWORD max_time);
void AdvanceTracks(DWORD time);
@ -480,6 +480,64 @@ protected:
WORD DesignationMask;
};
// HMI file played with a MIDI stream ---------------------------------------
class HMISong : public MIDIStreamer
{
public:
HMISong(FILE *file, BYTE *musiccache, int length, EMIDIDevice type);
~HMISong();
MusInfo *GetOPLDumper(const char *filename);
MusInfo *GetWaveDumper(const char *filename, int rate);
protected:
HMISong(const HMISong *original, const char *filename, EMIDIDevice type); // file dump constructor
void CheckCaps();
void DoInitialSetup();
void DoRestart();
bool CheckDone();
DWORD *MakeEvents(DWORD *events, DWORD *max_events_p, DWORD max_time);
void AdvanceTracks(DWORD time);
struct TrackInfo;
void ProcessInitialMetaEvents ();
DWORD *SendCommand (DWORD *event, TrackInfo *track, DWORD delay);
TrackInfo *FindNextDue ();
void SetTempo(int new_tempo);
struct AutoNoteOff
{
DWORD Delay;
BYTE Channel, Key;
};
// Sorry, std::priority_queue, but I want to be able to modify the contents of the heap.
class NoteOffQueue : public TArray<AutoNoteOff>
{
public:
void AddNoteOff(DWORD delay, BYTE channel, BYTE key);
void AdvanceTime(DWORD time);
bool Pop(AutoNoteOff &item);
protected:
void Heapify();
unsigned int Parent(unsigned int i) { return (i + 1u) / 2u - 1u; }
unsigned int Left(unsigned int i) { return (i + 1u) * 2u - 1u; }
unsigned int Right(unsigned int i) { return (i + 1u) * 2u; }
};
BYTE *MusHeader;
int SongLen;
int NumTracks;
TrackInfo *Tracks;
TrackInfo *TrackDue;
TrackInfo *FakeTrack;
NoteOffQueue NoteOffs;
};
// Anything supported by FMOD out of the box --------------------------------
class StreamSong : public MusInfo

View file

@ -0,0 +1,882 @@
/*
** music_midi_midiout.cpp
** Code to let ZDoom play HMI MIDI music through the MIDI streaming API.
**
**---------------------------------------------------------------------------
** Copyright 2010 Randy Heit
** All rights reserved.
**
** Redistribution and use in source and binary forms, with or without
** modification, are permitted provided that the following conditions
** are met:
**
** 1. Redistributions of source code must retain the above copyright
** notice, this list of conditions and the following disclaimer.
** 2. Redistributions in binary form must reproduce the above copyright
** notice, this list of conditions and the following disclaimer in the
** documentation and/or other materials provided with the distribution.
** 3. The name of the author may not be used to endorse or promote products
** derived from this software without specific prior written permission.
**
** THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
** IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
** OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
** IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
** INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
** NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
** DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
** THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
** (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
** THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
**---------------------------------------------------------------------------
**
*/
// HEADER FILES ------------------------------------------------------------
#include "i_musicinterns.h"
#include "templates.h"
#include "doomdef.h"
#include "m_swap.h"
// MACROS ------------------------------------------------------------------
#define SONG_MAGIC "HMI-MIDISONG"
#define TRACK_MAGIC "HMI-MIDITRACK"
// Used by SendCommand to check for unexpected end-of-track conditions.
#define CHECK_FINISHED \
if (track->TrackP >= track->MaxTrackP) \
{ \
track->Finished = true; \
return events; \
}
// In song header
#define TRACK_COUNT_OFFSET 0xE4
#define TRACK_DIR_PTR_OFFSET 0xE8
// In track header
#define TRACK_DATA_PTR_OFFSET 0x57
#define TRACK_DESIGNATION_OFFSET 0x99
#define NUM_DESIGNATIONS 8
// MIDI device types for designation
#define HMI_DEV_GM 0xA000 // Generic General MIDI (not a real device)
#define HMI_DEV_MPU401 0xA001 // MPU-401, Roland Sound Canvas, Ensoniq SoundScape, Rolad RAP-10
#define HMI_DEV_OPL2 0xA002 // SoundBlaster (Pro), ESS AudioDrive
#define HMI_DEV_MT32 0xA004 // MT-32
#define HMI_DEV_SBAWE32 0xA008 // SoundBlaster AWE32
#define HMI_DEV_OPL3 0xA009 // SoundBlaster 16, Microsoft Sound System, Pro Audio Spectrum 16
#define HMI_DEV_GUS 0xA00A // Gravis UltraSound, Gravis UltraSound Max/Ace
// Data accessors, since this data is highly likely to be unaligned.
