# Conflicts:
#	src/r_things.cpp
This commit is contained in:
Rachael Alexanderson 2017-01-23 00:17:25 -05:00
commit 03226e5a0a
22 changed files with 431 additions and 1444 deletions

View file

@ -1280,7 +1280,6 @@ set (PCH_SOURCES
scripting/vm/vmframe.cpp
scripting/zscript/ast.cpp
scripting/zscript/zcc_compile.cpp
scripting/zscript/zcc_expr.cpp
scripting/zscript/zcc_parser.cpp
sfmt/SFMT.cpp
)

View file

@ -240,159 +240,6 @@ size_t PType::PropagateMark()
return marked + Super::PropagateMark();
}
//==========================================================================
//
// PType :: AddConversion
//
//==========================================================================
bool PType::AddConversion(PType *target, void (*convertconst)(ZCC_ExprConstant *, class FSharedStringArena &))
{
// Make sure a conversion hasn't already been registered
for (unsigned i = 0; i < Conversions.Size(); ++i)
{
if (Conversions[i].TargetType == target)
return false;
}
Conversions.Push(Conversion(target, convertconst));
return true;
}
//==========================================================================
//
// PType :: FindConversion
//
// Returns <0 if there is no path to target. Otherwise, returns the distance
// to target and fills slots (if non-NULL) with the necessary conversions
// to get there. A result of 0 means this is the target.
//
//==========================================================================
int PType::FindConversion(PType *target, const PType::Conversion **slots, int numslots)
{
if (this == target)
{
return 0;
}
// The queue is implemented as a ring buffer
VisitQueue queue;
VisitedNodeSet visited;
// Use a breadth-first search to find the shortest path to the target.
MarkPred(NULL, -1, -1);
queue.Push(this);
visited.Insert(this);
while (!queue.IsEmpty())
{
PType *t = queue.Pop();
if (t == target)
{ // found it
if (slots != NULL)
{
if (t->Distance >= numslots)
{ // Distance is too far for the output
return -2;
}
t->FillConversionPath(slots);
}
return t->Distance + 1;
}
for (unsigned i = 0; i < t->Conversions.Size(); ++i)
{
PType *succ = t->Conversions[i].TargetType;
if (!visited.Check(succ))
{
succ->MarkPred(t, i, t->Distance + 1);
visited.Insert(succ);
queue.Push(succ);
}
}
}
return -1;
}
//==========================================================================
//
// PType :: FillConversionPath
//
// Traces backwards from the target type to the original type and fills in
// the conversions necessary to get between them. slots must point to an
// array large enough to contain the entire path.
//
//==========================================================================
void PType::FillConversionPath(const PType::Conversion **slots)
{
for (PType *node = this; node->Distance >= 0; node = node->PredType)
{
assert(node->PredType != NULL);
slots[node->Distance] = &node->PredType->Conversions[node->PredConv];
}
}
//==========================================================================
//
// PType :: VisitQueue :: Push
//
//==========================================================================
void PType::VisitQueue::Push(PType *type)
{
Queue[In] = type;
Advance(In);
assert(!IsEmpty() && "Queue overflowed");
}
//==========================================================================
//
// PType :: VisitQueue :: Pop
//
//==========================================================================
PType *PType::VisitQueue::Pop()
{
if (IsEmpty())
{
return NULL;
}
PType *node = Queue[Out];
Advance(Out);
return node;
}
//==========================================================================
//
// PType :: VisitedNodeSet :: Insert
//
//==========================================================================
void PType::VisitedNodeSet::Insert(PType *node)
{
assert(!Check(node) && "Node was already inserted");
size_t buck = Hash(node) & (countof(Buckets) - 1);
node->VisitNext = Buckets[buck];
Buckets[buck] = node;
}
//==========================================================================
//
// PType :: VisitedNodeSet :: Check
//
//==========================================================================
bool PType::VisitedNodeSet::Check(const PType *node)
{
size_t buck = Hash(node) & (countof(Buckets) - 1);
for (const PType *probe = Buckets[buck]; probe != NULL; probe = probe->VisitNext)
{
if (probe == node)
{
return true;
}
}
return false;
}
//==========================================================================
//
// PType :: WriteValue

View file

@ -214,15 +214,6 @@ public:
typedef PClassType MetaClass;
MetaClass *GetClass() const;
struct Conversion
{
Conversion(PType *target, void (*convert)(ZCC_ExprConstant *, class FSharedStringArena &))
: TargetType(target), ConvertConstant(convert) {}
PType *TargetType;
void (*ConvertConstant)(ZCC_ExprConstant *val, class FSharedStringArena &strdump);
};
unsigned int Size; // this type's size
unsigned int Align; // this type's preferred alignment
PType *HashNext; // next type in this type table
@ -235,10 +226,6 @@ public:
virtual ~PType();
virtual bool isNumeric() { return false; }
bool AddConversion(PType *target, void (*convertconst)(ZCC_ExprConstant *, class FSharedStringArena &));
int FindConversion(PType *target, const Conversion **slots, int numslots);
// Writes the value of a variable of this type at (addr) to an archive, preceded by
// a tag indicating its type. The tag is there so that variable types can be changed
// without completely breaking savegames, provided that the change isn't between
@ -318,54 +305,6 @@ public:
size_t PropagateMark();
static void StaticInit();
private:
// Stuff for type conversion searches
class VisitQueue
{
public:
VisitQueue() : In(0), Out(0) {}
void Push(PType *type);
PType *Pop();
bool IsEmpty() { return In == Out; }
private:
// This is a fixed-sized ring buffer.
PType *Queue[64];
int In, Out;
void Advance(int &ptr)
{
ptr = (ptr + 1) & (countof(Queue) - 1);
}
};
class VisitedNodeSet
{
public:
VisitedNodeSet() { memset(Buckets, 0, sizeof(Buckets)); }
void Insert(PType *node);
bool Check(const PType *node);
private:
PType *Buckets[32];
size_t Hash(const PType *type) { return size_t(type) >> 4; }
};
TArray<Conversion> Conversions;
PType *PredType;
PType *VisitNext;
short PredConv;
short Distance;
void MarkPred(PType *pred, int conv, int dist)
{
PredType = pred;
PredConv = conv;
Distance = dist;
}
void FillConversionPath(const Conversion **slots);
};
// Not-really-a-type types --------------------------------------------------
@ -1043,7 +982,7 @@ class PSymbolConstString : public PSymbolConst
public:
FString Str;
PSymbolConstString(FName name, FString &str) : PSymbolConst(name, TypeString), Str(str) {}
PSymbolConstString(FName name, const FString &str) : PSymbolConst(name, TypeString), Str(str) {}
PSymbolConstString() {}
};

View file

@ -1891,168 +1891,150 @@ void G_DoLoadGame ()
hidecon = gameaction == ga_loadgamehidecon;
gameaction = ga_nothing;
FResourceFile *resfile = FResourceFile::OpenResourceFile(savename.GetChars(), nullptr, true, true);
std::unique_ptr<FResourceFile> resfile(FResourceFile::OpenResourceFile(savename.GetChars(), nullptr, true, true));
if (resfile == nullptr)
{
Printf ("Could not read savegame '%s'\n", savename.GetChars());
return;
}
try
FResourceLump *info = resfile->FindLump("info.json");
if (info == nullptr)
{
FResourceLump *info = resfile->FindLump("info.json");
if (info == nullptr)
{
delete resfile;
Printf("'%s' is not a valid savegame: Missing 'info.json'.\n", savename.GetChars());
return;
}
SaveVersion = 0;
void *data = info->CacheLump();
FSerializer arc;
if (!arc.OpenReader((const char *)data, info->LumpSize))
{
Printf("Failed to access savegame info\n");
delete resfile;
return;
}
// Check whether this savegame actually has been created by a compatible engine.
// Since there are ZDoom derivates using the exact same savegame format but
// with mutual incompatibilities this check simplifies things significantly.
FString savever, engine, map;
arc("Save Version", SaveVersion);
arc("Engine", engine);
arc("Current Map", map);
if (engine.CompareNoCase(GAMESIG) != 0)
{
// Make a special case for the message printed for old savegames that don't
// have this information.
if (engine.IsEmpty())
{
Printf("Savegame is from an incompatible version\n");
}
else
{
Printf("Savegame is from another ZDoom-based engine: %s\n", engine.GetChars());
}
delete resfile;
return;
}
if (SaveVersion < MINSAVEVER || SaveVersion > SAVEVER)
{
delete resfile;
Printf("Savegame is from an incompatible version");
if (SaveVersion < MINSAVEVER)
{
Printf(": %d (%d is the oldest supported)", SaveVersion, MINSAVEVER);
}
else
{
Printf(": %d (%d is the highest supported)", SaveVersion, SAVEVER);
}
Printf("\n");
return;
}
if (!G_CheckSaveGameWads(arc, true))
{
delete resfile;
return;
}
if (map.IsEmpty())
{
Printf("Savegame is missing the current map\n");
delete resfile;
return;
}
// Now that it looks like we can load this save, hide the fullscreen console if it was up
// when the game was selected from the menu.
if (hidecon && gamestate == GS_FULLCONSOLE)
{
gamestate = GS_HIDECONSOLE;
}
// we are done with info.json.
arc.Close();
info = resfile->FindLump("globals.json");
if (info == nullptr)
{
delete resfile;
Printf("'%s' is not a valid savegame: Missing 'globals.json'.\n", savename.GetChars());
return;
}
data = info->CacheLump();
if (!arc.OpenReader((const char *)data, info->LumpSize))
{
Printf("Failed to access savegame info\n");
delete resfile;
return;
}
// Read intermission data for hubs
G_SerializeHub(arc);
bglobal.RemoveAllBots(true);
FString cvar;
arc("importantcvars", cvar);
if (!cvar.IsEmpty())
{
BYTE *vars_p = (BYTE *)cvar.GetChars();
C_ReadCVars(&vars_p);
}
DWORD time[2] = { 1,0 };
arc("ticrate", time[0])
("leveltime", time[1]);
// dearchive all the modifications
level.time = Scale(time[1], TICRATE, time[0]);
G_ReadSnapshots(resfile);
delete resfile; // we no longer need the resource file below this point
resfile = nullptr;
G_ReadVisited(arc);
// load a base level
savegamerestore = true; // Use the player actors in the savegame
bool demoplaybacksave = demoplayback;
G_InitNew(map, false);
demoplayback = demoplaybacksave;
savegamerestore = false;
STAT_Serialize(arc);
FRandom::StaticReadRNGState(arc);
P_ReadACSDefereds(arc);
P_ReadACSVars(arc);
NextSkill = -1;
arc("nextskill", NextSkill);
if (level.info != nullptr)
level.info->Snapshot.Clean();
BackupSaveName = savename;
// At this point, the GC threshold is likely a lot higher than the
// amount of memory in use, so bring it down now by starting a
// collection.
GC::StartCollection();
Printf("'%s' is not a valid savegame: Missing 'info.json'.\n", savename.GetChars());
return;
}
catch (...)
SaveVersion = 0;
void *data = info->CacheLump();
FSerializer arc;
if (!arc.OpenReader((const char *)data, info->LumpSize))
{
// delete the resource file if anything goes wrong in here.
if (resfile != nullptr) delete resfile;
throw;
Printf("Failed to access savegame info\n");
return;
}
// Check whether this savegame actually has been created by a compatible engine.
// Since there are ZDoom derivates using the exact same savegame format but
// with mutual incompatibilities this check simplifies things significantly.
FString savever, engine, map;
arc("Save Version", SaveVersion);
arc("Engine", engine);
arc("Current Map", map);
if (engine.CompareNoCase(GAMESIG) != 0)
{
// Make a special case for the message printed for old savegames that don't
// have this information.
if (engine.IsEmpty())
{
Printf("Savegame is from an incompatible version\n");
}
else
{
Printf("Savegame is from another ZDoom-based engine: %s\n", engine.GetChars());
}
return;
}
if (SaveVersion < MINSAVEVER || SaveVersion > SAVEVER)
{
Printf("Savegame is from an incompatible version");
if (SaveVersion < MINSAVEVER)
{
Printf(": %d (%d is the oldest supported)", SaveVersion, MINSAVEVER);
}
else
{
Printf(": %d (%d is the highest supported)", SaveVersion, SAVEVER);
}
Printf("\n");
return;
}
if (!G_CheckSaveGameWads(arc, true))
{
return;
}
if (map.IsEmpty())
{
Printf("Savegame is missing the current map\n");
return;
}
// Now that it looks like we can load this save, hide the fullscreen console if it was up
// when the game was selected from the menu.
if (hidecon && gamestate == GS_FULLCONSOLE)
{
gamestate = GS_HIDECONSOLE;
}
// we are done with info.json.
arc.Close();
info = resfile->FindLump("globals.json");
if (info == nullptr)
{
Printf("'%s' is not a valid savegame: Missing 'globals.json'.\n", savename.GetChars());
return;
}
data = info->CacheLump();
if (!arc.OpenReader((const char *)data, info->LumpSize))
{
Printf("Failed to access savegame info\n");
return;
}
// Read intermission data for hubs
G_SerializeHub(arc);
bglobal.RemoveAllBots(true);
FString cvar;
arc("importantcvars", cvar);
if (!cvar.IsEmpty())
{
BYTE *vars_p = (BYTE *)cvar.GetChars();
C_ReadCVars(&vars_p);
}
DWORD time[2] = { 1,0 };
arc("ticrate", time[0])
("leveltime", time[1]);
// dearchive all the modifications
level.time = Scale(time[1], TICRATE, time[0]);
G_ReadSnapshots(resfile.get());
resfile.reset(nullptr); // we no longer need the resource file below this point
G_ReadVisited(arc);
// load a base level
savegamerestore = true; // Use the player actors in the savegame
bool demoplaybacksave = demoplayback;
G_InitNew(map, false);
demoplayback = demoplaybacksave;
savegamerestore = false;
STAT_Serialize(arc);
FRandom::StaticReadRNGState(arc);
P_ReadACSDefereds(arc);
P_ReadACSVars(arc);
NextSkill = -1;
arc("nextskill", NextSkill);
if (level.info != nullptr)
level.info->Snapshot.Clean();
BackupSaveName = savename;
// At this point, the GC threshold is likely a lot higher than the
// amount of memory in use, so bring it down now by starting a
// collection.
GC::StartCollection();
}

