2016-09-14 18:01:13 +00:00
|
|
|
/*
|
|
|
|
** gl_geometric.cpp
|
|
|
|
**
|
|
|
|
**---------------------------------------------------------------------------
|
|
|
|
** Copyright 2003 Timothy Stump
|
|
|
|
** All rights reserved.
|
|
|
|
**
|
|
|
|
** Redistribution and use in source and binary forms, with or without
|
|
|
|
** modification, are permitted provided that the following conditions
|
|
|
|
** are met:
|
|
|
|
**
|
|
|
|
** 1. Redistributions of source code must retain the above copyright
|
|
|
|
** notice, this list of conditions and the following disclaimer.
|
|
|
|
** 2. Redistributions in binary form must reproduce the above copyright
|
|
|
|
** notice, this list of conditions and the following disclaimer in the
|
|
|
|
** documentation and/or other materials provided with the distribution.
|
|
|
|
** 3. The name of the author may not be used to endorse or promote products
|
|
|
|
** derived from this software without specific prior written permission.
|
|
|
|
**
|
|
|
|
** THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
|
|
|
|
** IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
|
|
|
|
** OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
|
|
|
|
** IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
|
|
|
|
** INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
|
|
|
|
** NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
|
|
** DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
|
|
** THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
|
|
** (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
|
|
|
|
** THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
|
|
**---------------------------------------------------------------------------
|
|
|
|
**
|
|
|
|
*/
|
2013-06-23 07:49:34 +00:00
|
|
|
|
|
|
|
|
|
|
|
#include <math.h>
|
|
|
|
#include <float.h>
|
|
|
|
#include "gl/utility/gl_geometric.h"
|
|
|
|
|
|
|
|
static Vector axis[3] =
|
|
|
|
{
|
|
|
|
Vector(1.0f, 0.0f, 0.0f),
|
|
|
|
Vector(0.0f, 1.0f, 0.0f),
|
|
|
|
Vector(0.0f, 0.0f, 1.0f)
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Vector Vector::Cross(Vector &v)
|
|
|
|
{
|
|
|
|
float x, y, z;
|
|
|
|
Vector cp;
|
|
|
|
|
|
|
|
x = Y() * v.Z() - Z() * v.Y();
|
|
|
|
y = Z() * v.X() - X() * v.Z();
|
|
|
|
z = X() * v.Y() - Y() * v.X();
|
|
|
|
|
|
|
|
cp.Set(x, y, z);
|
|
|
|
|
|
|
|
return cp;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
Vector Vector::operator- (Vector &v)
|
|
|
|
{
|
|
|
|
float x, y, z;
|
|
|
|
Vector vec;
|
|
|
|
|
|
|
|
x = X() - v.X();
|
|
|
|
y = Y() - v.Y();
|
|
|
|
z = Z() - v.Z();
|
|
|
|
|
|
|
|
vec.Set(x, y, z);
|
|
|
|
|
|
|
|
return vec;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
Vector Vector::operator+ (Vector &v)
|
|
|
|
{
|
|
|
|
float x, y, z;
|
|
|
|
Vector vec;
|
|
|
|
|
|
|
|
x = X() + v.X();
|
|
|
|
y = Y() + v.Y();
|
|
|
|
z = Z() + v.Z();
|
|
|
|
|
|
|
|
vec.Set(x, y, z);
|
|
|
|
|
|
|
|
return vec;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
Vector Vector::operator* (float f)
|
|
|
|
{
|
|
|
|
Vector vec(X(), Y(), Z());
|
|
|
|
|
|
|
|
vec.Scale(f);
|
|
|
|
|
|
|
|
return vec;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
Vector Vector::operator/ (float f)
|
|
|
|
{
|
|
|
|
Vector vec(X(), Y(), Z());
|
|
|
|
|
|
|
|
vec.Scale(1.f / f);
|
|
|
|
|
|
|
|
return vec;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
bool Vector::operator== (Vector &v)
|
|
|
|
{
|
|
|
|
return X() == v.X() && Y() == v.Y() && Z() == v.Z();
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void Vector::GetRightUp(Vector &right, Vector &up)
|
|
|
|
{
|
|
|
|
Vector n(X(), Y(), Z());
|
|
|
|
Vector fn(fabsf(n.X()), fabsf(n.Y()), fabsf(n.Z()));
|
|
|
|
int major = 0;
|
|
|
|
|
|
|
|
if (fn[1] > fn[major]) major = 1;
|
|
|
|
if (fn[2] > fn[major]) major = 2;
|
|
|
|
|
|
|
|
