mirror of
https://github.com/ZDoom/gzdoom.git
synced 2024-11-23 04:22:34 +00:00
858 lines
31 KiB
C
858 lines
31 KiB
C
|
/*
|
||
|
* jquant1.c
|
||
|
*
|
||
|
* Copyright (C) 1991-1996, Thomas G. Lane.
|
||
|
* Modified 2011 by Guido Vollbeding.
|
||
|
* This file is part of the Independent JPEG Group's software.
|
||
|
* For conditions of distribution and use, see the accompanying README file.
|
||
|
*
|
||
|
* This file contains 1-pass color quantization (color mapping) routines.
|
||
|
* These routines provide mapping to a fixed color map using equally spaced
|
||
|
* color values. Optional Floyd-Steinberg or ordered dithering is available.
|
||
|
*/
|
||
|
|
||
|
#define JPEG_INTERNALS
|
||
|
#include "jinclude.h"
|
||
|
#include "jpeglib.h"
|
||
|
|
||
|
#ifdef QUANT_1PASS_SUPPORTED
|
||
|
|
||
|
|
||
|
/*
|
||
|
* The main purpose of 1-pass quantization is to provide a fast, if not very
|
||
|
* high quality, colormapped output capability. A 2-pass quantizer usually
|
||
|
* gives better visual quality; however, for quantized grayscale output this
|
||
|
* quantizer is perfectly adequate. Dithering is highly recommended with this
|
||
|
* quantizer, though you can turn it off if you really want to.
|
||
|
*
|
||
|
* In 1-pass quantization the colormap must be chosen in advance of seeing the
|
||
|
* image. We use a map consisting of all combinations of Ncolors[i] color
|
||
|
* values for the i'th component. The Ncolors[] values are chosen so that
|
||
|
* their product, the total number of colors, is no more than that requested.
|
||
|
* (In most cases, the product will be somewhat less.)
|
||
|
*
|
||
|
* Since the colormap is orthogonal, the representative value for each color
|
||
|
* component can be determined without considering the other components;
|
||
|
* then these indexes can be combined into a colormap index by a standard
|
||
|
* N-dimensional-array-subscript calculation. Most of the arithmetic involved
|
||
|
* can be precalculated and stored in the lookup table colorindex[].
|
||
|
* colorindex[i][j] maps pixel value j in component i to the nearest
|
||
|
* representative value (grid plane) for that component; this index is
|
||
|
* multiplied by the array stride for component i, so that the
|
||
|
* index of the colormap entry closest to a given pixel value is just
|
||
|
* sum( colorindex[component-number][pixel-component-value] )
|
||
|
* Aside from being fast, this scheme allows for variable spacing between
|
||
|
* representative values with no additional lookup cost.
|
||
|
*
|
||
|
* If gamma correction has been applied in color conversion, it might be wise
|
||
|
* to adjust the color grid spacing so that the representative colors are
|
||
|
* equidistant in linear space. At this writing, gamma correction is not
|
||
|
* implemented by jdcolor, so nothing is done here.
|
||
|
*/
|
||
|
|
||
|
|
||
|
/* Declarations for ordered dithering.
|
||
|
*
|
||
|
* We use a standard 16x16 ordered dither array. The basic concept of ordered
|
||
|
* dithering is described in many references, for instance Dale Schumacher's
|
||
|
* chapter II.2 of Graphics Gems II (James Arvo, ed. Academic Press, 1991).
|
||
|
* In place of Schumacher's comparisons against a "threshold" value, we add a
|
||
|
* "dither" value to the input pixel and then round the result to the nearest
|
||
|
* output value. The dither value is equivalent to (0.5 - threshold) times
|
||
|
* the distance between output values. For ordered dithering, we assume that
|
||
|
* the output colors are equally spaced; if not, results will probably be
|
||
|
* worse, since the dither may be too much or too little at a given point.
|
||
|
*
|
||
|
* The normal calculation would be to form pixel value + dither, range-limit
|
||
|
* this to 0..MAXJSAMPLE, and then index into the colorindex table as usual.
|
||
|
* We can skip the separate range-limiting step by extending the colorindex
|
||
|
* table in both directions.