#if defined(_M_IX86) || defined(_M_X64) || defined(__i386__)
inline int GetShort(const BYTE *foo)
{
return *(const short *)foo;
}
inline int GetInt(const BYTE *foo)
{
return *(const int *)foo;
}
#else
inline int GetShort(const BYTE *foo)
{
return short(foo[0] | (foo[1] << 8));
}
inline int GetInt(const BYTE *foo)
{
return int(foo[0] | (foo[1] << 8) | (foo[2] << 16) | (foo[3] << 24));
}
#endif
// TYPES -------------------------------------------------------------------
struct HMISong::TrackInfo
{
const BYTE *TrackBegin;
size_t TrackP;
size_t MaxTrackP;
DWORD Delay;
DWORD PlayedTime;
WORD Designation[NUM_DESIGNATIONS];
bool Enabled;
bool Finished;
BYTE RunningStatus;
DWORD ReadVarLen ();
};
// EXTERNAL FUNCTION PROTOTYPES --------------------------------------------
// PUBLIC FUNCTION PROTOTYPES ----------------------------------------------
// PRIVATE FUNCTION PROTOTYPES ---------------------------------------------
// EXTERNAL DATA DECLARATIONS ----------------------------------------------
extern char MIDI_EventLengths[7];
extern char MIDI_CommonLengths[15];
// PRIVATE DATA DEFINITIONS ------------------------------------------------
// PUBLIC DATA DEFINITIONS -------------------------------------------------
// CODE --------------------------------------------------------------------
//==========================================================================
//
// HMISong Constructor
//
// Buffers the file and does some validation of the HMI header.
//
//==========================================================================
HMISong::HMISong (FILE *file, BYTE *musiccache, int len, EMIDIDevice type)
: MIDIStreamer(type), MusHeader(0), Tracks(0)
{
int p;
int i;
#ifdef _WIN32
if (ExitEvent == NULL)
{
return;
}
#endif
if (len < 0x100)
{ // Way too small to be HMI.
return;
}
MusHeader = new BYTE[len];
SongLen = len;
if (file != NULL)
{
if (fread(MusHeader, 1, len, file) != (size_t)len)
return;
}
else
{
memcpy(MusHeader, musiccache, len);
}
// Do some validation of the MIDI file
if (memcmp(MusHeader, SONG_MAGIC, 12) != 0)
return;
NumTracks = GetShort(MusHeader + TRACK_COUNT_OFFSET);
if (NumTracks <= 0)
{
return;
}
// The division is the number of pulses per quarter note (PPQN).
Division = 60;
Tracks = new TrackInfo[NumTracks + 1];
int track_dir = GetInt(MusHeader + TRACK_DIR_PTR_OFFSET);
// Gather information about each track
for (i = 0, p = 0; i < NumTracks; ++i)
{
int start = GetInt(MusHeader + track_dir + i*4);
int tracklen, datastart;
if (start > len - TRACK_DESIGNATION_OFFSET - 4)
{ // Track is incomplete.
continue;
}
// BTW, HMI does not actually check the track header.
if (memcmp(MusHeader + start, TRACK_MAGIC, 13) != 0)
{
continue;
}
// The track ends where the next one begins. If this is the
// last track, then it ends at the end of the file.
if (i == NumTracks - 1)
{
tracklen = len - start;
}
else
{
tracklen = GetInt(MusHeader + track_dir + i*4 + 4) - start;
}
// Clamp incomplete tracks to the end of the file.
tracklen = MIN(tracklen, len - start);
if (tracklen <= 0)
{
continue;
}
// Offset to actual MIDI events.
datastart = GetInt(MusHeader + start + TRACK_DATA_PTR_OFFSET);
tracklen -= datastart;
if (tracklen <= 0)
{
continue;
}
// Store track information
Tracks[p].TrackBegin = MusHeader + start + datastart;
Tracks[p].TrackP = 0;
Tracks[p].MaxTrackP = tracklen;
// Retrieve track designations. We can't check them yet, since we have not yet
// connected to the MIDI device.
for (int ii = 0; ii < NUM_DESIGNATIONS; ++ii)
{
Tracks[p].Designation[ii] = GetShort(MusHeader + start + TRACK_DESIGNATION_OFFSET + ii*2);
}
p++;
}
// In case there were fewer actual chunks in the file than the
// header specified, update NumTracks with the current value of p.