View file

@ -60,15 +60,15 @@ bool FShader::Load(const char * name, const char * vert_prog_lump, const char *
static char buffer[10000];
FString error;
int i_lump = Wads.CheckNumForFullName("shaders/glsl/shaderdefs.i");
int i_lump = Wads.CheckNumForFullName("shaders/glsl/shaderdefs.i", 0);
if (i_lump == -1) I_Error("Unable to load 'shaders/glsl/shaderdefs.i'");
FMemLump i_data = Wads.ReadLump(i_lump);
int vp_lump = Wads.CheckNumForFullName(vert_prog_lump);
int vp_lump = Wads.CheckNumForFullName(vert_prog_lump, 0);
if (vp_lump == -1) I_Error("Unable to load '%s'", vert_prog_lump);
FMemLump vp_data = Wads.ReadLump(vp_lump);
int fp_lump = Wads.CheckNumForFullName(frag_prog_lump);
int fp_lump = Wads.CheckNumForFullName(frag_prog_lump, 0);
if (fp_lump == -1) I_Error("Unable to load '%s'", frag_prog_lump);
FMemLump fp_data = Wads.ReadLump(fp_lump);

View file

@ -89,7 +89,7 @@ void FShaderProgram::CreateShader(ShaderType type)
void FShaderProgram::Compile(ShaderType type, const char *lumpName, const char *defines, int maxGlslVersion)
{
int lump = Wads.CheckNumForFullName(lumpName);
int lump = Wads.CheckNumForFullName(lumpName, 0);
if (lump == -1) I_FatalError("Unable to load '%s'", lumpName);
FString code = Wads.ReadLump(lump).GetString().GetChars();
Compile(type, lumpName, code, defines, maxGlslVersion);

View file

@ -84,8 +84,11 @@ void gl_SetupMenu()
{
for(int i = (*opt)->mValues.Size()-1; i>=0; i--)
{
// Delete HQnX resize modes for non MSVC targets
if ((*opt)->mValues[i].Value >= 7.0)
// Delete hqNx MMX resize modes for targets
// without support of this instruction set
const auto index = llround((*opt)->mValues[i].Value);
if (index > 6 && index < 10)
{
(*opt)->mValues.Delete(i);
}

View file

@ -924,8 +924,7 @@ DEFINE_ACTION_FUNCTION(AActor, TakeInventory)
PARAM_INT(amount);
PARAM_BOOL_DEF(fromdecorate);
PARAM_BOOL_DEF(notakeinfinite);
self->TakeInventory(item, amount, fromdecorate, notakeinfinite);
return 0;
ACTION_RETURN_BOOL(self->TakeInventory(item, amount, fromdecorate, notakeinfinite));
}
//============================================================================

View file

@ -133,10 +133,6 @@ SDLGLVideo::SDLGLVideo (int parm)
fprintf( stderr, "Video initialization failed: %s\n",
SDL_GetError( ) );
}
#ifndef _WIN32
// mouse cursor is visible by default on linux systems, we disable it by default
SDL_ShowCursor (0);
#endif
}
SDLGLVideo::~SDLGLVideo ()

View file

@ -1008,6 +1008,7 @@ void FScanner::CheckOpen()
int FScriptPosition::ErrorCounter;
int FScriptPosition::WarnCounter;
bool FScriptPosition::StrictErrors; // makes all OPTERROR messages real errors.
bool FScriptPosition::errorout; // call I_Error instead of printing the error itself.
FScriptPosition::FScriptPosition(const FScriptPosition &other)
{
@ -1054,6 +1055,8 @@ void FScriptPosition::Message (int severity, const char *message, ...) const
{
severity = StrictErrors || strictdecorate ? MSG_ERROR : MSG_WARNING;
}
// This is mainly for catching the error with an exception handler.
if (severity == MSG_ERROR && errorout) severity = MSG_FATAL;
if (message == NULL)
{

View file

@ -144,6 +144,7 @@ struct FScriptPosition
static int WarnCounter;
static int ErrorCounter;
static bool StrictErrors;
static bool errorout;
FString FileName;
int ScriptLine;

View file

@ -4078,7 +4078,7 @@ ExpEmit FxConcat::Emit(VMFunctionBuilder *build)
}
else
{
int cast;
int cast = 0;
strng2 = ExpEmit(build, REGT_STRING);
if (op2.Konst)
{
@ -5653,6 +5653,12 @@ FxExpression *FxIdentifier::Resolve(FCompileContext& ctx)
if (Identifier == NAME_Default)
{
if (ctx.Function == nullptr)
{
ScriptPosition.Message(MSG_ERROR, "Unable to access class defaults from constant declaration");
delete this;
return nullptr;
}
if (ctx.Function->Variants[0].SelfClass == nullptr)
{
ScriptPosition.Message(MSG_ERROR, "Unable to access class defaults from static function");
@ -5680,6 +5686,13 @@ FxExpression *FxIdentifier::Resolve(FCompileContext& ctx)
{
if (sym->IsKindOf(RUNTIME_CLASS(PField)))
{
if (ctx.Function == nullptr)
{
ScriptPosition.Message(MSG_ERROR, "Unable to access class member %s from constant declaration", sym->SymbolName.GetChars());
delete this;
return nullptr;
}
FxExpression *self = new FxSelf(ScriptPosition);
self = self->Resolve(ctx);
newex = ResolveMember(ctx, ctx.Function->Variants[0].SelfClass, self, ctx.Function->Variants[0].SelfClass);
@ -5697,6 +5710,12 @@ FxExpression *FxIdentifier::Resolve(FCompileContext& ctx)
newex = FxConstant::MakeConstant(sym, ScriptPosition);
goto foundit;
}
else if (ctx.Function == nullptr)
{
ScriptPosition.Message(MSG_ERROR, "Unable to access class member %s from constant declaration", sym->SymbolName.GetChars());
delete this;
return nullptr;
}
// Do this check for ZScript as well, so that a clearer error message can be printed. MSG_OPTERROR will default to MSG_ERROR there.
else if (ctx.Function->Variants[0].SelfClass != ctx.Class && sym->IsKindOf(RUNTIME_CLASS(PField)))
{
@ -5810,7 +5829,7 @@ FxExpression *FxIdentifier::ResolveMember(FCompileContext &ctx, PStruct *classct
return x->Resolve(ctx);
}
if ((sym = objtype->Symbols.FindSymbolInTable(Identifier, symtbl)) != nullptr)
if (objtype != nullptr && (sym = objtype->Symbols.FindSymbolInTable(Identifier, symtbl)) != nullptr)
{
if (sym->IsKindOf(RUNTIME_CLASS(PSymbolConst)))
{
@ -7149,7 +7168,6 @@ static bool CheckArgSize(FName fname, FArgumentList &args, int min, int max, FSc
FxExpression *FxFunctionCall::Resolve(FCompileContext& ctx)
{
ABORT(ctx.Class);
bool error = false;
for (auto a : ArgList)
@ -7162,20 +7180,30 @@ FxExpression *FxFunctionCall::Resolve(FCompileContext& ctx)
}
}
PFunction *afd = FindClassMemberFunction(ctx.Class, ctx.Class, MethodName, ScriptPosition, &error);
if (afd != nullptr)
if (ctx.Class != nullptr)
{
if (!CheckFunctionCompatiblity(ScriptPosition, ctx.Function, afd))
{
delete this;
return nullptr;
}
PFunction *afd = FindClassMemberFunction(ctx.Class, ctx.Class, MethodName, ScriptPosition, &error);
auto self = (afd->Variants[0].Flags & VARF_Method)? new FxSelf(ScriptPosition) : nullptr;
auto x = new FxVMFunctionCall(self, afd, ArgList, ScriptPosition, false);
delete this;
return x->Resolve(ctx);
if (afd != nullptr)
{
if (ctx.Function == nullptr)
{
ScriptPosition.Message(MSG_ERROR, "Unable to call function %s from constant declaration", MethodName.GetChars());
delete this;
return nullptr;
}
if (!CheckFunctionCompatiblity(ScriptPosition, ctx.Function, afd))
{
delete this;
return nullptr;
}
auto self = (afd->Variants[0].Flags & VARF_Method) ? new FxSelf(ScriptPosition) : nullptr;
auto x = new FxVMFunctionCall(self, afd, ArgList, ScriptPosition, false);
delete this;
return x->Resolve(ctx);
}
}
for (size_t i = 0; i < countof(FxFlops); ++i)
@ -7202,7 +7230,13 @@ FxExpression *FxFunctionCall::Resolve(FCompileContext& ctx)
if (special != 0 && min >= 0)
{
int paramcount = ArgList.Size();
if (paramcount < min)
if (ctx.Function == nullptr || ctx.Class == nullptr)
{
ScriptPosition.Message(MSG_ERROR, "Unable to call action special %s from constant declaration", MethodName.GetChars());
delete this;
return nullptr;
}
else if (paramcount < min)
{
ScriptPosition.Message(MSG_ERROR, "Not enough parameters for '%s' (expected %d, got %d)",
MethodName.GetChars(), min, paramcount);
@ -7427,13 +7461,20 @@ FxMemberFunctionCall::~FxMemberFunctionCall()
FxExpression *FxMemberFunctionCall::Resolve(FCompileContext& ctx)
{
ABORT(ctx.Class);
PStruct *cls;
bool staticonly = false;
bool novirtual = false;
PStruct *ccls = nullptr;
if (ctx.Class == nullptr)
{
// There's no way that a member function call can resolve to a constant so abort right away.
ScriptPosition.Message(MSG_ERROR, "Expression is not constant.");
delete this;
return nullptr;
}
for (auto a : ArgList)
{
if (a == nullptr)
@ -7467,6 +7508,12 @@ FxExpression *FxMemberFunctionCall::Resolve(FCompileContext& ctx)
staticonly = true;
if (ccls->IsKindOf(RUNTIME_CLASS(PClass)))
{
if (ctx.Function == nullptr)
{
ScriptPosition.Message(MSG_ERROR, "Unable to call %s from constant declaration", MethodName.GetChars());
delete this;
return nullptr;
}
auto clstype = dyn_cast<PClass>(ctx.Function->Variants[0].SelfClass);
if (clstype != nullptr)
{
@ -7493,6 +7540,12 @@ FxExpression *FxMemberFunctionCall::Resolve(FCompileContext& ctx)
if (Self->ExprType == EFX_Super)
{
if (ctx.Function == nullptr)
{
ScriptPosition.Message(MSG_ERROR, "Unable to call %s from constant declaration", MethodName.GetChars());
delete this;
return nullptr;
}
auto clstype = dyn_cast<PClass>(ctx.Function->Variants[0].SelfClass);
if (clstype != nullptr)
{
@ -7743,6 +7796,12 @@ isresolved:
if (afd->Variants[0].Flags & VARF_Method)
{
if (ctx.Function == nullptr)
{
ScriptPosition.Message(MSG_ERROR, "Unable to call %s from constant declaration", MethodName.GetChars());
delete this;
return nullptr;
}
if (Self->ExprType == EFX_Self)
{
if (!CheckFunctionCompatiblity(ScriptPosition, ctx.Function, afd))

