Add AABB tree collision structure to the doom level mesh for threadsafe trace calls for the sprite light

This commit is contained in:
Magnus Norddahl 2022-09-25 21:58:54 +02:00 committed by Christoph Oelckers
parent 34a1ecdee1
commit 1b81e40842
7 changed files with 1018 additions and 5 deletions

View file

@ -1101,6 +1101,7 @@ set (PCH_SOURCES
common/rendering/hwrenderer/data/hw_aabbtree.cpp
common/rendering/hwrenderer/data/hw_shadowmap.cpp
common/rendering/hwrenderer/data/hw_shaderpatcher.cpp
common/rendering/hwrenderer/data/hw_collision.cpp
common/rendering/hwrenderer/postprocessing/hw_postprocessshader.cpp
common/rendering/hwrenderer/postprocessing/hw_postprocess.cpp
common/rendering/hwrenderer/postprocessing/hw_postprocess_cvars.cpp

View file

@ -0,0 +1,819 @@
/*
** Level mesh collision detection
** Copyright (c) 2018 Magnus Norddahl
**
** This software is provided 'as-is', without any express or implied
** warranty. In no event will the authors be held liable for any damages
** arising from the use of this software.
**
** Permission is granted to anyone to use this software for any purpose,
** including commercial applications, and to alter it and redistribute it
** freely, subject to the following restrictions:
**
** 1. The origin of this software must not be misrepresented; you must not
** claim that you wrote the original software. If you use this software
** in a product, an acknowledgment in the product documentation would be
** appreciated but is not required.
** 2. Altered source versions must be plainly marked as such, and must not be
** misrepresented as being the original software.
** 3. This notice may not be removed or altered from any source distribution.
**
*/
#include "hw_collision.h"
#include <algorithm>
#include <functional>
#include <cfloat>
#ifndef NO_SSE
#include <immintrin.h>
#endif
TriangleMeshShape::TriangleMeshShape(const FVector3 *vertices, int num_vertices, const unsigned int *elements, int num_elements)
: vertices(vertices), num_vertices(num_vertices), elements(elements), num_elements(num_elements)
{
int num_triangles = num_elements / 3;
if (num_triangles <= 0)
return;
std::vector<int> triangles;
std::vector<FVector3> centroids;
triangles.reserve(num_triangles);
centroids.reserve(num_triangles);
for (int i = 0; i < num_triangles; i++)
{
triangles.push_back(i);
int element_index = i * 3;
FVector3 centroid = (vertices[elements[element_index + 0]] + vertices[elements[element_index + 1]] + vertices[elements[element_index + 2]]) * (1.0f / 3.0f);
centroids.push_back(centroid);
}
std::vector<int> work_buffer(num_triangles * 2);
root = subdivide(&triangles[0], (int)triangles.size(), &centroids[0], &work_buffer[0]);
}
float TriangleMeshShape::sweep(TriangleMeshShape *shape1, SphereShape *shape2, const FVector3 &target)
{
return sweep(shape1, shape2, shape1->root, target);
}
bool TriangleMeshShape::find_any_hit(TriangleMeshShape *shape1, TriangleMeshShape *shape2)
{
return find_any_hit(shape1, shape2, shape1->root, shape2->root);
}
bool TriangleMeshShape::find_any_hit(TriangleMeshShape *shape1, SphereShape *shape2)
{
return find_any_hit(shape1, shape2, shape1->root);
}
std::vector<int> TriangleMeshShape::find_all_hits(TriangleMeshShape* shape1, SphereShape* shape2)
{
std::vector<int> hits;
find_all_hits(shape1, shape2, shape1->root, hits);
return hits;
}
bool TriangleMeshShape::find_any_hit(TriangleMeshShape *shape, const FVector3 &ray_start, const FVector3 &ray_end)
{
return find_any_hit(shape, RayBBox(ray_start, ray_end), shape->root);
}
TraceHit TriangleMeshShape::find_first_hit(TriangleMeshShape *shape, const FVector3 &ray_start, const FVector3 &ray_end)
{
TraceHit hit;
// Perform segmented tracing to keep the ray AABB box smaller
FVector3 ray_dir = ray_end - ray_start;