NumTracks = p;
if (NumTracks == 0)
{ // No tracks, so nothing to play
return;
}
}
//==========================================================================
//
// HMISong Destructor
//
//==========================================================================
HMISong::~HMISong ()
{
if (Tracks != NULL)
{
delete[] Tracks;
}
if (MusHeader != NULL)
{
delete[] MusHeader;
}
}
//==========================================================================
//
// HMISong :: CheckCaps
//
// Check track designations and disable tracks that have not been
// designated for the device we will be playing on.
//
//==========================================================================
void HMISong::CheckCaps()
{
int tech = MIDI->GetTechnology();
// What's the equivalent HMI device for our technology?
if (tech == MOD_FMSYNTH)
{
tech = HMI_DEV_OPL3;
}
else if (tech == MOD_MIDIPORT)
{
tech = HMI_DEV_MPU401;
}
else
{ // Good enough? Or should we just say we're GM.
tech = HMI_DEV_SBAWE32;
}
for (int i = 0; i < NumTracks; ++i)
{
Tracks[i].Enabled = false;
// Track designations are stored in a 0-terminated array.
for (int j = 0; j < NUM_DESIGNATIONS && Tracks[i].Designation[j] != 0; ++j)
{
if (Tracks[i].Designation[j] == tech)
{
Tracks[i].Enabled = true;
}
// If a track is designated for device 0xA000, it will be played by a MIDI
// driver for device types 0xA000, 0xA001, and 0xA008. Why this does not
// include the GUS, I do not know.
else if (Tracks[i].Designation[j] == HMI_DEV_GM)
{
Tracks[i].Enabled = (tech == HMI_DEV_MPU401 || tech == HMI_DEV_SBAWE32);
}
// If a track is designated for device 0xA002, it will be played by a MIDI
// driver for device types 0xA002 or 0xA009.
else if (Tracks[i].Designation[j] == HMI_DEV_OPL2)
{
Tracks[i].Enabled = (tech == HMI_DEV_OPL3);
}
// Any other designation must match the specific MIDI driver device number.
// (Which we handled first above.)
if (Tracks[i].Enabled)
{ // This track's been enabled, so we can stop checking other designations.
break;
}
}
}
}
//==========================================================================
//
// HMISong :: DoInitialSetup
//
// Sets the starting channel volumes.
//
//==========================================================================
void HMISong :: DoInitialSetup()
{
for (int i = 0; i < 16; ++i)
{
ChannelVolumes[i] = 100;
}
}
//==========================================================================
//
// HMISong :: DoRestart
//
// Rewinds every track.
//
//==========================================================================
void HMISong :: DoRestart()
{
int i;
// Set initial state.
FakeTrack = &Tracks[NumTracks];
NoteOffs.Clear();
for (i = 0; i <= NumTracks; ++i)
{
Tracks[i].TrackP = 0;
Tracks[i].Finished = false;
Tracks[i].RunningStatus = 0;
Tracks[i].PlayedTime = 0;
}
ProcessInitialMetaEvents ();
for (i = 0; i < NumTracks; ++i)
{
Tracks[i].Delay = Tracks[i].ReadVarLen();
}
Tracks[i].Delay = 0; // for the FakeTrack
Tracks[i].Enabled = true;
TrackDue = Tracks;
TrackDue = FindNextDue();
}
//==========================================================================
//
// HMISong :: CheckDone
//
//==========================================================================
bool HMISong::CheckDone()
{
return TrackDue == NULL;
}
//==========================================================================
//
// HMISong :: MakeEvents
//
// Copies MIDI events from the file and puts them into a MIDI stream
// buffer. Returns the new position in the buffer.
//
//==========================================================================
DWORD *HMISong::MakeEvents(DWORD *events, DWORD *max_event_p, DWORD max_time)
{
DWORD *start_events;
DWORD tot_time = 0;
DWORD time = 0;
DWORD delay;
start_events = events;
while (TrackDue && events < max_event_p && tot_time <= max_time)
{
// It's possible that this tick may be nothing but meta-events and
// not generate any real events. Repeat this until we actually
// get some output so we don't send an empty buffer to the MIDI
// device.
do
{
delay = TrackDue->Delay;
time += delay;
// Advance time for all tracks by the amount needed for the one up next.
tot_time += delay * Tempo / Division;
AdvanceTracks(delay);
// Play all events for this tick.
do
{
DWORD *new_events = SendCommand(events, TrackDue, time);
TrackDue = FindNextDue();
if (new_events != events)
{
time = 0;
}
events = new_events;
}
while (TrackDue && TrackDue->Delay == 0 && events < max_event_p);
}
while (start_events == events && TrackDue);
time = 0;
}
return events;
}
//==========================================================================
//
// HMISong :: AdvanceTracks
//
// Advaces time for all tracks by the specified amount.