View file

@ -513,7 +513,7 @@ static void OpenExprType(FLispString &out, EZCCExprType type)
if (unsigned(type) < PEX_COUNT_OF)
{
mysnprintf(buf, countof(buf), "expr-%s", ZCC_OpInfo[type].OpName);
mysnprintf(buf, countof(buf), "expr %d", type);
}
else
{

View file

@ -48,10 +48,59 @@
#include "p_lnspec.h"
#include "i_system.h"
#include "gdtoa.h"
#include "codegeneration/codegen.h"
#include "vmbuilder.h"
#include "version.h"
static int GetIntConst(FxExpression *ex, FCompileContext &ctx)
{
ex = new FxIntCast(ex, false);
ex = ex->Resolve(ctx);
return ex ? static_cast<FxConstant*>(ex)->GetValue().GetInt() : 0;
}
static double GetFloatConst(FxExpression *ex, FCompileContext &ctx)
{
ex = new FxFloatCast(ex);
ex = ex->Resolve(ctx);
return ex ? static_cast<FxConstant*>(ex)->GetValue().GetFloat() : 0;
}
static FString GetStringConst(FxExpression *ex, FCompileContext &ctx)
{
ex = new FxStringCast(ex);
ex = ex->Resolve(ctx);
return static_cast<FxConstant*>(ex)->GetValue().GetString();
}
int ZCCCompiler::IntConstFromNode(ZCC_TreeNode *node, PStruct *cls)
{
FCompileContext ctx(cls, false);
FxExpression *ex = new FxIntCast(ConvertNode(node), false);
ex = ex->Resolve(ctx);
if (ex == nullptr) return 0;
if (!ex->isConstant())
{
ex->ScriptPosition.Message(MSG_ERROR, "Expression is not constant");
return 0;
}
return static_cast<FxConstant*>(ex)->GetValue().GetInt();
}
FString ZCCCompiler::StringConstFromNode(ZCC_TreeNode *node, PStruct *cls)
{
FCompileContext ctx(cls, false);
FxExpression *ex = new FxStringCast(ConvertNode(node));
ex = ex->Resolve(ctx);
if (ex == nullptr) return "";
if (!ex->isConstant())
{
ex->ScriptPosition.Message(MSG_ERROR, "Expression is not constant");
return "";
}
return static_cast<FxConstant*>(ex)->GetValue().GetString();
}
//==========================================================================
//
// ZCCCompiler :: ProcessClass
@ -606,11 +655,11 @@ void ZCCCompiler::CreateClassTypes()
//
//==========================================================================
void ZCCCompiler::CopyConstants(TArray<ZCC_ConstantWork> &dest, TArray<ZCC_ConstantDef*> &Constants, PSymbolTable *ot)
void ZCCCompiler::CopyConstants(TArray<ZCC_ConstantWork> &dest, TArray<ZCC_ConstantDef*> &Constants, PStruct *cls, PSymbolTable *ot)
{
for (auto c : Constants)
{
dest.Push({ c, ot });
dest.Push({ c, cls, ot });
}
}
@ -629,14 +678,14 @@ void ZCCCompiler::CompileAllConstants()
// put all constants in one list to make resolving this easier.
TArray<ZCC_ConstantWork> constantwork;
CopyConstants(constantwork, Constants, OutputSymbols);
CopyConstants(constantwork, Constants, nullptr, OutputSymbols);
for (auto c : Classes)
{
CopyConstants(constantwork, c->Constants, &c->Type()->Symbols);
CopyConstants(constantwork, c->Constants, c->Type(), &c->Type()->Symbols);
}
for (auto s : Structs)
{
CopyConstants(constantwork, s->Constants, &s->Type()->Symbols);
CopyConstants(constantwork, s->Constants, s->Type(), &s->Type()->Symbols);
}
// Before starting to resolve the list, let's create symbols for all already resolved ones first (i.e. all literal constants), to reduce work.
@ -657,7 +706,7 @@ void ZCCCompiler::CompileAllConstants()
donesomething = false;
for (unsigned i = 0; i < constantwork.Size(); i++)
{
if (CompileConstant(constantwork[i].node, constantwork[i].outputtable))
if (CompileConstant(&constantwork[i]))
{
AddConstant(constantwork[i]);
// Remove the constant from the list
@ -685,6 +734,9 @@ void ZCCCompiler::AddConstant(ZCC_ConstantWork &constant)
{
auto def = constant.node;
auto val = def->Value;
ExpVal &c = constant.constval;
// This is for literal constants.
if (val->NodeType == AST_ExprConstant)
{
ZCC_ExprConstant *cval = static_cast<ZCC_ExprConstant *>(val);
@ -711,14 +763,40 @@ void ZCCCompiler::AddConstant(ZCC_ConstantWork &constant)
Error(def->Value, "Bad type for constant definiton");
def->Symbol = nullptr;
}
if (def->Symbol == nullptr)
{
// Create a dummy constant so we don't make any undefined value warnings.
def->Symbol = new PSymbolConstNumeric(def->NodeName, TypeError, 0);
}
constant.outputtable->ReplaceSymbol(def->Symbol);
}
else
{
if (c.Type == TypeString)
{
def->Symbol = new PSymbolConstString(def->NodeName, c.GetString());
}
else if (c.Type->IsA(RUNTIME_CLASS(PInt)))
{
// How do we get an Enum type in here without screwing everything up???
//auto type = def->Type != nullptr ? def->Type : cval->Type;
def->Symbol = new PSymbolConstNumeric(def->NodeName, c.Type, c.GetInt());
}
else if (c.Type->IsA(RUNTIME_CLASS(PFloat)))
{
if (def->Type != nullptr)
{
Error(def, "Enum members must be integer values");
}
def->Symbol = new PSymbolConstNumeric(def->NodeName, c.Type, c.GetFloat());
}
else
{
Error(def->Value, "Bad type for constant definiton");
def->Symbol = nullptr;
}
}
if (def->Symbol == nullptr)
{
// Create a dummy constant so we don't make any undefined value warnings.
def->Symbol = new PSymbolConstNumeric(def->NodeName, TypeError, 0);
}
constant.Outputtable->ReplaceSymbol(def->Symbol);
}
//==========================================================================
@ -730,309 +808,33 @@ void ZCCCompiler::AddConstant(ZCC_ConstantWork &constant)
//
//==========================================================================
bool ZCCCompiler::CompileConstant(ZCC_ConstantDef *def, PSymbolTable *sym)
bool ZCCCompiler::CompileConstant(ZCC_ConstantWork *work)
{
assert(def->Symbol == nullptr);
ZCC_Expression *val = Simplify(def->Value, sym, true);
def->Value = val;
return (val->NodeType == AST_ExprConstant);
}
//==========================================================================
//
// ZCCCompiler :: Simplify
//
// For an expression,
// Evaluate operators whose arguments are both constants, replacing it
// with a new constant.
// For a binary operator with one constant argument, put it on the right-
// hand operand, where permitted.
// Perform automatic type promotion.
//
//==========================================================================
ZCC_Expression *ZCCCompiler::Simplify(ZCC_Expression *root, PSymbolTable *sym, bool wantconstant)
{
SimplifyingConstant = wantconstant;
return DoSimplify(root, sym);
}
ZCC_Expression *ZCCCompiler::DoSimplify(ZCC_Expression *root, PSymbolTable *sym)
{
if (root->NodeType == AST_ExprUnary)
FCompileContext ctx(work->cls, false);
FxExpression *exp = ConvertNode(work->node->Value);
try
{
return SimplifyUnary(static_cast<ZCC_ExprUnary *>(root), sym);
}
else if (root->NodeType == AST_ExprBinary)
{
return SimplifyBinary(static_cast<ZCC_ExprBinary *>(root), sym);
}
else if (root->Operation == PEX_ID)
{
return IdentifyIdentifier(static_cast<ZCC_ExprID *>(root), sym);
}
else if (root->Operation == PEX_MemberAccess)
{
return SimplifyMemberAccess(static_cast<ZCC_ExprMemberAccess *>(root), sym);
}
else if (root->Operation == PEX_FuncCall)
{
return SimplifyFunctionCall(static_cast<ZCC_ExprFuncCall *>(root), sym);
}
return root;
}
//==========================================================================
//
// ZCCCompiler :: SimplifyUnary
//
//==========================================================================
ZCC_Expression *ZCCCompiler::SimplifyUnary(ZCC_ExprUnary *unary, PSymbolTable *sym)
{
unary->Operand = DoSimplify(unary->Operand, sym);
if (unary->Operand->Type == nullptr)
{
return unary;
}
ZCC_OpProto *op = PromoteUnary(unary->Operation, unary->Operand);
if (op == NULL)
{ // Oh, poo!
unary->Type = TypeError;
}
else if (unary->Operand->Operation == PEX_ConstValue)
{
return op->EvalConst1(static_cast<ZCC_ExprConstant *>(unary->Operand));
}
return unary;
}
//==========================================================================
//
// ZCCCompiler :: SimplifyBinary
//
//==========================================================================
ZCC_Expression *ZCCCompiler::SimplifyBinary(ZCC_ExprBinary *binary, PSymbolTable *sym)
{
binary->Left = DoSimplify(binary->Left, sym);
binary->Right = DoSimplify(binary->Right, sym);
if (binary->Left->Type == nullptr || binary->Right->Type == nullptr)
{
// We do not know yet what this is so we cannot promote it (yet.)
return binary;
}
ZCC_OpProto *op = PromoteBinary(binary->Operation, binary->Left, binary->Right);
if (op == NULL)
{
binary->Type = TypeError;
}
else if (binary->Left->Operation == PEX_ConstValue &&
binary->Right->Operation == PEX_ConstValue)
{
return op->EvalConst2(static_cast<ZCC_ExprConstant *>(binary->Left),
static_cast<ZCC_ExprConstant *>(binary->Right), AST.Strings);
}
return binary;
}
//==========================================================================
//
// ZCCCompiler :: SimplifyMemberAccess
//
//==========================================================================
ZCC_Expression *ZCCCompiler::SimplifyMemberAccess(ZCC_ExprMemberAccess *dotop, PSymbolTable *symt)
{
PSymbolTable *symtable;
// TBD: Is it safe to simplify the left side here when not processing a constant?
dotop->Left = DoSimplify(dotop->Left, symt);
if (dotop->Left->Operation == PEX_TypeRef)
{ // Type refs can be evaluated now.
PType *ref = static_cast<ZCC_ExprTypeRef *>(dotop->Left)->RefType;
PSymbol *sym = ref->Symbols.FindSymbolInTable(dotop->Right, symtable);
if (sym != nullptr)
FScriptPosition::errorout = true;
exp = exp->Resolve(ctx);
if (exp == nullptr) return false;
FScriptPosition::errorout = false;
if (!exp->isConstant())
{
ZCC_Expression *expr = NodeFromSymbol(sym, dotop, symtable);
if (expr != nullptr)
{
return expr;
}
delete exp;
return false;
}
work->constval = static_cast<FxConstant*>(exp)->GetValue();
delete exp;
return true;
}
else if (dotop->Left->Operation == PEX_Super)
catch (...)
{
symt = symt->GetParentTable();
if (symt != nullptr)
{
PSymbol *sym = symt->FindSymbolInTable(dotop->Right, symtable);
if (sym != nullptr)
{
ZCC_Expression *expr = NodeFromSymbol(sym, dotop, symtable);
if (expr != nullptr)
{
return expr;
}
}
}
// eat the reported error and treat this as a temorary failure. All unresolved contants will be reported at the end.
FScriptPosition::errorout = false;
return false;
}
return dotop;
}
//==========================================================================
//
// ZCCCompiler :: SimplifyFunctionCall
//
// This may replace a function call with cast(s), since they look like the
// same thing to the parser.
//
//==========================================================================
ZCC_Expression *ZCCCompiler::SimplifyFunctionCall(ZCC_ExprFuncCall *callop, PSymbolTable *sym)
{
ZCC_FuncParm *parm;
int parmcount = 0;
parm = callop->Parameters;
if (parm != NULL)
{
do
{
parmcount++;
assert(parm->NodeType == AST_FuncParm);
parm->Value = DoSimplify(parm->Value, sym);
parm = static_cast<ZCC_FuncParm *>(parm->SiblingNext);
}
while (parm != callop->Parameters);
}
// Only simplify the 'function' part if we want to retrieve a constant.
// This is necessary to evaluate the type casts, but for actual functions
// the simplification process is destructive and has to be avoided.
if (SimplifyingConstant)
{
callop->Function = DoSimplify(callop->Function, sym);
}
// If the left side is a type ref, then this is actually a cast
// and not a function call.
if (callop->Function->Operation == PEX_TypeRef)
{
if (parmcount != 1)
{
Error(callop, "Type cast requires one parameter");
callop->ToErrorNode();
}
else
{
PType *dest = static_cast<ZCC_ExprTypeRef *>(callop->Function)->RefType;
const PType::Conversion *route[CONVERSION_ROUTE_SIZE];
int routelen = parm->Value->Type->FindConversion(dest, route, countof(route));
if (routelen < 0)
{
///FIXME: Need real type names
Error(callop, "Cannot convert %s to %s", parm->Value->Type->DescriptiveName(), dest->DescriptiveName());
callop->ToErrorNode();
}
else
{
ZCC_Expression *val = ApplyConversion(parm->Value, route, routelen);
assert(val->Type == dest);
return val;
}
}
}
return callop;
}
//==========================================================================
//
// ZCCCompiler :: PromoteUnary
//
// Converts the operand into a format preferred by the operator.
//
//==========================================================================
ZCC_OpProto *ZCCCompiler::PromoteUnary(EZCCExprType op, ZCC_Expression *&expr)
{
if (expr->Type == TypeError)
{
return NULL;
}
const PType::Conversion *route[CONVERSION_ROUTE_SIZE];
int routelen = countof(route);
ZCC_OpProto *proto = ZCC_OpInfo[op].FindBestProto(expr->Type, route, routelen);
if (proto != NULL)
{
expr = ApplyConversion(expr, route, routelen);
}
return proto;
}
//==========================================================================
//
// ZCCCompiler :: PromoteBinary
//
// Converts the operands into a format (hopefully) compatible with the
// operator.
//
//==========================================================================
ZCC_OpProto *ZCCCompiler::PromoteBinary(EZCCExprType op, ZCC_Expression *&left, ZCC_Expression *&right)
{
// If either operand is of type 'error', the result is also 'error'
if (left->Type == TypeError || right->Type == TypeError)
{
return NULL;
}
const PType::Conversion *route1[CONVERSION_ROUTE_SIZE], *route2[CONVERSION_ROUTE_SIZE];
int route1len = countof(route1), route2len = countof(route2);
ZCC_OpProto *proto = ZCC_OpInfo[op].FindBestProto(left->Type, route1, route1len, right->Type, route2, route2len);
if (proto != NULL)
{
left = ApplyConversion(left, route1, route1len);
right = ApplyConversion(right, route2, route2len);
}
return proto;
}
//==========================================================================
//
// ZCCCompiler :: ApplyConversion
//
//==========================================================================
ZCC_Expression *ZCCCompiler::ApplyConversion(ZCC_Expression *expr, const PType::Conversion **route, int routelen)
{
for (int i = 0; i < routelen; ++i)