float tracedist = (float)ray_dir.Length();
float segmentlen = std::max(100.0f, tracedist / 20.0f);
for (float t = 0.0f; t < tracedist; t += segmentlen)
{
float segstart = t / tracedist;
float segend = std::min(t + segmentlen, tracedist) / tracedist;
find_first_hit(shape, RayBBox(ray_start + ray_dir * segstart, ray_start + ray_dir * segend), shape->root, &hit);
if (hit.fraction < 1.0f)
{
hit.fraction = segstart * (1.0f - hit.fraction) + segend * hit.fraction;
break;
}
}
return hit;
}
float TriangleMeshShape::sweep(TriangleMeshShape *shape1, SphereShape *shape2, int a, const FVector3 &target)
{
if (sweep_overlap_bv_sphere(shape1, shape2, a, target))
{
if (shape1->is_leaf(a))
{
return sweep_intersect_triangle_sphere(shape1, shape2, a, target);
}
else
{
return std::min(sweep(shape1, shape2, shape1->nodes[a].left, target), sweep(shape1, shape2, shape1->nodes[a].right, target));
}
}
return 1.0f;
}
bool TriangleMeshShape::find_any_hit(TriangleMeshShape *shape1, SphereShape *shape2, int a)
{
if (overlap_bv_sphere(shape1, shape2, a))
{
if (shape1->is_leaf(a))
{
return overlap_triangle_sphere(shape1, shape2, a);
}
else
{
if (find_any_hit(shape1, shape2, shape1->nodes[a].left))
return true;
else
return find_any_hit(shape1, shape2, shape1->nodes[a].right);
}
}
return false;
}
void TriangleMeshShape::find_all_hits(TriangleMeshShape* shape1, SphereShape* shape2, int a, std::vector<int>& hits)
{
if (overlap_bv_sphere(shape1, shape2, a))
{
if (shape1->is_leaf(a))
{
if (overlap_triangle_sphere(shape1, shape2, a))
{
hits.push_back(shape1->nodes[a].element_index / 3);
}
}
else
{
find_all_hits(shape1, shape2, shape1->nodes[a].left, hits);
find_all_hits(shape1, shape2, shape1->nodes[a].right, hits);
}
}
}
bool TriangleMeshShape::find_any_hit(TriangleMeshShape *shape1, TriangleMeshShape *shape2, int a, int b)
{
bool leaf_a = shape1->is_leaf(a);
bool leaf_b = shape2->is_leaf(b);
if (leaf_a && leaf_b)
{
return overlap_triangle_triangle(shape1, shape2, a, b);
}
else if (!leaf_a && !leaf_b)
{
if (overlap_bv(shape1, shape2, a, b))
{
if (shape1->volume(a) > shape2->volume(b))
{
if (find_any_hit(shape1, shape2, shape1->nodes[a].left, b))
return true;
else
return find_any_hit(shape1, shape2, shape1->nodes[a].right, b);
}
else
{
if (find_any_hit(shape1, shape2, a, shape2->nodes[b].left))
return true;
else
return find_any_hit(shape1, shape2, a, shape2->nodes[b].right);
}
}
return false;
}
else if (leaf_a)
{
if (overlap_bv_triangle(shape2, shape1, b, a))
{
if (find_any_hit(shape1, shape2, a, shape2->nodes[b].left))
return true;
else
return find_any_hit(shape1, shape2, a, shape2->nodes[b].right);
}
return false;
}
else
{
if (overlap_bv_triangle(shape1, shape2, a, b))
{
if (find_any_hit(shape1, shape2, shape1->nodes[a].left, b))
return true;
else
return find_any_hit(shape1, shape2, shape1->nodes[a].right, b);
}
return false;
}
}
bool TriangleMeshShape::find_any_hit(TriangleMeshShape *shape, const RayBBox &ray, int a)
{
if (overlap_bv_ray(shape, ray, a))
{
if (shape->is_leaf(a))
{
float baryB, baryC;
return intersect_triangle_ray(shape, ray, a, baryB, baryC) < 1.0f;
}
else
{
if (find_any_hit(shape, ray, shape->nodes[a].left))
return true;
else
return find_any_hit(shape, ray, shape->nodes[a].right);
}
}
return false;
}
void TriangleMeshShape::find_first_hit(TriangleMeshShape *shape, const RayBBox &ray, int a, TraceHit *hit)
{
if (overlap_bv_ray(shape, ray, a))
{
if (shape->is_leaf(a))
{
float baryB, baryC;
float t = intersect_triangle_ray(shape, ray, a, baryB, baryC);
if (t < hit->fraction)
{
hit->fraction = t;
hit->triangle = shape->nodes[a].element_index / 3;
hit->b = baryB;
hit->c = baryC;
}
}
else
{
find_first_hit(shape, ray, shape->nodes[a].left, hit);
find_first_hit(shape, ray, shape->nodes[a].right, hit);
}
}
}
bool TriangleMeshShape::overlap_bv_ray(TriangleMeshShape *shape, const RayBBox &ray, int a)