|
||
|
*/
|
||
|
|
||
|
#define ODITHER_SIZE 16 /* dimension of dither matrix */
|
||
|
/* NB: if ODITHER_SIZE is not a power of 2, ODITHER_MASK uses will break */
|
||
|
#define ODITHER_CELLS (ODITHER_SIZE*ODITHER_SIZE) /* # cells in matrix */
|
||
|
#define ODITHER_MASK (ODITHER_SIZE-1) /* mask for wrapping around counters */
|
||
|
|
||
|
typedef int ODITHER_MATRIX[ODITHER_SIZE][ODITHER_SIZE];
|
||
|
typedef int (*ODITHER_MATRIX_PTR)[ODITHER_SIZE];
|
||
|
|
||
|
static const UINT8 base_dither_matrix[ODITHER_SIZE][ODITHER_SIZE] = {
|
||
|
/* Bayer's order-4 dither array. Generated by the code given in
|
||
|
* Stephen Hawley's article "Ordered Dithering" in Graphics Gems I.
|
||
|
* The values in this array must range from 0 to ODITHER_CELLS-1.
|
||
|
*/
|
||
|
{ 0,192, 48,240, 12,204, 60,252, 3,195, 51,243, 15,207, 63,255 },
|
||
|
{ 128, 64,176,112,140, 76,188,124,131, 67,179,115,143, 79,191,127 },
|
||
|
{ 32,224, 16,208, 44,236, 28,220, 35,227, 19,211, 47,239, 31,223 },
|
||
|
{ 160, 96,144, 80,172,108,156, 92,163, 99,147, 83,175,111,159, 95 },
|
||
|
{ 8,200, 56,248, 4,196, 52,244, 11,203, 59,251, 7,199, 55,247 },
|
||
|
{ 136, 72,184,120,132, 68,180,116,139, 75,187,123,135, 71,183,119 },
|
||
|
{ 40,232, 24,216, 36,228, 20,212, 43,235, 27,219, 39,231, 23,215 },
|
||
|
{ 168,104,152, 88,164,100,148, 84,171,107,155, 91,167,103,151, 87 },
|
||
|
{ 2,194, 50,242, 14,206, 62,254, 1,193, 49,241, 13,205, 61,253 },
|
||
|
{ 130, 66,178,114,142, 78,190,126,129, 65,177,113,141, 77,189,125 },
|
||
|
{ 34,226, 18,210, 46,238, 30,222, 33,225, 17,209, 45,237, 29,221 },
|
||
|
{ 162, 98,146, 82,174,110,158, 94,161, 97,145, 81,173,109,157, 93 },
|
||
|
{ 10,202, 58,250, 6,198, 54,246, 9,201, 57,249, 5,197, 53,245 },
|
||
|
{ 138, 74,186,122,134, 70,182,118,137, 73,185,121,133, 69,181,117 },
|
||
|
{ 42,234, 26,218, 38,230, 22,214, 41,233, 25,217, 37,229, 21,213 },
|
||
|
{ 170,106,154, 90,166,102,150, 86,169,105,153, 89,165,101,149, 85 }
|
||
|
};
|
||
|
|
||
|
|
||
|
/* Declarations for Floyd-Steinberg dithering.
|
||
|
*
|
||
|
* Errors are accumulated into the array fserrors[], at a resolution of
|
||
|
* 1/16th of a pixel count. The error at a given pixel is propagated
|
||
|
* to its not-yet-processed neighbors using the standard F-S fractions,
|
||
|
* ... (here) 7/16
|
||
|
* 3/16 5/16 1/16
|
||
|
* We work left-to-right on even rows, right-to-left on odd rows.
|
||
|
*
|
||
|
* We can get away with a single array (holding one row's worth of errors)
|
||
|
* by using it to store the current row's errors at pixel columns not yet
|
||
|
* processed, but the next row's errors at columns already processed. We
|
||
|
* need only a few extra variables to hold the errors immediately around the
|
||
|
* current column. (If we are lucky, those variables are in registers, but
|
||
|
* even if not, they're probably cheaper to access than array elements are.)
|
||
|
*
|
||
|
* The fserrors[] array is indexed [component#][position].
|
||
|
* We provide (#columns + 2) entries per component; the extra entry at each
|
||
|
* end saves us from special-casing the first and last pixels.
|
||
|
*
|
||
|
* Note: on a wide image, we might not have enough room in a PC's near data
|
||
|
* segment to hold the error array; so it is allocated with alloc_large.