{
if (expr->Operation != PEX_ConstValue)
{
expr = AddCastNode(route[i]->TargetType, expr);
}
else
{
route[i]->ConvertConstant(static_cast<ZCC_ExprConstant *>(expr), AST.Strings);
}
}
return expr;
}
//==========================================================================
//
// ZCCCompiler :: AddCastNode
//
//==========================================================================
ZCC_Expression *ZCCCompiler::AddCastNode(PType *type, ZCC_Expression *expr)
{
assert(expr->Operation != PEX_ConstValue && "Expression must not be constant");
// TODO: add a node here
return expr;
}
//==========================================================================
//
@ -1293,7 +1095,7 @@ bool ZCCCompiler::CompileFields(PStruct *type, TArray<ZCC_VarDeclarator *> &Fiel
if (field->Type->ArraySize != nullptr)
{
fieldtype = ResolveArraySize(fieldtype, field->Type->ArraySize, &type->Symbols);
fieldtype = ResolveArraySize(fieldtype, field->Type->ArraySize, type);
}
auto name = field->Names;
@ -1304,7 +1106,7 @@ bool ZCCCompiler::CompileFields(PStruct *type, TArray<ZCC_VarDeclarator *> &Fiel
auto thisfieldtype = fieldtype;
if (name->ArraySize != nullptr)
{
thisfieldtype = ResolveArraySize(thisfieldtype, name->ArraySize, &type->Symbols);
thisfieldtype = ResolveArraySize(thisfieldtype, name->ArraySize, type);
}
if (varflags & VARF_Native)
@ -1662,7 +1464,7 @@ PType *ZCCCompiler::ResolveUserType(ZCC_BasicType *type, PSymbolTable *symt)
//
//==========================================================================
PType *ZCCCompiler::ResolveArraySize(PType *baseType, ZCC_Expression *arraysize, PSymbolTable *sym)
PType *ZCCCompiler::ResolveArraySize(PType *baseType, ZCC_Expression *arraysize, PStruct *cls)
{
TArray<ZCC_Expression *> indices;
@ -1674,15 +1476,21 @@ PType *ZCCCompiler::ResolveArraySize(PType *baseType, ZCC_Expression *arraysize,
node = static_cast<ZCC_Expression*>(node->SiblingNext);
} while (node != arraysize);
FCompileContext ctx(cls, false);
for (auto node : indices)
{
auto val = Simplify(node, sym, true);
if (val->Operation != PEX_ConstValue || !val->Type->IsA(RUNTIME_CLASS(PInt)))
// There is no float->int casting here.
FxExpression *ex = ConvertNode(node);
ex = ex->Resolve(ctx);
if (ex == nullptr) return TypeError;
if (!ex->isConstant() || !ex->ValueType->IsA(RUNTIME_CLASS(PInt)))
{
Error(arraysize, "Array index must be an integer constant");
return TypeError;
}
int size = static_cast<ZCC_ExprConstant *>(val)->IntVal;
int size = static_cast<FxConstant*>(ex)->GetValue().GetInt();
if (size < 1)
{
Error(arraysize, "Array size must be positive");
@ -1693,78 +1501,6 @@ PType *ZCCCompiler::ResolveArraySize(PType *baseType, ZCC_Expression *arraysize,
return baseType;
}
//==========================================================================
//
// ZCCCompiler :: GetInt - Input must be a constant expression
//
//==========================================================================
int ZCCCompiler::GetInt(ZCC_Expression *expr)
{
if (expr->Type == TypeError)
{
return 0;
}
const PType::Conversion *route[CONVERSION_ROUTE_SIZE];
int routelen = expr->Type->FindConversion(TypeSInt32, route, countof(route));
if (routelen < 0)
{
Error(expr, "Cannot convert to integer");
return 0;
}
else
{
if (expr->Type->IsKindOf(RUNTIME_CLASS(PFloat)))
{
Warn(expr, "Truncation of floating point value");
}
auto ex = static_cast<ZCC_ExprConstant *>(ApplyConversion(expr, route, routelen));
return ex->IntVal;
}
}
double ZCCCompiler::GetDouble(ZCC_Expression *expr)
{
if (expr->Type == TypeError)
{
return 0;
}
const PType::Conversion *route[CONVERSION_ROUTE_SIZE];
int routelen = expr->Type->FindConversion(TypeFloat64, route, countof(route));
if (routelen < 0)
{
Error(expr, "Cannot convert to float");
return 0;
}
else
{
auto ex = static_cast<ZCC_ExprConstant *>(ApplyConversion(expr, route, routelen));
return ex->DoubleVal;
}
}
const char *ZCCCompiler::GetString(ZCC_Expression *expr, bool silent)
{
if (expr->Type == TypeError)
{
return nullptr;
}
else if (expr->Type->IsKindOf(RUNTIME_CLASS(PString)))
{
return static_cast<ZCC_ExprConstant *>(expr)->StringVal->GetChars();
}
else if (expr->Type->IsKindOf(RUNTIME_CLASS(PName)))
{
// Ugh... What a mess...
return FName(ENamedName(static_cast<ZCC_ExprConstant *>(expr)->IntVal)).GetChars();
}
else
{
if (!silent) Error(expr, "Cannot convert to string");
return nullptr;
}
}
//==========================================================================
//
// Parses an actor property's parameters and calls the handler
@ -1787,16 +1523,22 @@ void ZCCCompiler::DispatchProperty(FPropertyInfo *prop, ZCC_PropertyStmt *proper
Error(property, "%s: arguments missing", prop->name);
return;
}
property->Values = Simplify(property->Values, &bag.Info->Symbols, true); // need to do this before the loop so that we can find the head node again.
const char * p = prop->params;
auto exp = property->Values;
FCompileContext ctx(bag.Info, false);
while (true)
{
FPropParam conv;
FPropParam pref;
if (exp->NodeType != AST_ExprConstant)
FxExpression *ex = ConvertNode(exp);
ex = ex->Resolve(ctx);
if (ex == nullptr)
{
return;
}
else if (!ex->isConstant())
{
// If we get TypeError, there has already been a message from deeper down so do not print another one.
if (exp->Type != TypeError) Error(exp, "%s: non-constant parameter", prop->name);
@ -1809,7 +1551,7 @@ void ZCCCompiler::DispatchProperty(FPropertyInfo *prop, ZCC_PropertyStmt *proper
{
case 'X': // Expression in parentheses or number. We only support the constant here. The function will have to be handled by a separate property to get past the parser.
conv.i = GetInt(exp);
conv.i = GetIntConst(ex, ctx);
params.Push(conv);
conv.exp = nullptr;
break;
@ -1817,15 +1559,15 @@ void ZCCCompiler::DispatchProperty(FPropertyInfo *prop, ZCC_PropertyStmt *proper
case 'I':
case 'M': // special case for morph styles in DECORATE . This expression-aware parser will not need this.
case 'N': // special case for thing activations in DECORATE. This expression-aware parser will not need this.
conv.i = GetInt(exp);
conv.i = GetIntConst(ex, ctx);
break;
case 'F':
conv.d = GetDouble(exp);
conv.d = GetFloatConst(ex, ctx);
break;
case 'Z': // an optional string. Does not allow any numeric value.
if (!GetString(exp, true))
if (ex->ValueType != TypeString)
{
// apply this expression to the next argument on the list.
params.Push(conv);
@ -1833,21 +1575,21 @@ void ZCCCompiler::DispatchProperty(FPropertyInfo *prop, ZCC_PropertyStmt *proper
p++;
continue;
}
conv.s = GetString(exp);
conv.s = GetStringConst(ex, ctx);
break;
case 'C': // this parser accepts colors only in string form.
pref.i = 1;
case 'S':
case 'T': // a filtered string (ZScript only parses filtered strings so there's nothing to do here.)
conv.s = GetString(exp);
conv.s = GetStringConst(ex, ctx);
break;
case 'L': // Either a number or a list of strings
if (!GetString(exp, true))
if (ex->ValueType != TypeString)
{
pref.i = 0;
conv.i = GetInt(exp);
conv.i = GetIntConst(ex, ctx);
}
else
{
@ -1857,13 +1599,13 @@ void ZCCCompiler::DispatchProperty(FPropertyInfo *prop, ZCC_PropertyStmt *proper
do
{
conv.s = GetString(exp);
conv.s = GetStringConst(ex, ctx);
if (conv.s != nullptr)
{
params.Push(conv);
params[0].i++;
}
exp = Simplify(static_cast<ZCC_Expression *>(exp->SiblingNext), &bag.Info->Symbols, true);
exp = static_cast<ZCC_Expression *>(exp->SiblingNext);
} while (exp != property->Values);
goto endofparm;
}
@ -1881,7 +1623,7 @@ void ZCCCompiler::DispatchProperty(FPropertyInfo *prop, ZCC_PropertyStmt *proper
}
params.Push(conv);
params[0].i++;
exp = Simplify(static_cast<ZCC_Expression *>(exp->SiblingNext), &bag.Info->Symbols, true);
exp = static_cast<ZCC_Expression *>(exp->SiblingNext);
endofparm:
p++;
// Skip the DECORATE 'no comma' marker
@ -1950,8 +1692,8 @@ void ZCCCompiler::DispatchScriptProperty(PProperty *prop, ZCC_PropertyStmt *prop
return;
}
auto values = Simplify(property->Values, &bag.Info->Symbols, true); // need to do this before the loop so that we can find the head node again.
auto exp = values;
auto exp = property->Values;
FCompileContext ctx(bag.Info, false);
for (auto f : prop->Variables)
{
void *addr;
@ -1965,25 +1707,38 @@ void ZCCCompiler::DispatchScriptProperty(PProperty *prop, ZCC_PropertyStmt *prop
addr = ((char*)defaults) + f->Offset;
}
FxExpression *ex = ConvertNode(exp);
ex = ex->Resolve(ctx);
if (ex == nullptr)
{
return;
}
else if (!ex->isConstant())
{
// If we get TypeError, there has already been a message from deeper down so do not print another one.
if (exp->Type != TypeError) Error(exp, "%s: non-constant parameter", prop->SymbolName.GetChars());
return;
}
if (f->Type == TypeBool)
{
static_cast<PBool*>(f->Type)->SetValue(addr, !!GetInt(exp));
static_cast<PBool*>(f->Type)->SetValue(addr, !!GetIntConst(ex, ctx));
}
if (f->Type->IsKindOf(RUNTIME_CLASS(PInt)))
{
static_cast<PInt*>(f->Type)->SetValue(addr, GetInt(exp));
static_cast<PInt*>(f->Type)->SetValue(addr, GetIntConst(ex, ctx));
}
else if (f->Type->IsKindOf(RUNTIME_CLASS(PFloat)))
{
static_cast<PFloat*>(f->Type)->SetValue(addr, GetDouble(exp));
static_cast<PFloat*>(f->Type)->SetValue(addr, GetFloatConst(ex, ctx));
}
else if (f->Type->IsKindOf(RUNTIME_CLASS(PString)))
{
*(FString*)addr = GetString(exp);
*(FString*)addr = GetStringConst(ex, ctx);
}
else if (f->Type->IsKindOf(RUNTIME_CLASS(PClassPointer)))
{
auto clsname = GetString(exp);
auto clsname = GetStringConst(ex, ctx);
auto cls = PClass::FindClass(clsname);
if (cls == nullptr)
{
@ -1991,7 +1746,7 @@ void ZCCCompiler::DispatchScriptProperty(PProperty *prop, ZCC_PropertyStmt *prop
}
else if (!cls->IsDescendantOf(static_cast<PClassPointer*>(f->Type)->ClassRestriction))
{
Error(property, "class %s is not compatible with property type %s", clsname, static_cast<PClassPointer*>(f->Type)->ClassRestriction->TypeName.GetChars());
Error(property, "class %s is not compatible with property type %s", clsname.GetChars(), static_cast<PClassPointer*>(f->Type)->ClassRestriction->TypeName.GetChars());
}
*(PClass**)addr = cls;
}
@ -2772,7 +2527,7 @@ void ZCCCompiler::CompileStates()
{
state.sprite = GetSpriteIndex(sl->Sprite->GetChars());
}
// It is important to call CheckRandom before Simplify, because Simplify will resolve the function's name to nonsense
FCompileContext ctx(c->Type(), false);
if (CheckRandom(sl->Duration))
{
auto func = static_cast<ZCC_ExprFuncCall *>(sl->Duration);
@ -2780,26 +2535,16 @@ void ZCCCompiler::CompileStates()
{
Error(sl, "Random duration requires exactly 2 parameters");
}
auto p1 = Simplify(func->Parameters->Value, &c->Type()->Symbols, true);
auto p2 = Simplify(static_cast<ZCC_FuncParm *>(func->Parameters->SiblingNext)->Value, &c->Type()->Symbols, true);
int v1 = GetInt(p1);
int v2 = GetInt(p2);
int v1 = IntConstFromNode(func->Parameters->Value, c->Type());
int v2 = IntConstFromNode(static_cast<ZCC_FuncParm *>(func->Parameters->SiblingNext)->Value, c->Type());
if (v1 > v2) std::swap(v1, v2);
state.Tics = (int16_t)clamp<int>(v1, 0, INT16_MAX);
state.TicRange = (uint16_t)clamp<int>(v2 - v1, 0, UINT16_MAX);
}
else
{
auto duration = Simplify(sl->Duration, &c->Type()->Symbols, true);
if (duration->Operation == PEX_ConstValue)
{
state.Tics = (int16_t)clamp<int>(GetInt(duration), -1, INT16_MAX);
state.TicRange = 0;
}
else
{
Error(sl, "Duration is not a constant");
}
state.Tics = (int16_t)IntConstFromNode(sl->Duration, c->Type());
state.TicRange = 0;
}
if (sl->bBright) state.StateFlags |= STF_FULLBRIGHT;
if (sl->bFast) state.StateFlags |= STF_FAST;
@ -2815,18 +2560,8 @@ void ZCCCompiler::CompileStates()
}
if (sl->Offset != nullptr)
{
auto o1 = static_cast<ZCC_Expression *>(Simplify(sl->Offset, &c->Type()->Symbols, true));
auto o2 = static_cast<ZCC_Expression *>(Simplify(static_cast<ZCC_Expression *>(o1->SiblingNext), &c->Type()->Symbols, true));
if (o1->Operation != PEX_ConstValue || o2->Operation != PEX_ConstValue)
{
Error(o1, "State offsets must be constant");
}
else
{
state.Misc1 = GetInt(o1);
state.Misc2 = GetInt(o2);
}
state.Misc1 = IntConstFromNode(sl->Offset, c->Type());
state.Misc2 = IntConstFromNode(static_cast<ZCC_Expression *>(sl->Offset->SiblingNext), c->Type());
}
#ifdef DYNLIGHT
if (sl->Lights != nullptr)
@ -2834,7 +2569,7 @@ void ZCCCompiler::CompileStates()
auto l = sl->Lights;
do
{
AddStateLight(&state, GetString(l));
AddStateLight(&state, StringConstFromNode(l, c->Type()));
l = static_cast<decltype(l)>(l->SiblingNext);
} while (l != sl->Lights);
}
@ -2875,23 +2610,15 @@ void ZCCCompiler::CompileStates()
statename.Truncate((long)statename.Len() - 1); // remove the last '.' in the label name
if (sg->Offset != nullptr)
{
auto ofs = Simplify(sg->Offset, &c->Type()->Symbols, true);
if (ofs->Operation != PEX_ConstValue)
int offset = IntConstFromNode(sg->Offset, c->Type());
if (offset < 0)
{
Error(sg, "Constant offset expected for GOTO");
Error(sg, "GOTO offset must be positive");
offset = 0;
}
else
if (offset > 0)
{
int offset = GetInt(ofs);
if (offset < 0)
{
Error(sg, "GOTO offset must be positive");
offset = 0;
}
if (offset > 0)
{
statename.AppendFormat("+%d", offset);
}
statename.AppendFormat("+%d", offset);
}
}
if (!statedef.SetGotoLabel(statename))
@ -3292,7 +3019,7 @@ FxExpression *ZCCCompiler::ConvertNode(ZCC_TreeNode *ast)
if (loc->Type->ArraySize != nullptr)
{
ztype = ResolveArraySize(ztype, loc->Type->ArraySize, &ConvertClass->Symbols);
ztype = ResolveArraySize(ztype, loc->Type->ArraySize, ConvertClass);
}
do
@ -3301,7 +3028,7 @@ FxExpression *ZCCCompiler::ConvertNode(ZCC_TreeNode *ast)
if (node->ArraySize != nullptr)
{
type = ResolveArraySize(ztype, node->ArraySize, &ConvertClass->Symbols);
type = ResolveArraySize(ztype, node->ArraySize, ConvertClass);
}
else
{