{
return IntersectionTest::ray_aabb(ray, shape->nodes[a].aabb) == IntersectionTest::overlap;
}
float TriangleMeshShape::intersect_triangle_ray(TriangleMeshShape *shape, const RayBBox &ray, int a, float &barycentricB, float &barycentricC)
{
const int start_element = shape->nodes[a].element_index;
FVector3 p[3] =
{
shape->vertices[shape->elements[start_element]],
shape->vertices[shape->elements[start_element + 1]],
shape->vertices[shape->elements[start_element + 2]]
};
// MoellerTrumbore ray-triangle intersection algorithm:
FVector3 D = ray.end - ray.start;
// Find vectors for two edges sharing p[0]
FVector3 e1 = p[1] - p[0];
FVector3 e2 = p[2] - p[0];
// Begin calculating determinant - also used to calculate u parameter
FVector3 P = D ^ e2; // cross(D, e2);
float det = e1 | P; // dot(e1, P);
// Backface check
//if (det < 0.0f)
// return 1.0f;
// If determinant is near zero, ray lies in plane of triangle
if (det > -FLT_EPSILON && det < FLT_EPSILON)
return 1.0f;
float inv_det = 1.0f / det;
// Calculate distance from p[0] to ray origin
FVector3 T = ray.start - p[0];
// Calculate u parameter and test bound
float u = (T | P) * inv_det; // dot(T, P) * inv_det;
// Check if the intersection lies outside of the triangle
if (u < 0.f || u > 1.f)
return 1.0f;
// Prepare to test v parameter
FVector3 Q = T ^ e1; // cross(T, e1);
// Calculate V parameter and test bound
float v = (D | Q) * inv_det; // dot(D, Q) * inv_det;
// The intersection lies outside of the triangle
if (v < 0.f || u + v > 1.f)
return 1.0f;
float t = (e2 | Q) * inv_det; //dot(e2, Q) * inv_det;
if (t <= FLT_EPSILON)
return 1.0f;
// Return hit location on triangle in barycentric coordinates
barycentricB = u;
barycentricC = v;
return t;
}
bool TriangleMeshShape::sweep_overlap_bv_sphere(TriangleMeshShape *shape1, SphereShape *shape2, int a, const FVector3 &target)
{
// Convert to ray test by expanding the AABB:
CollisionBBox aabb = shape1->nodes[a].aabb;
aabb.Extents.X += shape2->radius;
aabb.Extents.Y += shape2->radius;
aabb.Extents.Z += shape2->radius;
return IntersectionTest::ray_aabb(RayBBox(shape2->center, target), aabb) == IntersectionTest::overlap;
}
float TriangleMeshShape::sweep_intersect_triangle_sphere(TriangleMeshShape *shape1, SphereShape *shape2, int a, const FVector3 &target)
{
const int start_element = shape1->nodes[a].element_index;
FVector3 p[3] =
{
shape1->vertices[shape1->elements[start_element]],
shape1->vertices[shape1->elements[start_element + 1]],
shape1->vertices[shape1->elements[start_element + 2]]
};
FVector3 c = shape2->center;
FVector3 e = target;
float r = shape2->radius;
// Dynamic intersection test between a ray and the minkowski sum of the sphere and polygon:
FVector3 n = ((p[1] - p[0]) ^ (p[2] - p[0])).Unit(); // normalize(cross(p[1] - p[0], p[2] - p[0]));
FVector4 plane(n, -(n | p[0])); // plane(n, -dot(n, p[0]));
// Step 1: Plane intersect test
float sc = (plane | FVector4(c, 1.0f)); // dot(plane, FVector4(c, 1.0f));
float se = (plane | FVector4(e, 1.0f)); // dot(plane, FVector4(e, 1.0f));
bool same_side = sc * se > 0.0f;
if (same_side && std::abs(sc) > r && std::abs(se) > r)
return 1.0f;
// Step 1a: Check if point is in polygon (using crossing ray test in 2d)
{
float t = (sc - r) / (sc - se);
FVector3 vt = c + (e - c) * t;
FVector3 u0 = p[1] - p[0];
FVector3 u1 = p[2] - p[0];
FVector2 v_2d[3] =
{
FVector2(0.0f, 0.0f),
FVector2((u0 | u0), 0.0f), // FVector2(dot(u0, u0), 0.0f),
FVector2(0.0f, (u1 | u1)) // FVector2(0.0f, dot(u1, u1))
};
FVector2 point((u0 | vt), (u1 | vt)); // point(dot(u0, vt), dot(u1, vt));
bool inside = false;
FVector2 e0 = v_2d[2];
bool y0 = e0.Y >= point.Y;
for (int i = 0; i < 3; i++)
{
FVector2 e1 = v_2d[i];
bool y1 = e1.Y >= point.Y;
if (y0 != y1 && ((e1.Y - point.Y) * (e0.X - e1.X) >= (e1.X - point.X) * (e0.Y - e1.Y)) == y1)