|
||
|
*/
|
||
|
|
||
|
#if BITS_IN_JSAMPLE == 8
|
||
|
typedef INT16 FSERROR; /* 16 bits should be enough */
|
||
|
typedef int LOCFSERROR; /* use 'int' for calculation temps */
|
||
|
#else
|
||
|
typedef INT32 FSERROR; /* may need more than 16 bits */
|
||
|
typedef INT32 LOCFSERROR; /* be sure calculation temps are big enough */
|
||
|
#endif
|
||
|
|
||
|
typedef FSERROR FAR *FSERRPTR; /* pointer to error array (in FAR storage!) */
|
||
|
|
||
|
|
||
|
/* Private subobject */
|
||
|
|
||
|
#define MAX_Q_COMPS 4 /* max components I can handle */
|
||
|
|
||
|
typedef struct {
|
||
|
struct jpeg_color_quantizer pub; /* public fields */
|
||
|
|
||
|
/* Initially allocated colormap is saved here */
|
||
|
JSAMPARRAY sv_colormap; /* The color map as a 2-D pixel array */
|
||
|
int sv_actual; /* number of entries in use */
|
||
|
|
||
|
JSAMPARRAY colorindex; /* Precomputed mapping for speed */
|
||
|
/* colorindex[i][j] = index of color closest to pixel value j in component i,
|
||
|
* premultiplied as described above. Since colormap indexes must fit into
|
||
|
* JSAMPLEs, the entries of this array will too.
|
||
|
*/
|
||
|
boolean is_padded; /* is the colorindex padded for odither? */
|
||
|
|
||
|
int Ncolors[MAX_Q_COMPS]; /* # of values alloced to each component */
|
||
|
|
||
|
/* Variables for ordered dithering */
|
||
|
int row_index; /* cur row's vertical index in dither matrix */
|
||
|
ODITHER_MATRIX_PTR odither[MAX_Q_COMPS]; /* one dither array per component */
|
||
|
|
||
|
/* Variables for Floyd-Steinberg dithering */
|
||
|
FSERRPTR fserrors[MAX_Q_COMPS]; /* accumulated errors */
|
||
|
boolean on_odd_row; /* flag to remember which row we are on */
|
||
|
} my_cquantizer;
|
||
|
|
||
|
typedef my_cquantizer * my_cquantize_ptr;
|
||
|
|
||
|
|
||
|
/*
|
||
|
* Policy-making subroutines for create_colormap and create_colorindex.
|
||
|
* These routines determine the colormap to be used. The rest of the module
|
||
|
* only assumes that the colormap is orthogonal.
|
||
|
*
|
||
|
* * select_ncolors decides how to divvy up the available colors
|
||
|
* among the components.
|
||
|
* * output_value defines the set of representative values for a component.
|
||
|
* * largest_input_value defines the mapping from input values to
|
||
|
* representative values for a component.
|
||
|
* Note that the latter two routines may impose different policies for
|
||
|
* different components, though this is not currently done.
|
||
|
*/
|
||
|
|
||
|
|
||
|
LOCAL(int)
|
||
|
select_ncolors (j_decompress_ptr cinfo, int Ncolors[])
|
||
|
/* Determine allocation of desired colors to components, */
|
||
|
/* and fill in Ncolors[] array to indicate choice. */
|
||
|
/* Return value is total number of colors (product of Ncolors[] values). */
|
||
|
{
|
||
|
int nc = cinfo->out_color_components; /* number of color components */
|
||
|
int max_colors = cinfo->desired_number_of_colors;
|
||
|
int total_colors, iroot, i, j;
|
||
|
boolean changed;
|
||
|
long temp;
|
||
|
static const int RGB_order[3] = { RGB_GREEN, RGB_RED, RGB_BLUE };
|
||
|
|
||
|
/* We can allocate at least the nc'th root of max_colors per component. */
|
||
|
/* Compute floor(nc'th root of max_colors). */
|
||
|
iroot = 1;
|
||
|
do {
|
||
|
iroot++;
|
||
|
temp = iroot; /* set temp = iroot ** nc */
|
||
|
for (i = 1; i < nc; i++)
|
||
|
temp *= iroot;
|
||
|
} while (temp <= (long) max_colors); /* repeat till iroot exceeds root */
|
||
|
iroot--; /* now iroot = floor(root) */
|
||
|
|
||
|
/* Must have at least 2 color values per component */
|
||
|
if (iroot < 2)
|
||
|
ERREXIT1(cinfo, JERR_QUANT_FEW_COLORS, (int) temp);
|
||
|
|
||
|
/* Initialize to iroot color values for each component */
|
||
|
total_colors = 1;
|
||
|
for (i = 0; i < nc; i++) {
|
||
|
Ncolors[i] = iroot;
|
||
|
total_colors *= iroot;
|
||
|
}
|
||
|
/* We may be able to increment the count for one or more components without
|
||
|
* exceeding max_colors, though we know not all can be incremented.
|
||
|
* Sometimes, the first component can be incremented more than once!
|
||
|
* (Example: for 16 colors, we start at 2*2*2, go to 3*2*2, then 4*2*2.)