View file

@ -2,6 +2,7 @@
#define ZCC_COMPILE_H
#include <memory>
#include "codegeneration/codegen.h"
struct Baggage;
struct FPropertyInfo;
@ -77,7 +78,9 @@ struct ZCC_PropertyWork
struct ZCC_ConstantWork
{
ZCC_ConstantDef *node;
PSymbolTable *outputtable;
PStruct *cls;
PSymbolTable *Outputtable;
ExpVal constval;
};
class ZCCCompiler
@ -88,14 +91,16 @@ public:
int Compile();
private:
int IntConstFromNode(ZCC_TreeNode *node, PStruct *cls);
FString ZCCCompiler::StringConstFromNode(ZCC_TreeNode *node, PStruct *cls);
void ProcessClass(ZCC_Class *node, PSymbolTreeNode *tnode);
void ProcessStruct(ZCC_Struct *node, PSymbolTreeNode *tnode, ZCC_Class *outer);
void CreateStructTypes();
void CreateClassTypes();
void CopyConstants(TArray<ZCC_ConstantWork> &dest, TArray<ZCC_ConstantDef*> &Constants, PSymbolTable *ot);
void CopyConstants(TArray<ZCC_ConstantWork> &dest, TArray<ZCC_ConstantDef*> &Constants, PStruct *cls, PSymbolTable *ot);
void CompileAllConstants();
void AddConstant(ZCC_ConstantWork &constant);
bool CompileConstant(ZCC_ConstantDef *def, PSymbolTable *Symbols);
bool CompileConstant(ZCC_ConstantWork *def);
void CompileAllFields();
bool CompileFields(PStruct *type, TArray<ZCC_VarDeclarator *> &Fields, PClass *Outer, PSymbolTable *TreeNodes, bool forstruct, bool hasnativechildren = false);
@ -103,7 +108,7 @@ private:
bool CompileProperties(PClass *type, TArray<ZCC_Property *> &Properties, FName prefix);
FString FlagsToString(uint32_t flags);
PType *DetermineType(PType *outertype, ZCC_TreeNode *field, FName name, ZCC_Type *ztype, bool allowarraytypes, bool formember);
PType *ResolveArraySize(PType *baseType, ZCC_Expression *arraysize, PSymbolTable *sym);
PType *ResolveArraySize(PType *baseType, ZCC_Expression *arraysize, PStruct *cls);
PType *ResolveUserType(ZCC_BasicType *type, PSymbolTable *sym);
void InitDefaults();
@ -111,9 +116,6 @@ private:
void ProcessDefaultProperty(PClassActor *cls, ZCC_PropertyStmt *flg, Baggage &bag);
void DispatchProperty(FPropertyInfo *prop, ZCC_PropertyStmt *pex, AActor *defaults, Baggage &bag);
void DispatchScriptProperty(PProperty *prop, ZCC_PropertyStmt *pex, AActor *defaults, Baggage &bag);
int GetInt(ZCC_Expression *expr);
double GetDouble(ZCC_Expression *expr);
const char *GetString(ZCC_Expression *expr, bool silent = false);
void CompileFunction(ZCC_StructWork *c, ZCC_FuncDeclarator *f, bool forclass);
void InitFunctions();
@ -128,18 +130,6 @@ private:
PSymbolTreeNode *AddTreeNode(FName name, ZCC_TreeNode *node, PSymbolTable *treenodes, bool searchparents = false);
ZCC_Expression *Simplify(ZCC_Expression *root, PSymbolTable *Symbols, bool wantconstant);
ZCC_Expression *DoSimplify(ZCC_Expression *root, PSymbolTable *Symbols);
ZCC_Expression *SimplifyUnary(ZCC_ExprUnary *unary, PSymbolTable *Symbols);
ZCC_Expression *SimplifyBinary(ZCC_ExprBinary *binary, PSymbolTable *Symbols);
ZCC_Expression *SimplifyMemberAccess(ZCC_ExprMemberAccess *dotop, PSymbolTable *Symbols);
ZCC_Expression *SimplifyFunctionCall(ZCC_ExprFuncCall *callop, PSymbolTable *Symbols);
ZCC_OpProto *PromoteUnary(EZCCExprType op, ZCC_Expression *&expr);
ZCC_OpProto *PromoteBinary(EZCCExprType op, ZCC_Expression *&left, ZCC_Expression *&right);
ZCC_Expression *ApplyConversion(ZCC_Expression *expr, const PType::Conversion **route, int routelen);
ZCC_Expression *AddCastNode(PType *type, ZCC_Expression *expr);
ZCC_Expression *IdentifyIdentifier(ZCC_ExprID *idnode, PSymbolTable *sym);
ZCC_Expression *NodeFromSymbol(PSymbol *sym, ZCC_Expression *source, PSymbolTable *table);
ZCC_ExprConstant *NodeFromSymbolConst(PSymbolConst *sym, ZCC_Expression *idnode);