inside = !inside;
y0 = y1;
e0 = e1;
}
if (inside)
return t;
}
// Step 2: Edge intersect test
FVector3 ke[3] =
{
p[1] - p[0],
p[2] - p[1],
p[0] - p[2],
};
FVector3 kg[3] =
{
p[0] - c,
p[1] - c,
p[2] - c,
};
FVector3 ks = e - c;
float kgg[3];
float kgs[3];
float kss[3];
for (int i = 0; i < 3; i++)
{
float kee = (ke[i] | ke[i]); // dot(ke[i], ke[i]);
float keg = (ke[i] | kg[i]); // dot(ke[i], kg[i]);
float kes = (ke[i] | ks); // dot(ke[i], ks);
kgg[i] = (kg[i] | kg[i]); // dot(kg[i], kg[i]);
kgs[i] = (kg[i] | ks); // dot(kg[i], ks);
kss[i] = (ks | ks); // dot(ks, ks);
float aa = kee * kss[i] - kes * kes;
float bb = 2 * (keg * kes - kee * kgs[i]);
float cc = kee * (kgg[i] - r * r) - keg * keg;
float sign = (bb >= 0.0f) ? 1.0f : -1.0f;
float q = -0.5f * (bb + sign * std::sqrt(bb * bb - 4 * aa * cc));
float t0 = q / aa;
float t1 = cc / q;
float t;
if (t0 < 0.0f || t0 > 1.0f)
t = t1;
else if (t1 < 0.0f || t1 > 1.0f)
t = t0;
else
t = std::min(t0, t1);
if (t >= 0.0f && t <= 1.0f)
{
FVector3 ct = c + ks * t;
float d = ((ct - p[i]) | ke[i]); // dot(ct - p[i], ke[i]);
if (d >= 0.0f && d <= kee)
return t;
}
}
// Step 3: Point intersect test
for (int i = 0; i < 3; i++)
{
float aa = kss[i];
float bb = -2.0f * kgs[i];
float cc = kgg[i] - r * r;
float sign = (bb >= 0.0f) ? 1.0f : -1.0f;
float q = -0.5f * (bb + sign * std::sqrt(bb * bb - 4 * aa * cc));
float t0 = q / aa;
float t1 = cc / q;
float t;
if (t0 < 0.0f || t0 > 1.0f)
t = t1;
else if (t1 < 0.0f || t1 > 1.0f)
t = t0;
else
t = std::min(t0, t1);
if (t >= 0.0f && t <= 1.0f)
return t;
}
return 1.0f;
}
bool TriangleMeshShape::overlap_bv(TriangleMeshShape *shape1, TriangleMeshShape *shape2, int a, int b)
{
return IntersectionTest::aabb(shape1->nodes[a].aabb, shape2->nodes[b].aabb) == IntersectionTest::overlap;
}
bool TriangleMeshShape::overlap_bv_triangle(TriangleMeshShape *shape1, TriangleMeshShape *shape2, int a, int b)
{
return false;
}
bool TriangleMeshShape::overlap_bv_sphere(TriangleMeshShape *shape1, SphereShape *shape2, int a)
{
return IntersectionTest::sphere_aabb(shape2->center, shape2->radius, shape1->nodes[a].aabb) == IntersectionTest::overlap;
}
bool TriangleMeshShape::overlap_triangle_triangle(TriangleMeshShape *shape1, TriangleMeshShape *shape2, int a, int b)
{
return false;
}
bool TriangleMeshShape::overlap_triangle_sphere(TriangleMeshShape *shape1, SphereShape *shape2, int shape1_node_index)
{
// http://realtimecollisiondetection.net/blog/?p=103
int element_index = shape1->nodes[shape1_node_index].element_index;
FVector3 P = shape2->center;
FVector3 A = shape1->vertices[shape1->elements[element_index]] - P;
FVector3 B = shape1->vertices[shape1->elements[element_index + 1]] - P;
FVector3 C = shape1->vertices[shape1->elements[element_index + 2]] - P;
float r = shape2->radius;
float rr = r * r;
// Testing if sphere lies outside the triangle plane
FVector3 V = ((B - A) ^ (C - A)); // cross(B - A, C - A);
float d = A | V; // dot(A, V);
float e = V | V; // dot(V, V);
bool sep1 = d * d > rr * e;
// Testing if sphere lies outside a triangle vertex
float aa = A | A; // dot(A, A);
float ab = A | B; // dot(A, B);
float ac = A | C; // dot(A, C);
float bb = B | B; // dot(B, B);
float bc = B | C; // dot(B, C);
float cc = C | C; // dot(C, C);
bool sep2 = (aa > rr) && (ab > aa) && (ac > aa);
bool sep3 = (bb > rr) && (ab > bb) && (bc > bb);
bool sep4 = (cc > rr) && (ac > cc) && (bc > cc);
// Testing if sphere lies outside a triangle edge
FVector3 AB = B - A;
FVector3 BC = C - B;
FVector3 CA = A - C;
float d1 = ab - aa;
float d2 = bc - bb;
float d3 = ac - cc;
float e1 = (AB | AB); // dot(AB, AB)
float e2 = (BC | BC); // dot(BC, BC)
float e3 = (CA | CA); // dot(CA, CA)
FVector3 Q1 = A * e1 - AB * d1;
FVector3 Q2 = B * e2 - BC * d2;