|
||
|
* In RGB colorspace, try to increment G first, then R, then B.
|
||
|
*/
|
||
|
do {
|
||
|
changed = FALSE;
|
||
|
for (i = 0; i < nc; i++) {
|
||
|
j = (cinfo->out_color_space == JCS_RGB ? RGB_order[i] : i);
|
||
|
/* calculate new total_colors if Ncolors[j] is incremented */
|
||
|
temp = total_colors / Ncolors[j];
|
||
|
temp *= Ncolors[j]+1; /* done in long arith to avoid oflo */
|
||
|
if (temp > (long) max_colors)
|
||
|
break; /* won't fit, done with this pass */
|
||
|
Ncolors[j]++; /* OK, apply the increment */
|
||
|
total_colors = (int) temp;
|
||
|
changed = TRUE;
|
||
|
}
|
||
|
} while (changed);
|
||
|
|
||
|
return total_colors;
|
||
|
}
|
||
|
|
||
|
|
||
|
LOCAL(int)
|
||
|
output_value (j_decompress_ptr cinfo, int ci, int j, int maxj)
|
||
|
/* Return j'th output value, where j will range from 0 to maxj */
|
||
|
/* The output values must fall in 0..MAXJSAMPLE in increasing order */
|
||
|
{
|
||
|
/* We always provide values 0 and MAXJSAMPLE for each component;
|
||
|
* any additional values are equally spaced between these limits.
|
||
|
* (Forcing the upper and lower values to the limits ensures that
|
||
|
* dithering can't produce a color outside the selected gamut.)
|
||
|
*/
|
||
|
return (int) (((INT32) j * MAXJSAMPLE + maxj/2) / maxj);
|
||
|
}
|
||
|
|
||
|
|
||
|
LOCAL(int)
|
||
|
largest_input_value (j_decompress_ptr cinfo, int ci, int j, int maxj)
|
||
|
/* Return largest input value that should map to j'th output value */
|
||
|
/* Must have largest(j=0) >= 0, and largest(j=maxj) >= MAXJSAMPLE */
|
||
|
{
|
||
|
/* Breakpoints are halfway between values returned by output_value */
|
||
|
return (int) (((INT32) (2*j + 1) * MAXJSAMPLE + maxj) / (2*maxj));
|
||
|
}
|
||
|
|
||
|
|
||
|
/*
|
||
|
* Create the colormap.
|
||
|
*/
|
||
|
|
||
|
LOCAL(void)
|
||
|
create_colormap (j_decompress_ptr cinfo)
|
||
|
{
|
||
|
my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
|
||
|
JSAMPARRAY colormap; /* Created colormap */
|
||
|
int total_colors; /* Number of distinct output colors */
|
||
|
int i,j,k, nci, blksize, blkdist, ptr, val;
|
||
|
|
||
|
/* Select number of colors for each component */
|
||
|
total_colors = select_ncolors(cinfo, cquantize->Ncolors);
|
||
|
|
||
|
/* Report selected color counts */
|
||
|
if (cinfo->out_color_components == 3)
|
||
|
TRACEMS4(cinfo, 1, JTRC_QUANT_3_NCOLORS,
|
||
|
total_colors, cquantize->Ncolors[0],
|
||
|
cquantize->Ncolors[1], cquantize->Ncolors[2]);
|
||
|
else
|
||
|
TRACEMS1(cinfo, 1, JTRC_QUANT_NCOLORS, total_colors);
|
||
|
|
||
|
/* Allocate and fill in the colormap. */
|
||
|
/* The colors are ordered in the map in standard row-major order, */
|
||
|
/* i.e. rightmost (highest-indexed) color changes most rapidly. */
|
||
|
|
||
|
colormap = (*cinfo->mem->alloc_sarray)
|
||
|
((j_common_ptr) cinfo, JPOOL_IMAGE,
|
||
|
(JDIMENSION) total_colors, (JDIMENSION) cinfo->out_color_components);
|
||
|
|
||
|
/* blksize is number of adjacent repeated entries for a component */
|
||
|
/* blkdist is distance between groups of identical entries for a component */
|
||
|
blkdist = total_colors;
|
||
|
|
||
|
for (i = 0; i < cinfo->out_color_components; i++) {
|
||
|
/* fill in colormap entries for i'th color component */
|
||
|
nci = cquantize->Ncolors[i]; /* # of distinct values for this color */
|
||
|
blksize = blkdist / nci;
|
||
|
for (j = 0; j < nci; j++) {
|
||
|
/* Compute j'th output value (out of nci) for component */
|
||
|
val = output_value(cinfo, i, j, nci-1);
|
||
|
/* Fill in all colormap entries that have this value of this component */
|
||
|
for (ptr = j * blksize; ptr < total_colors; ptr += blkdist) {
|
||
|
/* fill in blksize entries beginning at ptr */
|
||
|
for (k = 0; k < blksize; k++)
|
||
|
colormap[i][ptr+k] = (JSAMPLE) val;
|
||
|
}
|
||
|
}
|
||
|
blkdist = blksize; /* blksize of this color is blkdist of next */
|
||
|
}
|
||
|
|
||
|
/* Save the colormap in private storage,
|
||
|
* where it will survive color quantization mode changes.