//
//==========================================================================
void HMISong::AdvanceTracks(DWORD time)
{
for (int i = 0; i <= NumTracks; ++i)
{
if (Tracks[i].Enabled && !Tracks[i].Finished)
{
Tracks[i].Delay -= time;
Tracks[i].PlayedTime += time;
}
}
NoteOffs.AdvanceTime(time);
}
//==========================================================================
//
// HMISong :: SendCommand
//
// Places a single MIDIEVENT in the event buffer.
//
//==========================================================================
DWORD *HMISong::SendCommand (DWORD *events, TrackInfo *track, DWORD delay)
{
DWORD len;
BYTE event, data1 = 0, data2 = 0;
// If the next event comes from the fake track, pop an entry off the note-off queue.
if (track == FakeTrack)
{
AutoNoteOff off;
NoteOffs.Pop(off);
events[0] = delay;
events[1] = 0;
events[2] = MIDI_NOTEON | off.Channel | (off.Key << 8);
return events + 3;
}
CHECK_FINISHED
event = track->TrackBegin[track->TrackP++];
CHECK_FINISHED
if (event != MIDI_SYSEX && event != MIDI_META && event != MIDI_SYSEXEND && event != 0xFe)
{
// Normal short message
if ((event & 0xF0) == 0xF0)
{
if (MIDI_CommonLengths[event & 15] > 0)
{
data1 = track->TrackBegin[track->TrackP++];
if (MIDI_CommonLengths[event & 15] > 1)
{
data2 = track->TrackBegin[track->TrackP++];
}
}
}
else if ((event & 0x80) == 0)
{
data1 = event;
event = track->RunningStatus;
}
else
{
track->RunningStatus = event;
data1 = track->TrackBegin[track->TrackP++];
}
CHECK_FINISHED
if (MIDI_EventLengths[(event&0x70)>>4] == 2)
{
data2 = track->TrackBegin[track->TrackP++];
}
// Monitor channel volume controller changes.
if ((event & 0x70) == (MIDI_CTRLCHANGE & 0x70) && data1 == 7)
{
data2 = VolumeControllerChange(event & 15, data2);
}
events[0] = delay;
events[1] = 0;
if (event != MIDI_META)
{
events[2] = event | (data1<<8) | (data2<<16);
}
else
{
events[2] = MEVT_NOP;
}
events += 3;
if ((event & 0x70) == (MIDI_NOTEON & 0x70))
{ // HMI note on events include the time until an implied note off event.
NoteOffs.AddNoteOff(track->ReadVarLen(), event & 0x0F, data1);
}
}
else
{
// Skip SysEx events just because I don't want to bother with them.
// The old MIDI player ignored them too, so this won't break
// anything that played before.
if (event == MIDI_SYSEX || event == MIDI_SYSEXEND)
{
len = track->ReadVarLen ();
track->TrackP += len;
}
else if (event == MIDI_META)
{
// It's a meta-event
event = track->TrackBegin[track->TrackP++];
CHECK_FINISHED
len = track->ReadVarLen ();
CHECK_FINISHED
if (track->TrackP + len <= track->MaxTrackP)
{
switch (event)
{
case MIDI_META_EOT:
track->Finished = true;
break;
case MIDI_META_TEMPO:
Tempo =
(track->TrackBegin[track->TrackP+0]<<16) |
(track->TrackBegin[track->TrackP+1]<<8) |
(track->TrackBegin[track->TrackP+2]);
events[0] = delay;
events[1] = 0;
events[2] = (MEVT_TEMPO << 24) | Tempo;
events += 3;
break;
}
track->TrackP += len;
if (track->TrackP == track->MaxTrackP)
{
track->Finished = true;
}
}
else
{
track->Finished = true;
}
}
else if (event == 0xFE)
{ // Skip unknown HMI events.
event = track->TrackBegin[track->TrackP++];
CHECK_FINISHED
if (event == 0x13 || event == 0x15)
{
track->TrackP += 6;
}
else if (event == 0x12 || event == 0x14)
{
track->TrackP += 2;
}
else if (event == 0x10)
{
track->TrackP += 2;
CHECK_FINISHED
track->TrackP += track->TrackBegin[track->TrackP] + 5;
CHECK_FINISHED
}
else
{ // No idea.
track->Finished = true;
}
}
}
if (!track->Finished)
{
track->Delay = track->ReadVarLen();
}
return events;
}
//==========================================================================
//
// HMISong :: ProcessInitialMetaEvents
//
// Handle all the meta events at the start of each track.