FVector3 Q3 = C * e3 - CA * d3;
FVector3 QC = C * e1 - Q1;
FVector3 QA = A * e2 - Q2;
FVector3 QB = B * e3 - Q3;
bool sep5 = ((Q1 | Q1) > rr * e1 * e1) && ((Q1 | QC) > 0.0f); // (dot(Q1, Q1) > rr * e1 * e1) && (dot(Q1, QC) > 0.0f);
bool sep6 = ((Q2 | Q2) > rr * e2 * e2) && ((Q2 | QA) > 0.0f); // (dot(Q2, Q2) > rr * e2 * e2) && (dot(Q2, QA) > 0.0f);
bool sep7 = ((Q3 | Q3) > rr * e3 * e3) && ((Q3 | QB) > 0.0f); // (dot(Q3, Q3) > rr * e3 * e3) && (dot(Q3, QB) > 0.0f);
bool separated = sep1 || sep2 || sep3 || sep4 || sep5 || sep6 || sep7;
return (!separated);
}
bool TriangleMeshShape::is_leaf(int node_index)
{
return nodes[node_index].element_index != -1;
}
float TriangleMeshShape::volume(int node_index)
{
const FVector3 &extents = nodes[node_index].aabb.Extents;
return extents.X * extents.Y * extents.Z;
}
int TriangleMeshShape::get_min_depth() const
{
std::function<int(int, int)> visit;
visit = [&](int level, int node_index) -> int {
const Node &node = nodes[node_index];
if (node.element_index == -1)
return std::min(visit(level + 1, node.left), visit(level + 1, node.right));
else
return level;
};
return visit(1, root);
}
int TriangleMeshShape::get_max_depth() const
{
std::function<int(int, int)> visit;
visit = [&](int level, int node_index) -> int {
const Node &node = nodes[node_index];
if (node.element_index == -1)
return std::max(visit(level + 1, node.left), visit(level + 1, node.right));
else
return level;
};
return visit(1, root);
}
float TriangleMeshShape::get_average_depth() const
{
std::function<float(int, int)> visit;
visit = [&](int level, int node_index) -> float {
const Node &node = nodes[node_index];
if (node.element_index == -1)
return visit(level + 1, node.left) + visit(level + 1, node.right);
else
return (float)level;
};
float depth_sum = visit(1, root);
int leaf_count = (num_elements / 3);
return depth_sum / leaf_count;
}
float TriangleMeshShape::get_balanced_depth() const
{
return std::log2((float)(num_elements / 3));
}
int TriangleMeshShape::subdivide(int *triangles, int num_triangles, const FVector3 *centroids, int *work_buffer)
{
if (num_triangles == 0)
return -1;
// Find bounding box and median of the triangle centroids
FVector3 median;
FVector3 min, max;
min = vertices[elements[triangles[0] * 3]];
max = min;
for (int i = 0; i < num_triangles; i++)
{
int element_index = triangles[i] * 3;
for (int j = 0; j < 3; j++)
{
const FVector3 &vertex = vertices[elements[element_index + j]];
min.X = std::min(min.X, vertex.X);
min.Y = std::min(min.Y, vertex.Y);
min.Z = std::min(min.Z, vertex.Z);
max.X = std::max(max.X, vertex.X);
max.Y = std::max(max.Y, vertex.Y);
max.Z = std::max(max.Z, vertex.Z);
}
median += centroids[triangles[i]];
}
median /= (float)num_triangles;
if (num_triangles == 1) // Leaf node
{
nodes.push_back(Node(min, max, triangles[0] * 3));
return (int)nodes.size() - 1;
}
// Find the longest axis
float axis_lengths[3] =
{
max.X - min.X,
max.Y - min.Y,
max.Z - min.Z
};
int axis_order[3] = { 0, 1, 2 };
std::sort(axis_order, axis_order + 3, [&](int a, int b) { return axis_lengths[a] > axis_lengths[b]; });
// Try split at longest axis, then if that fails the next longest, and then the remaining one
int left_count, right_count;
FVector3 axis;
for (int attempt = 0; attempt < 3; attempt++)
{
// Find the split plane for axis
switch (axis_order[attempt])
{
default:
case 0: axis = FVector3(1.0f, 0.0f, 0.0f); break;
case 1: axis = FVector3(0.0f, 1.0f, 0.0f); break;
case 2: axis = FVector3(0.0f, 0.0f, 1.0f); break;
}
FVector4 plane(axis, -(median | axis)); // plane(axis, -dot(median, axis));
// Split triangles into two
left_count = 0;
right_count = 0;
for (int i = 0; i < num_triangles; i++)
{
int triangle = triangles[i];
int element_index = triangle * 3;
float side = (FVector4(centroids[triangles[i]], 1.0f) | plane); // dot(FVector4(centroids[triangles[i]], 1.0f), plane);