|
||
|
*/
|
||
|
cquantize->sv_colormap = colormap;
|
||
|
cquantize->sv_actual = total_colors;
|
||
|
}
|
||
|
|
||
|
|
||
|
/*
|
||
|
* Create the color index table.
|
||
|
*/
|
||
|
|
||
|
LOCAL(void)
|
||
|
create_colorindex (j_decompress_ptr cinfo)
|
||
|
{
|
||
|
my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
|
||
|
JSAMPROW indexptr;
|
||
|
int i,j,k, nci, blksize, val, pad;
|
||
|
|
||
|
/* For ordered dither, we pad the color index tables by MAXJSAMPLE in
|
||
|
* each direction (input index values can be -MAXJSAMPLE .. 2*MAXJSAMPLE).
|
||
|
* This is not necessary in the other dithering modes. However, we
|
||
|
* flag whether it was done in case user changes dithering mode.
|
||
|
*/
|
||
|
if (cinfo->dither_mode == JDITHER_ORDERED) {
|
||
|
pad = MAXJSAMPLE*2;
|
||
|
cquantize->is_padded = TRUE;
|
||
|
} else {
|
||
|
pad = 0;
|
||
|
cquantize->is_padded = FALSE;
|
||
|
}
|
||
|
|
||
|
cquantize->colorindex = (*cinfo->mem->alloc_sarray)
|
||
|
((j_common_ptr) cinfo, JPOOL_IMAGE,
|
||
|
(JDIMENSION) (MAXJSAMPLE+1 + pad),
|
||
|
(JDIMENSION) cinfo->out_color_components);
|
||
|
|
||
|
/* blksize is number of adjacent repeated entries for a component */
|
||
|
blksize = cquantize->sv_actual;
|
||
|
|
||
|
for (i = 0; i < cinfo->out_color_components; i++) {
|
||
|
/* fill in colorindex entries for i'th color component */
|
||
|
nci = cquantize->Ncolors[i]; /* # of distinct values for this color */
|
||
|
blksize = blksize / nci;
|
||
|
|
||
|
/* adjust colorindex pointers to provide padding at negative indexes. */
|
||
|
if (pad)
|
||
|
cquantize->colorindex[i] += MAXJSAMPLE;
|
||
|
|
||
|
/* in loop, val = index of current output value, */
|
||
|
/* and k = largest j that maps to current val */
|
||
|
indexptr = cquantize->colorindex[i];
|
||
|
val = 0;
|
||
|
k = largest_input_value(cinfo, i, 0, nci-1);
|
||
|
for (j = 0; j <= MAXJSAMPLE; j++) {
|
||
|
while (j > k) /* advance val if past boundary */
|
||
|
k = largest_input_value(cinfo, i, ++val, nci-1);
|
||
|
/* premultiply so that no multiplication needed in main processing */
|
||
|
indexptr[j] = (JSAMPLE) (val * blksize);
|
||
|
}
|
||
|
/* Pad at both ends if necessary */
|
||
|
if (pad)
|
||
|
for (j = 1; j <= MAXJSAMPLE; j++) {
|
||
|
indexptr[-j] = indexptr[0];
|
||
|
indexptr[MAXJSAMPLE+j] = indexptr[MAXJSAMPLE];
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
|
||
|
/*
|
||
|
* Create an ordered-dither array for a component having ncolors
|
||
|
* distinct output values.
|
||
|
*/
|
||
|
|
||
|
LOCAL(ODITHER_MATRIX_PTR)
|
||
|
make_odither_array (j_decompress_ptr cinfo, int ncolors)
|
||
|
{
|
||
|
ODITHER_MATRIX_PTR odither;
|
||
|
int j,k;
|
||
|
INT32 num,den;
|
||
|
|
||
|
odither = (ODITHER_MATRIX_PTR)
|
||
|
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
|
||
|
SIZEOF(ODITHER_MATRIX));
|
||
|
/* The inter-value distance for this color is MAXJSAMPLE/(ncolors-1).