// build right vector by hand
|
|
|
|
if (fabsf(fn[0]-1.0f) < FLT_EPSILON || fabsf(fn[1]-1.0f) < FLT_EPSILON || fabsf(fn[2]-1.0f) < FLT_EPSILON)
|
|
|
|
{
|
|
|
|
if (major == 0 && n[0] > 0.f)
|
|
|
|
{
|
|
|
|
right.Set(0.f, 0.f, -1.f);
|
|
|
|
}
|
|
|
|
else if (major == 0)
|
|
|
|
{
|
|
|
|
right.Set(0.f, 0.f, 1.f);
|
|
|
|
}
|
|
|
|
|
|
|
|
if (major == 1 || (major == 2 && n[2] > 0.f))
|
|
|
|
{
|
|
|
|
right.Set(1.f, 0.f, 0.f);
|
|
|
|
}
|
|
|
|
|
|
|
|
if (major == 2 && n[2] < 0.0f)
|
|
|
|
{
|
|
|
|
right.Set(-1.f, 0.f, 0.f);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
else
|
|
|
|
{
|
|
|
|
right = axis[major].Cross(n);
|
|
|
|
}
|
|
|
|
|
|
|
|
up = n.Cross(right);
|
|
|
|
right.Normalize();
|
|
|
|
up.Normalize();
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void Vector::Scale(float scale)
|
|
|
|
{
|
|
|
|
float x, y, z;
|
|
|
|
|
|
|
|
x = X() * scale;
|
|
|
|
y = Y() * scale;
|
|
|
|
z = Z() * scale;
|
|
|
|
|
|
|
|
Set(x, y, z);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
Vector Vector::ProjectVector(Vector &a)
|
|
|
|
{
|
|
|
|
Vector res, b;
|
|
|
|
|
|
|
|
b.Set(X(), Y(), Z());
|
|
|
|
res.Set(a.X(), a.Y(), a.Z());
|
|
|
|
|
|
|
|
res.Scale(a.Dot(b) / a.Dot(a));
|
|
|
|
|
|
|
|
return res;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
Vector Vector::ProjectPlane(Vector &right, Vector &up)
|
|
|
|
{
|
|
|
|
Vector src(X(), Y(), Z());
|
|
|
|
Vector t1, t2;
|
|
|
|
|
|
|
|
t1 = src.ProjectVector(right);
|
|
|
|
t2 = src.ProjectVector(up);
|
|
|
|
|
|
|
|
return t1 + t2;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
void Plane::Init(float *v1, float *v2, float *v3)
|
|
|
|
{
|
|
|
|
Vector vec1, vec2, vec3;
|
|
|
|
|
|
|
|
vec1.Set(v1);
|
|
|
|
vec2.Set(v2);
|
|
|
|
vec3.Set(v3);
|
|
|
|
|
|
|
|
#ifdef _MSC_VER
|
|
|
|
m_normal = (vec2 - vec1).Cross(vec3 - vec1);
|
|
|
|
#else
|
|
|
|
Vector tmpVec = vec3 - vec1;
|
|
|
|
m_normal = (vec2 - vec1).Cross(tmpVec);
|
|
|
|
#endif
|
|
|
|
m_normal.Normalize();
|
|
|
|
m_d = vec3.Dot(m_normal) * -1.f;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
#define FNOTEQUAL(a, b) (fabsf(a - b) > 0.001f)
|
|
|
|
void Plane::Init(float *verts, int numVerts)
|
|
|
|
{
|
|
|
|
float *v[3], *t;
|
|
|
|
int i, curVert;
|
|
|
|
|
|
|
|
if (numVerts < 3) return;
|
|
|
|
|
|
|
|
curVert = 1;
|
|
|
|
v[0] = verts + 0;
|
|
|
|
for (i = 1; i < numVerts; i++)
|
|
|
|
{
|
|
|
|
t = verts + (i * 3);
|
|
|
|
if (FNOTEQUAL(t[0], v[curVert - 1][0]) || FNOTEQUAL(t[1], v[curVert - 1][1]) || FNOTEQUAL(t[2], v[curVert - 1][2]))
|
|
|
|
{
|
|
|
|
v[curVert] = t;
|
|
|
|
curVert++;
|
|
|
|
}
|
|
|
|
if (curVert == 3) break;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (curVert != 3)
|
|
|
|
{
|
|
|
|
// degenerate triangle, no valid normal
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
Init(v[0], v[1], v[2]);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void Plane::Init(float a, float b, float c, float d)
|
|
|
|
{
|
|
|
|
m_normal.Set(a, b, c);
|
|
|
|
m_d = d / m_normal.Length();
|
|
|
|
m_normal.Normalize();
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void Plane::Set(secplane_t &plane)
|
|
|
|
{
|
2016-04-07 23:42:43 +00:00
|
|
|
m_normal.Set((float)plane.Normal().X, (float)plane.Normal().Z, (float)plane.Normal().Y);
|
2013-06-23 07:49:34 +00:00
|
|
|
//m_normal.Normalize(); the vector is already normalized
|
2016-04-07 23:42:43 +00:00
|
|
|
m_d = (float)plane.fD();
|
2013-06-23 07:49:34 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
float Plane::DistToPoint(float x, float y, float z)
|
|
|
|
{
|
|
|
|
Vector p;
|
|
|
|
|
|
|
|
p.Set(x, y, z);
|
|
|
|
|
|
|
|
return m_normal.Dot(p) + m_d;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
bool Plane::PointOnSide(float x, float y, float z)
|
|
|
|
{
|
|
|
|
return DistToPoint(x, y, z) < 0.f;
|
|
|
|
}
|
|
|
|
|
|
|
|
|