if (side >= 0.0f)
{
work_buffer[left_count] = triangle;
left_count++;
}
else
{
work_buffer[num_triangles + right_count] = triangle;
right_count++;
}
}
if (left_count != 0 && right_count != 0)
break;
}
// Check if something went wrong when splitting and do a random split instead
if (left_count == 0 || right_count == 0)
{
left_count = num_triangles / 2;
right_count = num_triangles - left_count;
}
else
{
// Move result back into triangles list:
for (int i = 0; i < left_count; i++)
triangles[i] = work_buffer[i];
for (int i = 0; i < right_count; i++)
triangles[i + left_count] = work_buffer[num_triangles + i];
}
// Create child nodes:
int left_index = -1;
int right_index = -1;
if (left_count > 0)
left_index = subdivide(triangles, left_count, centroids, work_buffer);
if (right_count > 0)
right_index = subdivide(triangles + left_count, right_count, centroids, work_buffer);
nodes.push_back(Node(min, max, left_index, right_index));
return (int)nodes.size() - 1;
}
/////////////////////////////////////////////////////////////////////////////
IntersectionTest::OverlapResult IntersectionTest::sphere_aabb(const FVector3 &center, float radius, const CollisionBBox &aabb)
{
FVector3 a = aabb.min - center;
FVector3 b = center - aabb.max;
a.X = std::max(a.X, 0.0f);
a.Y = std::max(a.Y, 0.0f);
a.Z = std::max(a.Z, 0.0f);
b.X = std::max(b.X, 0.0f);
b.Y = std::max(b.Y, 0.0f);
b.Z = std::max(b.Z, 0.0f);
FVector3 e = a + b;
float d = (e | e); // dot(e, e);
if (d > radius * radius)
return disjoint;
else
return overlap;
}
IntersectionTest::OverlapResult IntersectionTest::aabb(const CollisionBBox& a, const CollisionBBox& b)
{
if (a.min.X > b.max.X || b.min.X > a.max.X ||
a.min.Y > b.max.Y || b.min.Y > a.max.Y ||
a.min.Z > b.max.Z || b.min.Z > a.max.Z)
{
return disjoint;
}
else
{
return overlap;
}
}
static const uint32_t clearsignbitmask[] = { 0x7fffffff, 0x7fffffff, 0x7fffffff, 0x7fffffff };
IntersectionTest::OverlapResult IntersectionTest::ray_aabb(const RayBBox &ray, const CollisionBBox &aabb)
{
#ifndef NO_SSE
__m128 v = _mm_loadu_ps(&ray.v.X);
__m128 w = _mm_loadu_ps(&ray.w.X);
__m128 h = _mm_loadu_ps(&aabb.Extents.X);
__m128 c = _mm_sub_ps(_mm_loadu_ps(&ray.c.X), _mm_loadu_ps(&aabb.Center.X));
__m128 clearsignbit = _mm_loadu_ps(reinterpret_cast<const float*>(clearsignbitmask));
__m128 abs_c = _mm_and_ps(c, clearsignbit);
int mask = _mm_movemask_ps(_mm_cmpgt_ps(abs_c, _mm_add_ps(v, h)));
if (mask & 7)
return disjoint;
__m128 c1 = _mm_shuffle_ps(c, c, _MM_SHUFFLE(3, 0, 0, 1)); // c.Y, c.X, c.X
__m128 c2 = _mm_shuffle_ps(c, c, _MM_SHUFFLE(3, 1, 2, 2)); // c.Z, c.Z, c.Y
__m128 w1 = _mm_shuffle_ps(w, w, _MM_SHUFFLE(3, 1, 2, 2)); // w.Z, w.Z, w.Y
__m128 w2 = _mm_shuffle_ps(w, w, _MM_SHUFFLE(3, 0, 0, 1)); // w.Y, w.X, w.X
__m128 lhs = _mm_and_ps(_mm_sub_ps(_mm_mul_ps(c1, w1), _mm_mul_ps(c2, w2)), clearsignbit);
__m128 h1 = _mm_shuffle_ps(h, h, _MM_SHUFFLE(3, 0, 0, 1)); // h.Y, h.X, h.X
__m128 h2 = _mm_shuffle_ps(h, h, _MM_SHUFFLE(3, 1, 2, 2)); // h.Z, h.Z, h.Y
__m128 v1 = _mm_shuffle_ps(v, v, _MM_SHUFFLE(3, 1, 2, 2)); // v.Z, v.Z, v.Y
__m128 v2 = _mm_shuffle_ps(v, v, _MM_SHUFFLE(3, 0, 0, 1)); // v.Y, v.X, v.X
__m128 rhs = _mm_add_ps(_mm_mul_ps(h1, v1), _mm_mul_ps(h2, v2));
mask = _mm_movemask_ps(_mm_cmpgt_ps(lhs, rhs));
return (mask & 7) ? disjoint : overlap;
#else
const FVector3 &v = ray.v;
const FVector3 &w = ray.w;
const FVector3 &h = aabb.Extents;
auto c = ray.c - aabb.Center;
if (std::abs(c.X) > v.X + h.X || std::abs(c.Y) > v.Y + h.Y || std::abs(c.Z) > v.Z + h.Z)
return disjoint;
if (std::abs(c.Y * w.Z - c.Z * w.Y) > h.Y * v.Z + h.Z * v.Y ||
std::abs(c.X * w.Z - c.Z * w.X) > h.X * v.Z + h.Z * v.X ||
std::abs(c.X * w.Y - c.Y * w.X) > h.X * v.Y + h.Y * v.X)
return disjoint;
return overlap;
#endif
}