|
||
|
* Hence the dither value for the matrix cell with fill order f
|
||
|
* (f=0..N-1) should be (N-1-2*f)/(2*N) * MAXJSAMPLE/(ncolors-1).
|
||
|
* On 16-bit-int machine, be careful to avoid overflow.
|
||
|
*/
|
||
|
den = 2 * ODITHER_CELLS * ((INT32) (ncolors - 1));
|
||
|
for (j = 0; j < ODITHER_SIZE; j++) {
|
||
|
for (k = 0; k < ODITHER_SIZE; k++) {
|
||
|
num = ((INT32) (ODITHER_CELLS-1 - 2*((int)base_dither_matrix[j][k])))
|
||
|
* MAXJSAMPLE;
|
||
|
/* Ensure round towards zero despite C's lack of consistency
|
||
|
* about rounding negative values in integer division...
|
||
|
*/
|
||
|
odither[j][k] = (int) (num<0 ? -((-num)/den) : num/den);
|
||
|
}
|
||
|
}
|
||
|
return odither;
|
||
|
}
|
||
|
|
||
|
|
||
|
/*
|
||
|
* Create the ordered-dither tables.
|
||
|
* Components having the same number of representative colors may
|
||
|
* share a dither table.
|
||
|
*/
|
||
|
|
||
|
LOCAL(void)
|
||
|
create_odither_tables (j_decompress_ptr cinfo)
|
||
|
{
|
||
|
my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
|
||
|
ODITHER_MATRIX_PTR odither;
|
||
|
int i, j, nci;
|
||
|
|
||
|
for (i = 0; i < cinfo->out_color_components; i++) {
|
||
|
nci = cquantize->Ncolors[i]; /* # of distinct values for this color */
|
||
|
odither = NULL; /* search for matching prior component */
|
||
|
for (j = 0; j < i; j++) {
|
||
|
if (nci == cquantize->Ncolors[j]) {
|
||
|
odither = cquantize->odither[j];
|
||
|
break;
|
||
|
}
|
||
|
}
|
||
|
if (odither == NULL) /* need a new table? */
|
||
|
odither = make_odither_array(cinfo, nci);
|
||
|
cquantize->odither[i] = odither;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
|
||
|
/*
|
||
|
* Map some rows of pixels to the output colormapped representation.
|
||
|
*/
|
||
|
|
||
|
METHODDEF(void)
|
||
|
color_quantize (j_decompress_ptr cinfo, JSAMPARRAY input_buf,
|
||
|
JSAMPARRAY output_buf, int num_rows)
|
||
|
/* General case, no dithering */
|
||
|
{
|
||
|
my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
|
||
|
JSAMPARRAY colorindex = cquantize->colorindex;
|
||
|
register int pixcode, ci;
|
||
|
register JSAMPROW ptrin, ptrout;
|
||
|
int row;
|
||
|
JDIMENSION col;
|
||
|
JDIMENSION width = cinfo->output_width;
|
||
|
register int nc = cinfo->out_color_components;
|
||
|
|
||
|
for (row = 0; row < num_rows; row++) {
|
||
|
ptrin = input_buf[row];
|
||
|
ptrout = output_buf[row];
|
||
|
for (col = width; col > 0; col--) {
|
||
|
pixcode = 0;
|
||
|
for (ci = 0; ci < nc; ci++) {
|
||
|
pixcode += GETJSAMPLE(colorindex[ci][GETJSAMPLE(*ptrin++)]);
|
||
|
}
|
||
|
*ptrout++ = (JSAMPLE) pixcode;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
|
||
|
METHODDEF(void)
|
||
|
color_quantize3 (j_decompress_ptr cinfo, JSAMPARRAY input_buf,
|
||
|
JSAMPARRAY output_buf, int num_rows)
|
||
|
/* Fast path for out_color_components==3, no dithering */
|
||
|
{
|
||
|
my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
|
||
|
register int pixcode;
|
||
|
register JSAMPROW ptrin, ptrout;
|
||
|
JSAMPROW colorindex0 = cquantize->colorindex[0];
|
||
|
JSAMPROW colorindex1 = cquantize->colorindex[1];
|
||
|
JSAMPROW colorindex2 = cquantize->colorindex[2];
|
||
|
int row;
|
||
|
JDIMENSION col;
|
||
|
JDIMENSION width = cinfo->output_width;
|
||
|
|
||
|
for (row = 0; row < num_rows; row++) {
|
||
|
ptrin = input_buf[row];
|
||
|
ptrout = output_buf[row];
|
||
|
for (col = width; col > 0; col--) {
|
||
|