View file

@ -1,530 +0,0 @@
/*
** zcc_expr.cpp
**
**---------------------------------------------------------------------------
** Copyright -2016 Randy Heit
** All rights reserved.
**
** Redistribution and use in source and binary forms, with or without
** modification, are permitted provided that the following conditions
** are met:
**
** 1. Redistributions of source code must retain the above copyright
** notice, this list of conditions and the following disclaimer.
** 2. Redistributions in binary form must reproduce the above copyright
** notice, this list of conditions and the following disclaimer in the
** documentation and/or other materials provided with the distribution.
** 3. The name of the author may not be used to endorse or promote products
** derived from this software without specific prior written permission.
**
** THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
** IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
** OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
** IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
** INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
** NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
** DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
** THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
** (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
** THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
**---------------------------------------------------------------------------
**
*/
#include <math.h>
#include "dobject.h"
#include "sc_man.h"
#include "c_console.h"
#include "c_dispatch.h"
#include "w_wad.h"
#include "cmdlib.h"
#include "m_alloc.h"
#include "zcc_parser.h"
#include "templates.h"
#include "math/cmath.h"
#define luai_nummod(a,b) ((a) - floor((a)/(b))*(b))
static void FtoD(ZCC_ExprConstant *expr, FSharedStringArena &str_arena);
ZCC_OpInfoType ZCC_OpInfo[PEX_COUNT_OF] =
{
#define xx(a,z) { #a, NULL },
#include "zcc_exprlist.h"
};
// Structures used for initializing operator overloads
struct OpProto1
{
EZCCExprType Op;
PType **Type;
EvalConst1op EvalConst;
};
struct OpProto2
{
EZCCExprType Op;
PType **Res, **Ltype, **Rtype;
EvalConst2op EvalConst;
};
static struct FreeOpInfoProtos
{
~FreeOpInfoProtos()
{
for (size_t i = 0; i < countof(ZCC_OpInfo); ++i)
{
ZCC_OpInfo[i].FreeAllProtos();
}
}
} ProtoFreeer;
void ZCC_OpInfoType::FreeAllProtos()
{
for (ZCC_OpProto *proto = Protos, *next = NULL; proto != NULL; proto = next)
{
next = proto->Next;
delete proto;
}
Protos = NULL;
}
void ZCC_OpInfoType::AddProto(PType *res, PType *optype, EvalConst1op evalconst)
{
ZCC_OpProto *proto = new ZCC_OpProto(res, optype, NULL);
proto->EvalConst1 = evalconst;
proto->Next = Protos;
Protos = proto;
}
void ZCC_OpInfoType::AddProto(PType *res, PType *ltype, PType *rtype, EvalConst2op evalconst)
{
assert(ltype != NULL);
ZCC_OpProto *proto = new ZCC_OpProto(res, ltype, rtype);
proto->EvalConst2 = evalconst;
proto->Next = Protos;
Protos = proto;
}
//==========================================================================
//
// ZCC_OpInfoType :: FindBestProto (Unary)
//
// Finds the "best" prototype for this operand type. Best is defined as the
// one that requires the fewest conversions. Also returns the conversion
// route necessary to get from the input type to the desired type.
//
//==========================================================================
ZCC_OpProto *ZCC_OpInfoType::FindBestProto(PType *optype, const PType::Conversion **route, int &numslots)
{
assert(optype != NULL);
const PType::Conversion *routes[2][CONVERSION_ROUTE_SIZE];
const PType::Conversion **best_route = NULL;
int cur_route = 0;
ZCC_OpProto *best_proto = NULL;
int best_dist = INT_MAX;
// Find the best prototype.
for (ZCC_OpProto *proto = Protos; best_dist != 0 && proto != NULL; proto = proto->Next)
{
if (proto->Type2 != NULL)
{ // Not a unary prototype.
continue;
}
int dist = optype->FindConversion(proto->Type1, routes[cur_route], CONVERSION_ROUTE_SIZE);
if (dist >= 0 && dist < best_dist)
{
best_dist = dist;
best_proto = proto;
best_route = routes[cur_route];
cur_route ^= 1;
}
}
// Copy best conversion route to the caller's array.
if (best_route != NULL && route != NULL && numslots > 0)
{
numslots = MIN(numslots, best_dist);
if (numslots > 0)
{
memcpy(route, best_route, sizeof(*route) * numslots);
}
}
return best_proto;
}
//==========================================================================
//
// ZCC_OpInfoType :: FindBestProto (Binary)
//
// Finds the "best" prototype for the given operand types. Here, best is
// defined as the one that requires the fewest conversions for *one* of the
// operands. For prototypes with matching distances, the first one found
// is used. ZCC_InitOperators() initializes the prototypes in order such
// that this will result in the precedences: double > uint > int
//
//==========================================================================
ZCC_OpProto *ZCC_OpInfoType::FindBestProto(
PType *left, const PType::Conversion **route1, int &numslots1,
PType *right, const PType::Conversion **route2, int &numslots2)
{
assert(left != NULL && right != NULL);
const PType::Conversion *routes[2][2][CONVERSION_ROUTE_SIZE];
const PType::Conversion **best_route1 = NULL, **best_route2 = NULL;
int cur_route1 = 0, cur_route2 = 0;
int best_dist1 = INT_MAX, best_dist2 = INT_MAX;
ZCC_OpProto *best_proto = NULL;
int best_low_dist = INT_MAX;
for (ZCC_OpProto *proto = Protos; best_low_dist != 0 && proto != NULL; proto = proto->Next)
{
if (proto->Type2 == NULL)
{ // Not a binary prototype
continue;
}
int dist1 = left->FindConversion(proto->Type1, routes[0][cur_route1], CONVERSION_ROUTE_SIZE);
int dist2 = right->FindConversion(proto->Type2, routes[1][cur_route2], CONVERSION_ROUTE_SIZE);
if (dist1 < 0 || dist2 < 0)
{ // one or both operator types are unreachable
continue;
}
// Do not count F32->F64 conversions in the distance comparisons. If we do, then
// [[float32 (op) int]] will choose the integer version instead of the floating point
// version, which we do not want.
int test_dist1 = dist1, test_dist2 = dist2;
if (test_dist1 > 0 && routes[0][cur_route1][0]->ConvertConstant == FtoD)
{
test_dist1--;
}
if (test_dist2 > 0 && routes[1][cur_route2][0]->ConvertConstant == FtoD)
{
test_dist2--;
}
int dist = MIN(test_dist1, test_dist2);
if (dist < best_low_dist)
{
best_low_dist = dist;
best_proto = proto;
best_dist1 = dist1;
best_dist2 = dist2;
best_route1 = routes[0][cur_route1];
best_route2 = routes[1][cur_route2];
cur_route1 ^= 1;
cur_route2 ^= 1;
}
}
// Copy best conversion route to the caller's arrays.
if (best_route1 != NULL && route1 != NULL && numslots1 > 0)
{
numslots1 = MIN(numslots1, best_dist1);
if (numslots1 > 0)
{
memcpy(route1, best_route1, sizeof(*route1) * numslots1);
}
}
if (best_route2 != NULL && route2 != NULL && numslots2 > 0)
{
numslots2 = MIN(numslots2, best_dist2);
if (numslots2 > 0)
{
memcpy(route2, best_route2, sizeof(*route2) * numslots2);
}
}
return best_proto;
}
static ZCC_ExprConstant *EvalIdentity(ZCC_ExprConstant *val)
{
return val;
}
static ZCC_ExprConstant *EvalConcat(ZCC_ExprConstant *l, ZCC_ExprConstant *r, FSharedStringArena &strings)
{
FString str = *l->StringVal + *r->StringVal;
l->StringVal = strings.Alloc(str);
return l;
}
static ZCC_ExprConstant *EvalLTGTEQSInt32(ZCC_ExprConstant *l, ZCC_ExprConstant *r, FSharedStringArena &)
{
l->IntVal = l->IntVal < r->IntVal ? -1 : l->IntVal == r->IntVal ? 0 : 1;
return l;
}
static ZCC_ExprConstant *EvalLTGTEQUInt32(ZCC_ExprConstant *l, ZCC_ExprConstant *r, FSharedStringArena &)
{
l->IntVal = l->UIntVal < r->UIntVal ? -1 : l->UIntVal == r->UIntVal ? 0 : 1;
l->Type = TypeSInt32;
return l;
}
static ZCC_ExprConstant *EvalLTGTEQFloat64(ZCC_ExprConstant *l, ZCC_ExprConstant *r, FSharedStringArena &)
{
l->IntVal = l->DoubleVal < r->DoubleVal ? -1 : l->DoubleVal == r->DoubleVal ? 0 : 1;
l->Type = TypeSInt32;
return l;
}
void ZCC_InitOperators()
{
// Prototypes are added from lowest to highest conversion precedence.
// Unary operators
static const OpProto1 UnaryOpInit[] =
{
{ PEX_PostInc , (PType **)&TypeSInt32, EvalIdentity },
{ PEX_PostInc , (PType **)&TypeUInt32, EvalIdentity },
{ PEX_PostInc , (PType **)&TypeFloat64, EvalIdentity },
{ PEX_PostDec , (PType **)&TypeSInt32, EvalIdentity },
{ PEX_PostDec , (PType **)&TypeUInt32, EvalIdentity },
{ PEX_PostDec , (PType **)&TypeFloat64, EvalIdentity },
{ PEX_PreInc , (PType **)&TypeSInt32, [](auto *val) { val->IntVal += 1; return val; } },
{ PEX_PreInc , (PType **)&TypeUInt32, [](auto *val) { val->UIntVal += 1; return val; } },
{ PEX_PreInc , (PType **)&TypeFloat64, [](auto *val) { val->DoubleVal += 1; return val; } },
{ PEX_PreDec , (PType **)&TypeSInt32, [](auto *val) { val->IntVal -= 1; return val; } },
{ PEX_PreDec , (PType **)&TypeUInt32, [](auto *val) { val->UIntVal -= 1; return val; } },
{ PEX_PreDec , (PType **)&TypeFloat64, [](auto *val) { val->DoubleVal -= 1; return val; } },
{ PEX_Negate , (PType **)&TypeSInt32, [](auto *val) { val->IntVal = -val->IntVal; return val; } },
{ PEX_Negate , (PType **)&TypeFloat64, [](auto *val) { val->DoubleVal = -val->DoubleVal; return val; } },
{ PEX_AntiNegate , (PType **)&TypeSInt32, EvalIdentity },
{ PEX_AntiNegate , (PType **)&TypeUInt32, EvalIdentity },
{ PEX_AntiNegate , (PType **)&TypeFloat64, EvalIdentity },
{ PEX_BitNot , (PType **)&TypeSInt32, [](auto *val) { val->IntVal = ~val->IntVal; return val; } },
{ PEX_BitNot , (PType **)&TypeUInt32, [](auto *val) { val->UIntVal = ~val->UIntVal; return val; } },
{ PEX_BoolNot , (PType **)&TypeBool, [](auto *val) { val->IntVal = !val->IntVal; return val; } },
};
for (size_t i = 0; i < countof(UnaryOpInit); ++i)
{
ZCC_OpInfo[UnaryOpInit[i].Op].AddProto(*UnaryOpInit[i].Type, *UnaryOpInit[i].Type, UnaryOpInit[i].EvalConst);
}
// Binary operators
static const OpProto2 BinaryOpInit[] =
{
{ PEX_Add , (PType **)&TypeSInt32, (PType **)&TypeSInt32, (PType **)&TypeSInt32, [](auto *l, auto *r, auto &) { l->IntVal += r->IntVal; return l; } },
{ PEX_Add , (PType **)&TypeUInt32, (PType **)&TypeUInt32, (PType **)&TypeUInt32, [](auto *l, auto *r, auto &) { l->UIntVal += r->UIntVal; return l; } },
{ PEX_Add , (PType **)&TypeFloat64, (PType **)&TypeFloat64, (PType **)&TypeFloat64, [](auto *l, auto *r, auto &) { l->DoubleVal += r->DoubleVal; return l; } },
{ PEX_Sub , (PType **)&TypeSInt32, (PType **)&TypeSInt32, (PType **)&TypeSInt32, [](auto *l, auto *r, auto &) { l->IntVal -= r->IntVal; return l; } },
{ PEX_Sub , (PType **)&TypeUInt32, (PType **)&TypeUInt32, (PType **)&TypeUInt32, [](auto *l, auto *r, auto &) { l->UIntVal -= r->UIntVal; return l; } },
{ PEX_Sub , (PType **)&TypeFloat64, (PType **)&TypeFloat64, (PType **)&TypeFloat64, [](auto *l, auto *r, auto &) { l->DoubleVal -= r->DoubleVal; return l; } },
{ PEX_Mul , (PType **)&TypeSInt32, (PType **)&TypeSInt32, (PType **)&TypeSInt32, [](auto *l, auto *r, auto &) { l->IntVal *= r->IntVal; return l; } },
{ PEX_Mul , (PType **)&TypeUInt32, (PType **)&TypeUInt32, (PType **)&TypeUInt32, [](auto *l, auto *r, auto &) { l->UIntVal *= r->UIntVal; return l; } },
{ PEX_Mul , (PType **)&TypeFloat64, (PType **)&TypeFloat64, (PType **)&TypeFloat64, [](auto *l, auto *r, auto &) { l->DoubleVal *= r->DoubleVal; return l; } },