View file

@ -0,0 +1,179 @@
/*
** Level mesh collision detection
** Copyright (c) 2018 Magnus Norddahl
**
** This software is provided 'as-is', without any express or implied
** warranty. In no event will the authors be held liable for any damages
** arising from the use of this software.
**
** Permission is granted to anyone to use this software for any purpose,
** including commercial applications, and to alter it and redistribute it
** freely, subject to the following restrictions:
**
** 1. The origin of this software must not be misrepresented; you must not
** claim that you wrote the original software. If you use this software
** in a product, an acknowledgment in the product documentation would be
** appreciated but is not required.
** 2. Altered source versions must be plainly marked as such, and must not be
** misrepresented as being the original software.
** 3. This notice may not be removed or altered from any source distribution.
**
*/
#pragma once
#include "common/utility/vectors.h"
#include <vector>
#include <cmath>
class SphereShape
{
public:
SphereShape() { }
SphereShape(const FVector3 &center, float radius) : center(center), radius(radius) { }
FVector3 center;
float radius = 0.0f;
};
struct TraceHit
{
float fraction = 1.0f;
int triangle = -1;
float b = 0.0f;
float c = 0.0f;
};
class CollisionBBox
{
public:
CollisionBBox() = default;
CollisionBBox(const FVector3 &aabb_min, const FVector3 &aabb_max)
{
min = aabb_min;
max = aabb_max;
auto halfmin = aabb_min * 0.5f;
auto halfmax = aabb_max * 0.5f;
Center = halfmax + halfmin;
Extents = halfmax - halfmin;
}
FVector3 min;
FVector3 max;
FVector3 Center;
FVector3 Extents;
float ssePadding = 0.0f; // Needed to safely load Extents directly into a sse register
};
class RayBBox
{
public:
RayBBox(const FVector3 &ray_start, const FVector3 &ray_end) : start(ray_start), end(ray_end)
{
c = (ray_start + ray_end) * 0.5f;
w = ray_end - c;
v.X = std::abs(w.X);
v.Y = std::abs(w.Y);
v.Z = std::abs(w.Z);
}
FVector3 start, end;
FVector3 c, w, v;
float ssePadding = 0.0f; // Needed to safely load v directly into a sse register
};
class TriangleMeshShape
{
public:
TriangleMeshShape(const FVector3 *vertices, int num_vertices, const unsigned int *elements, int num_elements);
int get_min_depth() const;
int get_max_depth() const;
float get_average_depth() const;
float get_balanced_depth() const;
const CollisionBBox &get_bbox() const { return nodes[root].aabb; }
static float sweep(TriangleMeshShape *shape1, SphereShape *shape2, const FVector3 &target);
static bool find_any_hit(TriangleMeshShape *shape1, TriangleMeshShape *shape2);
static bool find_any_hit(TriangleMeshShape *shape1, SphereShape *shape2);
static bool find_any_hit(TriangleMeshShape *shape, const FVector3 &ray_start, const FVector3 &ray_end);
static std::vector<int> find_all_hits(TriangleMeshShape* shape1, SphereShape* shape2);
static TraceHit find_first_hit(TriangleMeshShape *shape, const FVector3 &ray_start, const FVector3 &ray_end);
struct Node
{
Node() = default;
Node(const FVector3 &aabb_min, const FVector3 &aabb_max, int element_index) : aabb(aabb_min, aabb_max), element_index(element_index) { }
Node(const FVector3 &aabb_min, const FVector3 &aabb_max, int left, int right) : aabb(aabb_min, aabb_max), left(left), right(right) { }
CollisionBBox aabb;
int left = -1;
int right = -1;
int element_index = -1;
};
const std::vector<Node>& get_nodes() const { return nodes; }
int get_root() const { return root; }
private:
const FVector3 *vertices = nullptr;
const int num_vertices = 0;
const unsigned int *elements = nullptr;
int num_elements = 0;
std::vector<Node> nodes;
int root = -1;
static float sweep(TriangleMeshShape *shape1, SphereShape *shape2, int a, const FVector3 &target);
static bool find_any_hit(TriangleMeshShape *shape1, TriangleMeshShape *shape2, int a, int b);
static bool find_any_hit(TriangleMeshShape *shape1, SphereShape *shape2, int a);
static bool find_any_hit(TriangleMeshShape *shape1, const RayBBox &ray, int a);
static void find_all_hits(TriangleMeshShape* shape1, SphereShape* shape2, int a, std::vector<int>& hits);
static void find_first_hit(TriangleMeshShape *shape1, const RayBBox &ray, int a, TraceHit *hit);
inline static bool overlap_bv_ray(TriangleMeshShape *shape, const RayBBox &ray, int a);
inline static float intersect_triangle_ray(TriangleMeshShape *shape, const RayBBox &ray, int a, float &barycentricB, float &barycentricC);
inline static bool sweep_overlap_bv_sphere(TriangleMeshShape *shape1, SphereShape *shape2, int a, const FVector3 &target);
inline static float sweep_intersect_triangle_sphere(TriangleMeshShape *shape1, SphereShape *shape2, int a, const FVector3 &target);
inline static bool overlap_bv(TriangleMeshShape *shape1, TriangleMeshShape *shape2, int a, int b);
inline static bool overlap_bv_triangle(TriangleMeshShape *shape1, TriangleMeshShape *shape2, int a, int b);
inline static bool overlap_bv_sphere(TriangleMeshShape *shape1, SphereShape *shape2, int a);
inline static bool overlap_triangle_triangle(TriangleMeshShape *shape1, TriangleMeshShape *shape2, int a, int b);
inline static bool overlap_triangle_sphere(TriangleMeshShape *shape1, SphereShape *shape2, int a);
inline bool is_leaf(int node_index);
inline float volume(int node_index);
int subdivide(int *triangles, int num_triangles, const FVector3 *centroids, int *work_buffer);
};
class IntersectionTest
{
public:
enum Result
{
outside,
inside,
intersecting,
};
enum OverlapResult
{
disjoint,
overlap
};
static OverlapResult sphere_aabb(const FVector3 &center, float radius, const CollisionBBox &aabb);
static OverlapResult aabb(const CollisionBBox &a, const CollisionBBox &b);
static OverlapResult ray_aabb(const RayBBox &ray, const CollisionBBox &box);
};