pixcode = GETJSAMPLE(colorindex0[GETJSAMPLE(*ptrin++)]);
|
||
|
pixcode += GETJSAMPLE(colorindex1[GETJSAMPLE(*ptrin++)]);
|
||
|
pixcode += GETJSAMPLE(colorindex2[GETJSAMPLE(*ptrin++)]);
|
||
|
*ptrout++ = (JSAMPLE) pixcode;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
|
||
|
METHODDEF(void)
|
||
|
quantize_ord_dither (j_decompress_ptr cinfo, JSAMPARRAY input_buf,
|
||
|
JSAMPARRAY output_buf, int num_rows)
|
||
|
/* General case, with ordered dithering */
|
||
|
{
|
||
|
my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
|
||
|
register JSAMPROW input_ptr;
|
||
|
register JSAMPROW output_ptr;
|
||
|
JSAMPROW colorindex_ci;
|
||
|
int * dither; /* points to active row of dither matrix */
|
||
|
int row_index, col_index; /* current indexes into dither matrix */
|
||
|
int nc = cinfo->out_color_components;
|
||
|
int ci;
|
||
|
int row;
|
||
|
JDIMENSION col;
|
||
|
JDIMENSION width = cinfo->output_width;
|
||
|
|
||
|
for (row = 0; row < num_rows; row++) {
|
||
|
/* Initialize output values to 0 so can process components separately */
|
||
|
FMEMZERO((void FAR *) output_buf[row],
|
||
|
(size_t) (width * SIZEOF(JSAMPLE)));
|
||
|
row_index = cquantize->row_index;
|
||
|
for (ci = 0; ci < nc; ci++) {
|
||
|
input_ptr = input_buf[row] + ci;
|
||
|
output_ptr = output_buf[row];
|
||
|
colorindex_ci = cquantize->colorindex[ci];
|
||
|
dither = cquantize->odither[ci][row_index];
|
||
|
col_index = 0;
|
||
|
|
||
|
for (col = width; col > 0; col--) {
|
||
|
/* Form pixel value + dither, range-limit to 0..MAXJSAMPLE,
|
||
|
* select output value, accumulate into output code for this pixel.
|
||
|
* Range-limiting need not be done explicitly, as we have extended
|
||
|
* the colorindex table to produce the right answers for out-of-range
|
||
|
* inputs. The maximum dither is +- MAXJSAMPLE; this sets the
|
||
|
* required amount of padding.
|
||
|
*/
|
||
|
*output_ptr += colorindex_ci[GETJSAMPLE(*input_ptr)+dither[col_index]];
|
||
|
input_ptr += nc;
|
||
|
output_ptr++;
|
||
|
col_index = (col_index + 1) & ODITHER_MASK;
|
||
|
}
|
||
|
}
|
||
|
/* Advance row index for next row */
|
||
|
row_index = (row_index + 1) & ODITHER_MASK;
|
||
|
cquantize->row_index = row_index;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
|
||
|
METHODDEF(void)
|
||
|
quantize3_ord_dither (j_decompress_ptr cinfo, JSAMPARRAY input_buf,
|
||
|
JSAMPARRAY output_buf, int num_rows)
|
||
|
/* Fast path for out_color_components==3, with ordered dithering */
|
||
|
{
|
||
|
my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
|
||
|
register int pixcode;
|
||
|
register JSAMPROW input_ptr;
|
||
|
register JSAMPROW output_ptr;
|
||
|
JSAMPROW colorindex0 = cquantize->colorindex[0];
|
||
|
JSAMPROW colorindex1 = cquantize->colorindex[1];
|
||
|
JSAMPROW colorindex2 = cquantize->colorindex[2];
|
||
|
int * dither0; /* points to active row of dither matrix */
|
||
|
int * dither1;
|
||
|
int * dither2;
|
||
|
int row_index, col_index; /* current indexes into dither matrix */
|
||
|
int row;
|
||
|
JDIMENSION col;
|
||
|
JDIMENSION width = cinfo->output_width;
|
||
|
|
||
|
for (row = 0; row < num_rows; row++) {
|
||
|
row_index = cquantize->row_index;
|
||
|
input_ptr = input_buf[row];
|
||
|
output_ptr = output_buf[row];
|
||
|
dither0 = cquantize->odither[0][row_index];
|
||
|
dither1 = cquantize->odither[1][row_index];
|
||
|
dither2 = cquantize->odither[2][row_index];
|
||
|
col_index = 0;
|
||