//
//==========================================================================
void HMISong::ProcessInitialMetaEvents ()
{
TrackInfo *track;
int i;
BYTE event;
DWORD len;
for (i = 0; i < NumTracks; ++i)
{
track = &Tracks[i];
while (!track->Finished &&
track->TrackP < track->MaxTrackP - 4 &&
track->TrackBegin[track->TrackP] == 0 &&
track->TrackBegin[track->TrackP+1] == 0xFF)
{
event = track->TrackBegin[track->TrackP+2];
track->TrackP += 3;
len = track->ReadVarLen ();
if (track->TrackP + len <= track->MaxTrackP)
{
switch (event)
{
case MIDI_META_EOT:
track->Finished = true;
break;
case MIDI_META_TEMPO:
SetTempo(
(track->TrackBegin[track->TrackP+0]<<16) |
(track->TrackBegin[track->TrackP+1]<<8) |
(track->TrackBegin[track->TrackP+2])
);
break;
}
}
track->TrackP += len;
}
if (track->TrackP >= track->MaxTrackP - 4)
{
track->Finished = true;
}
}
}
//==========================================================================
//
// HMISong :: TrackInfo :: ReadVarLen
//
// Reads a variable-length SMF number.
//
//==========================================================================
DWORD HMISong::TrackInfo::ReadVarLen ()
{
DWORD time = 0, t = 0x80;
while ((t & 0x80) && TrackP < MaxTrackP)
{
t = TrackBegin[TrackP++];
time = (time << 7) | (t & 127);
}
return time;
}
//==========================================================================
//
// HMISong :: NoteOffQueue :: AddNoteOff
//
//==========================================================================
void HMISong::NoteOffQueue::AddNoteOff(DWORD delay, BYTE channel, BYTE key)
{
unsigned int i = Reserve(1);
while (i > 0 && (*this)[Parent(i)].Delay > delay)
{
(*this)[i] = (*this)[Parent(i)];
i = Parent(i);
}
(*this)[i].Delay = delay;
(*this)[i].Channel = channel;
(*this)[i].Key = key;
}
//==========================================================================
//
// HMISong :: NoteOffQueue :: Pop
//
//==========================================================================
bool HMISong::NoteOffQueue::Pop(AutoNoteOff &item)
{
item = (*this)[0];
if (TArray::Pop((*this)[0]))
{
Heapify();
return true;
}
return false;
}
//==========================================================================
//
// HMISong :: NoteOffQueue :: AdvanceTime
//
//==========================================================================
void HMISong::NoteOffQueue::AdvanceTime(DWORD time)
{
// Because the time is decreasing by the same amount for every entry,
// the heap property is maintained.
for (unsigned int i = 0; i < Size(); ++i)
{
assert((*this)[i].Delay >= time);
(*this)[i].Delay -= time;
}
}
//==========================================================================
//
// HMISong :: NoteOffQueue :: Heapify
//
//==========================================================================
void HMISong::NoteOffQueue::Heapify()
{
unsigned int i = 0;
for (;;)
{
unsigned int l = Left(i);
unsigned int r = Right(i);
unsigned int smallest = i;
if (l < Size() && (*this)[l].Delay < (*this)[i].Delay)
{
smallest = l;
}
if (r < Size() && (*this)[r].Delay < (*this)[smallest].Delay)
{
smallest = r;
}
if (smallest == i)
{
break;
}
swapvalues((*this)[i], (*this)[smallest]);
i = smallest;
}
}
//==========================================================================
//
// HMISong :: FindNextDue
//
// Scans every track for the next event to play. Returns NULL if all events
// have been consumed.