View file

@ -3,6 +3,7 @@
#include "tarray.h"
#include "vectors.h"
#include "hw_collision.h"
namespace hwrenderer
{
@ -16,6 +17,14 @@ public:
TArray<int> MeshUVIndex;
TArray<uint32_t> MeshElements;
TArray<int> MeshSurfaces;
std::unique_ptr<TriangleMeshShape> Collision;
bool Trace(const FVector3& start, FVector3 direction, float maxDist)
{
FVector3 end = start + direction * std::max(maxDist - 10.0f, 0.0f);
return !TriangleMeshShape::find_any_hit(Collision.get(), start, end);
}
};
} // namespace

View file

@ -3331,8 +3331,8 @@ void MapLoader::LoadLightmap(MapData *map)
Level->LMTextureCount = 0;
Level->LMTextureSize = 0;
if (!Args->CheckParm("-enablelightmaps"))
return; // this feature is still too early WIP to allow general access
//if (!Args->CheckParm("-enablelightmaps"))
// return; // this feature is still too early WIP to allow general access
if (!map->Size(ML_LIGHTMAP))
return;

View file

@ -56,6 +56,8 @@ DoomLevelMesh::DoomLevelMesh(FLevelLocals &doomMap)
}
}
}
Collision = std::make_unique<TriangleMeshShape>(MeshVertices.Data(), MeshVertices.Size(), MeshElements.Data(), MeshElements.Size());
}
void DoomLevelMesh::CreateSideSurfaces(FLevelLocals &doomMap, side_t *side)

View file

@ -49,11 +49,14 @@ T smoothstep(const T edge0, const T edge1, const T x)
static bool TraceLightVisbility(FLightNode* node, const FVector3& L, float dist)
{
FDynamicLight* light = node->lightsource;
if (!light->Trace())
if (!light->Trace() || !level.levelMesh)
return true;
FTraceResults results;
return !Trace(light->Pos, light->Sector, DVector3(-L.X, -L.Y, -L.Z), dist, 0, ML_BLOCKING, nullptr, results);
// Note: this is not thread safe (modifies validcount and calls other setup functions)
// FTraceResults results;
// return !Trace(light->Pos, light->Sector, DVector3(-L.X, -L.Y, -L.Z), dist, 0, ML_BLOCKING, nullptr, results);
return level.levelMesh->Trace(FVector3((float)light->Pos.X, (float)light->Pos.Y, (float)light->Pos.Z), FVector3(-L.X, -L.Y, -L.Z), dist);
}
//==========================================================================