{ PEX_Div , (PType **)&TypeSInt32, (PType **)&TypeSInt32, (PType **)&TypeSInt32, [](auto *l, auto *r, auto &) { l->IntVal /= r->IntVal; return l; } },
{ PEX_Div , (PType **)&TypeUInt32, (PType **)&TypeUInt32, (PType **)&TypeUInt32, [](auto *l, auto *r, auto &) { l->UIntVal /= r->UIntVal; return l; } },
{ PEX_Div , (PType **)&TypeFloat64, (PType **)&TypeFloat64, (PType **)&TypeFloat64, [](auto *l, auto *r, auto &) { l->DoubleVal /= r->DoubleVal; return l; } },
{ PEX_Mod , (PType **)&TypeSInt32, (PType **)&TypeSInt32, (PType **)&TypeSInt32, [](auto *l, auto *r, auto &) { l->IntVal %= r->IntVal; return l; } },
{ PEX_Mod , (PType **)&TypeUInt32, (PType **)&TypeUInt32, (PType **)&TypeUInt32, [](auto *l, auto *r, auto &) { l->UIntVal %= r->UIntVal; return l; } },
{ PEX_Mod , (PType **)&TypeFloat64, (PType **)&TypeFloat64, (PType **)&TypeFloat64, [](auto *l, auto *r, auto &) { l->DoubleVal = luai_nummod(l->DoubleVal, r->DoubleVal); return l; } },
{ PEX_Pow , (PType **)&TypeFloat64, (PType **)&TypeFloat64, (PType **)&TypeFloat64, [](auto *l, auto *r, auto &) { l->DoubleVal = g_pow(l->DoubleVal, r->DoubleVal); return l; } },
{ PEX_Concat , (PType **)&TypeString, (PType **)&TypeString, (PType **)&TypeString, EvalConcat },
{ PEX_BitAnd , (PType **)&TypeSInt32, (PType **)&TypeSInt32, (PType **)&TypeSInt32, [](auto *l, auto *r, auto &) { l->IntVal &= r->IntVal; return l; } },
{ PEX_BitAnd , (PType **)&TypeUInt32, (PType **)&TypeUInt32, (PType **)&TypeUInt32, [](auto *l, auto *r, auto &) { l->UIntVal &= r->UIntVal; return l; } },
{ PEX_BitOr , (PType **)&TypeSInt32, (PType **)&TypeSInt32, (PType **)&TypeSInt32, [](auto *l, auto *r, auto &) { l->IntVal |= r->IntVal; return l; } },
{ PEX_BitOr , (PType **)&TypeUInt32, (PType **)&TypeUInt32, (PType **)&TypeUInt32, [](auto *l, auto *r, auto &) { l->UIntVal |= r->UIntVal; return l; } },
{ PEX_BitXor , (PType **)&TypeSInt32, (PType **)&TypeSInt32, (PType **)&TypeSInt32, [](auto *l, auto *r, auto &) { l->IntVal ^= r->IntVal; return l; } },
{ PEX_BitXor , (PType **)&TypeUInt32, (PType **)&TypeUInt32, (PType **)&TypeUInt32, [](auto *l, auto *r, auto &) { l->UIntVal ^= r->UIntVal; return l; } },
{ PEX_BoolAnd , (PType **)&TypeSInt32, (PType **)&TypeSInt32, (PType **)&TypeSInt32, [](auto *l, auto *r, auto &) { l->IntVal = l->IntVal && r->IntVal; l->Type = TypeBool; return l; } },
{ PEX_BoolAnd , (PType **)&TypeUInt32, (PType **)&TypeUInt32, (PType **)&TypeUInt32, [](auto *l, auto *r, auto &) { l->IntVal = l->UIntVal && r->UIntVal; l->Type = TypeBool; return l; } },
{ PEX_BoolOr , (PType **)&TypeSInt32, (PType **)&TypeSInt32, (PType **)&TypeSInt32, [](auto *l, auto *r, auto &) { l->IntVal = l->IntVal || r->IntVal; l->Type = TypeBool; return l; } },
{ PEX_BoolOr , (PType **)&TypeUInt32, (PType **)&TypeUInt32, (PType **)&TypeUInt32, [](auto *l, auto *r, auto &) { l->IntVal = l->UIntVal || r->UIntVal; l->Type = TypeBool; return l; } },
{ PEX_LeftShift , (PType **)&TypeSInt32, (PType **)&TypeSInt32, (PType **)&TypeUInt32, [](auto *l, auto *r, auto &) { l->IntVal <<= r->UIntVal; return l; } },
{ PEX_LeftShift , (PType **)&TypeUInt32, (PType **)&TypeUInt32, (PType **)&TypeUInt32, [](auto *l, auto *r, auto &) { l->UIntVal <<= r->UIntVal; return l; } },
{ PEX_RightShift , (PType **)&TypeSInt32, (PType **)&TypeSInt32, (PType **)&TypeUInt32, [](auto *l, auto *r, auto &) { l->IntVal >>= r->UIntVal; return l; } },
{ PEX_RightShift , (PType **)&TypeUInt32, (PType **)&TypeUInt32, (PType **)&TypeUInt32, [](auto *l, auto *r, auto &) { l->UIntVal >>= r->UIntVal; return l; } },
{ PEX_LT , (PType **)&TypeBool, (PType **)&TypeSInt32, (PType **)&TypeSInt32, [](auto *l, auto *r, auto &) { l->IntVal = l->IntVal < r->IntVal; l->Type = TypeBool; return l; } },
{ PEX_LT , (PType **)&TypeBool, (PType **)&TypeUInt32, (PType **)&TypeUInt32, [](auto *l, auto *r, auto &) { l->IntVal = l->UIntVal < r->UIntVal; l->Type = TypeBool; return l; } },
{ PEX_LT , (PType **)&TypeBool, (PType **)&TypeFloat64, (PType **)&TypeFloat64, [](auto *l, auto *r, auto &) { l->IntVal = l->DoubleVal < r->DoubleVal; l->Type = TypeBool; return l; } },
{ PEX_LTEQ , (PType **)&TypeBool, (PType **)&TypeSInt32, (PType **)&TypeSInt32, [](auto *l, auto *r, auto &) { l->IntVal = l->IntVal <= r->IntVal; l->Type = TypeBool; return l; } },
{ PEX_LTEQ , (PType **)&TypeBool, (PType **)&TypeUInt32, (PType **)&TypeUInt32, [](auto *l, auto *r, auto &) { l->IntVal = l->UIntVal <= r->UIntVal; l->Type = TypeBool; return l; } },
{ PEX_LTEQ , (PType **)&TypeBool, (PType **)&TypeFloat64, (PType **)&TypeFloat64, [](auto *l, auto *r, auto &) { l->IntVal = l->DoubleVal <= r->DoubleVal; l->Type = TypeBool; return l; } },
{ PEX_GT , (PType **)&TypeBool, (PType **)&TypeSInt32, (PType **)&TypeSInt32, [](auto *l, auto *r, auto &) { l->IntVal = l->IntVal > r->IntVal; l->Type = TypeBool; return l; } },
{ PEX_GT , (PType **)&TypeBool, (PType **)&TypeUInt32, (PType **)&TypeUInt32, [](auto *l, auto *r, auto &) { l->IntVal = l->UIntVal > r->UIntVal; l->Type = TypeBool; return l; } },
{ PEX_GT , (PType **)&TypeBool, (PType **)&TypeFloat64, (PType **)&TypeFloat64, [](auto *l, auto *r, auto &) { l->IntVal = l->DoubleVal > r->DoubleVal; l->Type = TypeBool; return l; } },
{ PEX_GTEQ , (PType **)&TypeBool, (PType **)&TypeSInt32, (PType **)&TypeSInt32, [](auto *l, auto *r, auto &) { l->IntVal = l->IntVal >= r->IntVal; l->Type = TypeBool; return l; } },
{ PEX_GTEQ , (PType **)&TypeBool, (PType **)&TypeUInt32, (PType **)&TypeUInt32, [](auto *l, auto *r, auto &) { l->IntVal = l->UIntVal >= r->UIntVal; l->Type = TypeBool; return l; } },
{ PEX_GTEQ , (PType **)&TypeBool, (PType **)&TypeFloat64, (PType **)&TypeFloat64, [](auto *l, auto *r, auto &) { l->IntVal = l->DoubleVal >= r->DoubleVal; l->Type = TypeBool; return l; } },
{ PEX_NEQ , (PType **)&TypeBool, (PType **)&TypeSInt32, (PType **)&TypeSInt32, [](auto *l, auto *r, auto &) { l->IntVal = l->IntVal != r->IntVal; l->Type = TypeBool; return l; } },
{ PEX_NEQ , (PType **)&TypeBool, (PType **)&TypeUInt32, (PType **)&TypeUInt32, [](auto *l, auto *r, auto &) { l->IntVal = l->UIntVal != r->UIntVal; l->Type = TypeBool; return l; } },
{ PEX_NEQ , (PType **)&TypeBool, (PType **)&TypeFloat64, (PType **)&TypeFloat64, [](auto *l, auto *r, auto &) { l->IntVal = l->DoubleVal != r->DoubleVal; l->Type = TypeBool; return l; } },
{ PEX_EQEQ , (PType **)&TypeBool, (PType **)&TypeSInt32, (PType **)&TypeSInt32, [](auto *l, auto *r, auto &) { l->IntVal = l->IntVal == r->IntVal; l->Type = TypeBool; return l; } },
{ PEX_EQEQ , (PType **)&TypeBool, (PType **)&TypeUInt32, (PType **)&TypeUInt32, [](auto *l, auto *r, auto &) { l->IntVal = l->UIntVal == r->UIntVal; l->Type = TypeBool; return l; } },
{ PEX_EQEQ , (PType **)&TypeBool, (PType **)&TypeFloat64, (PType **)&TypeFloat64, [](auto *l, auto *r, auto &) { l->IntVal = l->DoubleVal == r->DoubleVal; l->Type = TypeBool; return l; } },
{ PEX_LTGTEQ , (PType **)&TypeSInt32, (PType **)&TypeSInt32, (PType **)&TypeSInt32, EvalLTGTEQSInt32 },
{ PEX_LTGTEQ , (PType **)&TypeSInt32, (PType **)&TypeUInt32, (PType **)&TypeUInt32, EvalLTGTEQUInt32 },
{ PEX_LTGTEQ , (PType **)&TypeSInt32, (PType **)&TypeFloat64, (PType **)&TypeFloat64, EvalLTGTEQFloat64 },
};
for (size_t i = 0; i < countof(BinaryOpInit); ++i)
{
ZCC_OpInfo[BinaryOpInit[i].Op].AddProto(*BinaryOpInit[i].Res, *BinaryOpInit[i].Ltype, *BinaryOpInit[i].Rtype, BinaryOpInit[i].EvalConst);
}
}
static void IntToS32(ZCC_ExprConstant *expr, FSharedStringArena &str_arena)
{
// Integers always fill out the full sized 32-bit field, so converting
// from a smaller sized integer to a 32-bit one is as simple as changing
// the type field.
expr->Type = TypeSInt32;
}
static void S32toS8(ZCC_ExprConstant *expr, FSharedStringArena &str_arena)
{
expr->IntVal = ((expr->IntVal << 24) >> 24);
expr->Type = TypeSInt8;
}
static void S32toS16(ZCC_ExprConstant *expr, FSharedStringArena &str_arena)
{
expr->IntVal = ((expr->IntVal << 16) >> 16);
expr->Type = TypeSInt16;
}
static void S32toU8(ZCC_ExprConstant *expr, FSharedStringArena &str_arena)
{
expr->IntVal &= 0xFF;
expr->Type = TypeUInt8;
}
static void S32toU16(ZCC_ExprConstant *expr, FSharedStringArena &str_arena)
{
expr->IntVal &= 0xFFFF;
expr->Type = TypeUInt16;
}
static void S32toU32(ZCC_ExprConstant *expr, FSharedStringArena &str_arena)
{
expr->Type = TypeUInt32;
}
static void S32toD(ZCC_ExprConstant *expr, FSharedStringArena &str_arena)
{
expr->DoubleVal = expr->IntVal;
expr->Type = TypeFloat64;
}
static void DtoS32(ZCC_ExprConstant *expr, FSharedStringArena &str_arena)
{
expr->IntVal = (int)expr->DoubleVal;
expr->Type = TypeSInt32;
}
static void U32toD(ZCC_ExprConstant *expr, FSharedStringArena &str_arena)
{
expr->DoubleVal = expr->UIntVal;
expr->Type = TypeFloat64;
}
static void DtoU32(ZCC_ExprConstant *expr, FSharedStringArena &str_arena)
{
expr->UIntVal = (unsigned int)expr->DoubleVal;
expr->Type = TypeUInt32;
}
static void FtoD(ZCC_ExprConstant *expr, FSharedStringArena &str_arena)
{
// Constant single precision numbers are stored as doubles.
assert(expr->Type == TypeFloat32);
expr->Type = TypeFloat64;
}
static void DtoF(ZCC_ExprConstant *expr, FSharedStringArena &str_arena)
{
// Truncate double precision to single precision.
float poop = (float)expr->DoubleVal;
expr->DoubleVal = poop;
expr->Type = TypeFloat32;
}
static void S32toS(ZCC_ExprConstant *expr, FSharedStringArena &str_arena)
{
char str[16];
int len = mysnprintf(str, countof(str), "%i", expr->IntVal);
expr->StringVal = str_arena.Alloc(str, len);
expr->Type = TypeString;
}
static void U32toS(ZCC_ExprConstant *expr, FSharedStringArena &str_arena)
{
char str[16];
int len = mysnprintf(str, countof(str), "%u", expr->UIntVal);
expr->StringVal = str_arena.Alloc(str, len);
expr->Type = TypeString;
}
static void DtoS(ZCC_ExprConstant *expr, FSharedStringArena &str_arena)
{
// Convert to a string with enough precision such that converting
// back to a double will not lose any data.
char str[64];
IGNORE_FORMAT_PRE
int len = mysnprintf(str, countof(str), "%H", expr->DoubleVal);
IGNORE_FORMAT_POST
expr->StringVal = str_arena.Alloc(str, len);
expr->Type = TypeString;
}
//==========================================================================
//
// ZCC_InitConversions
//
//==========================================================================
void ZCC_InitConversions()
{
TypeUInt8->AddConversion(TypeSInt32, IntToS32);
TypeSInt8->AddConversion(TypeSInt32, IntToS32);
TypeUInt16->AddConversion(TypeSInt32, IntToS32);
TypeSInt16->AddConversion(TypeSInt32, IntToS32);
TypeUInt32->AddConversion(TypeSInt32, IntToS32);
TypeUInt32->AddConversion(TypeFloat64, U32toD);
TypeUInt32->AddConversion(TypeString, U32toS);
TypeSInt32->AddConversion(TypeUInt8, S32toU8);
TypeSInt32->AddConversion(TypeSInt8, S32toS8);
TypeSInt32->AddConversion(TypeSInt16, S32toS16);
TypeSInt32->AddConversion(TypeUInt16, S32toU16);
TypeSInt32->AddConversion(TypeUInt32, S32toU32);
TypeSInt32->AddConversion(TypeFloat64, S32toD);
TypeSInt32->AddConversion(TypeString, S32toS);
TypeFloat32->AddConversion(TypeFloat64, FtoD);
TypeFloat64->AddConversion(TypeUInt32, DtoU32);
TypeFloat64->AddConversion(TypeSInt32, DtoS32);
TypeFloat64->AddConversion(TypeFloat32, DtoF);
TypeFloat64->AddConversion(TypeString, DtoS);
}