//
//==========================================================================
HMISong::TrackInfo *HMISong::FindNextDue ()
{
TrackInfo *track;
DWORD best;
int i;
if (TrackDue != FakeTrack && !TrackDue->Finished && TrackDue->Delay == 0)
{
return TrackDue;
}
// Check regular tracks.
track = NULL;
best = 0xFFFFFFFF;
for (i = 0; i < NumTracks; ++i)
{
if (Tracks[i].Enabled && !Tracks[i].Finished && Tracks[i].Delay < best)
{
best = Tracks[i].Delay;
track = &Tracks[i];
}
}
// Check automatic note-offs.
if (NoteOffs.Size() != 0 && NoteOffs[0].Delay <= best)
{
FakeTrack->Delay = NoteOffs[0].Delay;
return FakeTrack;
}
return track;
}
//==========================================================================
//
// HMISong :: SetTempo
//
// Sets the tempo from a track's initial meta events.
//
//==========================================================================
void HMISong::SetTempo(int new_tempo)
{
if (0 == MIDI->SetTempo(new_tempo))
{
Tempo = new_tempo;
}
}
//==========================================================================
//
// HMISong :: GetOPLDumper
//
//==========================================================================
MusInfo *HMISong::GetOPLDumper(const char *filename)
{
return new HMISong(this, filename, MIDI_OPL);
}
//==========================================================================
//
// HMISong :: GetWaveDumper
//
//==========================================================================
MusInfo *HMISong::GetWaveDumper(const char *filename, int rate)
{
return new HMISong(this, filename, MIDI_Timidity);
}
//==========================================================================
//
// HMISong File Dumping Constructor
//
//==========================================================================
HMISong::HMISong(const HMISong *original, const char *filename, EMIDIDevice type)
: MIDIStreamer(filename, type)
{
SongLen = original->SongLen;
MusHeader = new BYTE[original->SongLen];
memcpy(MusHeader, original->MusHeader, original->SongLen);
NumTracks = original->NumTracks;
Division = original->Division;
Tempo = InitialTempo = original->InitialTempo;
Tracks = new TrackInfo[NumTracks];
for (int i = 0; i < NumTracks; ++i)
{
TrackInfo *newtrack = &Tracks[i];
const TrackInfo *oldtrack = &original->Tracks[i];
newtrack->TrackBegin = MusHeader + (oldtrack->TrackBegin - original->MusHeader);
newtrack->TrackP = 0;
newtrack->MaxTrackP = oldtrack->MaxTrackP;
}
}

View file

@ -242,6 +242,7 @@ void MIDIStreamer::Play(bool looping, int subsong)
CheckCaps();
Precache();
IgnoreLoops = true;
// Set time division and tempo.
if (0 != MIDI->SetTimeDiv(Division) ||
@ -734,7 +735,7 @@ fill:
//
// MIDIStreamer :: FillBuffer
//
// Copies MIDI events from the SMF and puts them into a MIDI stream
// Copies MIDI events from the MIDI file and puts them into a MIDI stream
// buffer. Filling the buffer stops when the song end is encountered, the
// buffer space is used up, or the maximum time for a buffer is hit.
//
@ -829,6 +830,109 @@ int MIDIStreamer::FillBuffer(int buffer_num, int max_events, DWORD max_time)
return SONG_MORE;
}
//==========================================================================
//
// MIDIStreamer :: Precache
//
// Generates a list of instruments this song uses them and passes them to
// the MIDI device for precaching. The default implementation here pretends
// to play the song and watches for program change events on normal channels
// and note on events on channel 10.
//
//==========================================================================
void MIDIStreamer::Precache()
{
BYTE found_instruments[256] = { 0, };
BYTE found_banks[256] = { 0, };
bool multiple_banks = false;
IgnoreLoops = true;
DoRestart();
found_banks[0] = true; // Bank 0 is always used.
found_banks[128] = true;
// Simulate playback to pick out used instruments.
while (!CheckDone())
{
DWORD *event_end = MakeEvents(Events[0], &Events[0][MAX_EVENTS*3], 1000000*600);
for (DWORD *event = Events[0]; event < event_end; )
{
if (MEVT_EVENTTYPE(event[2]) == 0)
{
int command = (event[2] & 0x70);
int channel = (event[2] & 0x0f);
int data1 = (event[2] >> 8) & 0x7f;
int data2 = (event[2] >> 16) & 0x7f;
if (channel != 9 && command == (MIDI_PRGMCHANGE & 0x70))
{
found_instruments[data1] = true;
}
else if (channel == 9 && command == (MIDI_PRGMCHANGE & 0x70) && data1 != 0)
{ // On a percussion channel, program change also serves as bank select.
multiple_banks = true;
found_banks[data1 | 128] = true;
}
else if (channel == 9 && command == (MIDI_NOTEON & 0x70) && data2 != 0)
{
found_instruments[data1 | 128] = true;
}
else if (command == (MIDI_CTRLCHANGE & 0x70) && data1 == 0 && data2 != 0)
{
multiple_banks = true;
if (channel == 9)
{
found_banks[data2 | 128] = true;
}
else
{
found_banks[data2] = true;
}
}
}
// Advance to next event
if (event[2] < 0x80000000)
{ // short message
event += 3;
}
else
{ // long message
event += 3 + ((MEVT_EVENTPARM(event[2]) + 3) >> 2);
}
}
}
DoRestart();
// Now pack everything into a contiguous region for the PrecacheInstruments call().
TArray<WORD> packed;
for (int i = 0; i < 256; ++i)
{
if (found_instruments[i])
{
WORD packnum = (i & 127) | ((i & 128) << 7);
if (!multiple_banks)
{
packed.Push(packnum);
}
else
{ // In order to avoid having to multiplex tracks in a type 1 file,
// precache every used instrument in every used bank, even if not
// all combinations are actually used.
for (int j = 0; j < 128; ++j)
{
if (found_banks[j + (i & 128)])
{
packed.Push(packnum | (j << 7));
}
}
}
}
}
MIDI->PrecacheInstruments(&packed[0], packed.Size());
}
//==========================================================================
//
// MIDIStreamer :: GetStats

View file

@ -86,11 +86,11 @@ struct MIDISong2::TrackInfo
// PRIVATE DATA DEFINITIONS ------------------------------------------------
static BYTE EventLengths[7] = { 2, 2, 2, 2, 1, 1, 2 };
static BYTE CommonLengths[15] = { 0, 1, 2, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 };
// PUBLIC DATA DEFINITIONS -------------------------------------------------
char MIDI_EventLengths[7] = { 2, 2, 2, 2, 1, 1, 2 };
char MIDI_CommonLengths[15] = { 0, 1, 2, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 };
// CODE --------------------------------------------------------------------
//==========================================================================
@ -389,10 +389,10 @@ DWORD *MIDISong2::SendCommand (DWORD *events, TrackInfo *track, DWORD delay)
// Normal short message
if ((event & 0xF0) == 0xF0)
{
if (CommonLengths[event & 15] > 0)
if (MIDI_CommonLengths[event & 15] > 0)
{
data1 = track->TrackBegin[track->TrackP++];
if (CommonLengths[event & 15] > 1)
if (MIDI_CommonLengths[event & 15] > 1)
{
data2 = track->TrackBegin[track->TrackP++];
}
@ -411,7 +411,7 @@ DWORD *MIDISong2::SendCommand (DWORD *events, TrackInfo *track, DWORD delay)
CHECK_FINISHED
if (EventLengths[(event&0x70)>>4] == 2)
if (MIDI_EventLengths[(event&0x70)>>4] == 2)
{
data2 = track->TrackBegin[track->TrackP++];
}
@ -500,10 +500,13 @@ DWORD *MIDISong2::SendCommand (DWORD *events, TrackInfo *track, DWORD delay)
break;
case 116: // EMIDI Loop Begin
track->LoopBegin = track->TrackP;
track->LoopDelay = 0;
track->LoopCount = data2;
track->LoopFinished = track->Finished;
if (!IgnoreLoops)
{
track->LoopBegin = track->TrackP;
track->LoopDelay = 0;
track->LoopCount = data2;
track->LoopFinished = track->Finished;
}
event = MIDI_META;
break;
@ -529,12 +532,15 @@ DWORD *MIDISong2::SendCommand (DWORD *events, TrackInfo *track, DWORD delay)
break;
case 118: // EMIDI Global Loop Begin
for (i = 0; i < NumTracks; ++i)
if (!IgnoreLoops)
{
Tracks[i].LoopBegin = Tracks[i].TrackP;
Tracks[i].LoopDelay = Tracks[i].Delay;
Tracks[i].LoopCount = data2;
Tracks[i].LoopFinished = Tracks[i].Finished;
for (i = 0; i < NumTracks; ++i)
{
Tracks[i].LoopBegin = Tracks[i].TrackP;
Tracks[i].LoopDelay = Tracks[i].Delay;
Tracks[i].LoopCount = data2;
Tracks[i].LoopFinished = Tracks[i].Finished;
}
}
event = MIDI_META;
break;
@ -709,7 +715,7 @@ DWORD MIDISong2::TrackInfo::ReadVarLen ()
//==========================================================================
//
// MIDISong2 :: TrackInfo :: FindNextDue
// MIDISong2 :: FindNextDue
//
// Scans every track for the next event to play. Returns NULL if all events
// have been consumed.