View file

@ -316,6 +316,8 @@ static void DoParse(int lumpnum)
FScanner sc;
void *parser;
ZCCToken value;
auto baselump = lumpnum;
auto fileno = Wads.GetLumpFile(lumpnum);
parser = ZCCParseAlloc(malloc);
ZCCParseState state;
@ -344,6 +346,13 @@ static void DoParse(int lumpnum)
}
else
{
auto fileno2 = Wads.GetLumpFile(lumpnum);
if (fileno == 0 && fileno2 != 0)
{
I_FatalError("File %s is overriding core lump %s.",
Wads.GetWadFullName(Wads.GetLumpFile(baselump)), Includes[i].GetChars());
}
ParseSingleFile(nullptr, lumpnum, parser, state);
}
}
@ -408,9 +417,6 @@ void ParseScripts()
{
InitTokenMap();
}
ZCC_InitOperators();
ZCC_InitConversions();
int lump, lastlump = 0;
FScriptPosition::ResetErrorCounter();

View file

@ -527,47 +527,8 @@ struct ZCC_FlagStmt : ZCC_Statement
bool set;
};
typedef ZCC_ExprConstant *(*EvalConst1op)(ZCC_ExprConstant *);
typedef ZCC_ExprConstant *(*EvalConst2op)(ZCC_ExprConstant *, ZCC_ExprConstant *, FSharedStringArena &);
struct ZCC_OpProto
{
ZCC_OpProto *Next;
PType *ResType;
PType *Type1;
PType *Type2;
union
{
EvalConst1op EvalConst1;
EvalConst2op EvalConst2;
};
ZCC_OpProto(PType *res, PType *t1, PType *t2)
: ResType(res), Type1(t1), Type2(t2) {}
};
struct ZCC_OpInfoType
{
const char *OpName;
ZCC_OpProto *Protos;
void AddProto(PType *res, PType *optype, EvalConst1op evalconst);
void AddProto(PType *res, PType *left, PType *right, EvalConst2op evalconst);
ZCC_OpProto *FindBestProto(PType *optype, const PType::Conversion **route, int &numslots);
ZCC_OpProto *FindBestProto(PType *left, const PType::Conversion **route1, int &numslots,
PType *right, const PType::Conversion **route2, int &numslots2);
void FreeAllProtos();
};
#define CONVERSION_ROUTE_SIZE 8
FString ZCC_PrintAST(ZCC_TreeNode *root);
void ZCC_InitOperators();
extern ZCC_OpInfoType ZCC_OpInfo[PEX_COUNT_OF];
struct ZCC_AST
{

View file

@ -179,6 +179,8 @@ namespace swrenderer
// store information in a vissprite
RenderParticle *vis = RenderMemory::NewObject<RenderParticle>();
memset(vis, 0, sizeof(*vis));
vis->CurrentPortalUniq = renderportal->CurrentPortalUniq;
vis->heightsec = heightsec;
vis->xscale = FLOAT2FIXED(xscale);

View file

@ -273,6 +273,8 @@ namespace swrenderer
// store information in a vissprite
RenderSprite *vis = &avis[vispspindex];
memset(vis, 0, sizeof(*vis));
vis->renderflags = owner->renderflags;
vis->floorclip = 0;

View file

@ -157,6 +157,7 @@ namespace swrenderer
// store information in a vissprite
RenderSprite *vis = RenderMemory::NewObject<RenderSprite>();
memset(vis, 0, sizeof(*vis));
vis->CurrentPortalUniq = renderportal->CurrentPortalUniq;
vis->xscale = FLOAT2FIXED(xscale);

View file

@ -143,9 +143,9 @@ class Inquisitor : Actor
A_PlaySound ("inquisitor/jump", CHAN_ITEM, 1, true);
AddZ(64);
A_FaceTarget ();
speed = Speed * (2./3);
VelFromAngle(speed);
double dist = DistanceBySpeed(target, speed);
let localspeed = Speed * (2./3);
VelFromAngle(localspeed);
double dist = DistanceBySpeed(target, localspeed);
Vel.Z = (target.pos.z - pos.z) / dist;
reactiontime = 60;
bNoGravity = true;