@ -776,135 +782,6 @@ void MIDISong2::SetTempo(int new_tempo)
}
}
//==========================================================================
//
// MIDISong2 :: Precache
//
// Scans each track for program change events on normal channels and note on
// events on channel 10. Does not care about bank selects, since they're
// unlikely to appear in a song aimed at Doom.
//
//==========================================================================
void MIDISong2::Precache()
{
// This array keeps track of instruments that are used. The first 128
// entries are for melodic instruments. The second 128 are for
// percussion.
BYTE found_instruments[256] = { 0, };
BYTE found_banks[256] = { 0, };
bool multiple_banks = false;
int i, j;
DoRestart();
found_banks[0] = true; // Bank 0 is always used.
found_banks[128] = true;
for (i = 0; i < NumTracks; ++i)
{
TrackInfo *track = &Tracks[i];
BYTE running_status = 0;
BYTE ev, data1, data2, command, channel;
int len;
data2 = 0; // Silence, GCC
while (track->TrackP < track->MaxTrackP)
{
ev = track->TrackBegin[track->TrackP++];
command = ev & 0xF0;
if (ev == MIDI_META)
{
track->TrackP++;
len = track->ReadVarLen();
track->TrackP += len;
}
else if (ev == MIDI_SYSEX || ev == MIDI_SYSEXEND)
{
len = track->ReadVarLen();
track->TrackP += len;
}
else if (command == 0xF0)
{
track->TrackP += CommonLengths[ev & 0x0F];
}
else
{
if ((ev & 0x80) == 0)
{ // Use running status.
data1 = ev;
ev = running_status;
}
else
{ // Store new running status.
running_status = ev;
data1 = track->TrackBegin[track->TrackP++];
}
command = ev & 0x70;
channel = ev & 0x0F;
if (EventLengths[command >> 4] == 2)
{
data2 = track->TrackBegin[track->TrackP++];
}
if (channel != 9 && command == (MIDI_PRGMCHANGE & 0x70))
{
found_instruments[data1 & 127] = true;
}
else if (channel == 9 && command == (MIDI_PRGMCHANGE & 0x70) && data1 != 0)
{ // On a percussion channel, program change also serves as bank select.
multiple_banks = true;
found_banks[data1 | 128] = true;
}
else if (channel == 9 && command == (MIDI_NOTEON & 0x70) && data2 != 0)
{
found_instruments[data1 | 128] = true;
}
else if (command == (MIDI_CTRLCHANGE & 0x70) && data1 == 0 && data2 != 0)
{
multiple_banks = true;
if (channel == 9)
{
found_banks[data2 | 128] = true;
}
else
{
found_banks[data2 & 127] = true;
}
}
}
track->ReadVarLen(); // Skip delay.
}
}
DoRestart();
// Now pack everything into a contiguous region for the PrecacheInstruments call().
TArray<WORD> packed;
for (i = 0; i < 256; ++i)
{
if (found_instruments[i])
{
WORD packnum = (i & 127) | ((i & 128) << 7);
if (!multiple_banks)
{
packed.Push(packnum);
}
else
{ // In order to avoid having to multiplex tracks in a type 1 file,
// precache every used instrument in every used bank, even if not
// all combinations are actually used.
for (j = 0; j < 128; ++j)
{
if (found_banks[j + (i & 128)])
{
packed.Push(packnum | (j << 7));
}
}
}
}
}
MIDI->PrecacheInstruments(&packed[0], packed.Size());
}
//==========================================================================
//
// MIDISong2 :: GetOPLDumper

View file

@ -5462,11 +5462,11 @@
>
</File>
<File
RelativePath=".\src\sound\music_midi_base.cpp"
RelativePath=".\src\sound\music_hmi_midiout.cpp"
>
</File>
<File
RelativePath="src\sound\music_midi_midiout.cpp"
RelativePath=".\src\sound\music_midi_base.cpp"
>
</File>
<File
@ -5493,6 +5493,10 @@
RelativePath=".\src\oplsynth\music_opldumper_mididevice.cpp"
>
</File>
<File
RelativePath=".\src\sound\music_smf_midiout.cpp"
>
</File>
<File
RelativePath=".\src\sound\music_softsynth_mididevice.cpp"
>