|
|
||
|
for (col = width; col > 0; col--) {
|
||
|
pixcode = GETJSAMPLE(colorindex0[GETJSAMPLE(*input_ptr++) +
|
||
|
dither0[col_index]]);
|
||
|
pixcode += GETJSAMPLE(colorindex1[GETJSAMPLE(*input_ptr++) +
|
||
|
dither1[col_index]]);
|
||
|
pixcode += GETJSAMPLE(colorindex2[GETJSAMPLE(*input_ptr++) +
|
||
|
dither2[col_index]]);
|
||
|
*output_ptr++ = (JSAMPLE) pixcode;
|
||
|
col_index = (col_index + 1) & ODITHER_MASK;
|
||
|
}
|
||
|
row_index = (row_index + 1) & ODITHER_MASK;
|
||
|
cquantize->row_index = row_index;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
|
||
|
METHODDEF(void)
|
||
|
quantize_fs_dither (j_decompress_ptr cinfo, JSAMPARRAY input_buf,
|
||
|
JSAMPARRAY output_buf, int num_rows)
|
||
|
/* General case, with Floyd-Steinberg dithering */
|
||
|
{
|
||
|
my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
|
||
|
register LOCFSERROR cur; /* current error or pixel value */
|
||
|
LOCFSERROR belowerr; /* error for pixel below cur */
|
||
|
LOCFSERROR bpreverr; /* error for below/prev col */
|
||
|
LOCFSERROR bnexterr; /* error for below/next col */
|
||
|
LOCFSERROR delta;
|
||
|
register FSERRPTR errorptr; /* => fserrors[] at column before current */
|
||
|
register JSAMPROW input_ptr;
|
||
|
register JSAMPROW output_ptr;
|
||
|
JSAMPROW colorindex_ci;
|
||
|
JSAMPROW colormap_ci;
|
||
|
int pixcode;
|
||
|
int nc = cinfo->out_color_components;
|
||
|
int dir; /* 1 for left-to-right, -1 for right-to-left */
|
||
|
int dirnc; /* dir * nc */
|
||
|
int ci;
|
||
|
int row;
|
||
|
JDIMENSION col;
|
||
|
JDIMENSION width = cinfo->output_width;
|
||
|
JSAMPLE *range_limit = cinfo->sample_range_limit;
|
||
|
SHIFT_TEMPS
|
||
|
|
||
|
for (row = 0; row < num_rows; row++) {
|
||
|
/* Initialize output values to 0 so can process components separately */
|
||
|
FMEMZERO((void FAR *) output_buf[row],
|
||
|
(size_t) (width * SIZEOF(JSAMPLE)));
|
||
|
for (ci = 0; ci < nc; ci++) {
|
||
|
input_ptr = input_buf[row] + ci;
|
||
|
output_ptr = output_buf[row];
|
||
|
if (cquantize->on_odd_row) {
|
||
|
/* work right to left in this row */
|
||
|
input_ptr += (width-1) * nc; /* so point to rightmost pixel */
|
||
|
output_ptr += width-1;
|
||
|
dir = -1;
|
||
|
dirnc = -nc;
|
||
|
errorptr = cquantize->fserrors[ci] + (width+1); /* => entry after last column */
|
||
|
} else {
|
||
|
/* work left to right in this row */
|
||
|
dir = 1;
|
||
|
dirnc = nc;
|
||
|
errorptr = cquantize->fserrors[ci]; /* => entry before first column */
|
||
|
}
|
||
|
colorindex_ci = cquantize->colorindex[ci];
|
||
|
colormap_ci = cquantize->sv_colormap[ci];
|
||
|
/* Preset error values: no error propagated to first pixel from left */
|
||
|
cur = 0;
|
||
|
/* and no error propagated to row below yet */
|
||
|
belowerr = bpreverr = 0;
|
||
|
|
||
|
for (col = width; col > 0; col--) {
|
||
|
/* cur holds the error propagated from the previous pixel on the
|
||
|
* current line. Add the error propagated from the previous line
|
||
|
* to form the complete error correction term for this pixel, and
|
||
|
* round the error term (which is expressed * 16) to an integer.
|
||
|
* RIGHT_SHIFT rounds towards minus infinity, so adding 8 is correct
|
||
|
* for either sign of the error value.
|
||
|
* Note: errorptr points to *previous* column's array entry.
|
||
|
*/
|
||
|
cur = RIGHT_SHIFT(cur + errorptr[dir] + 8, 4);
|
||
|
/* Form pixel value + error, and range-limit to 0..MAXJSAMPLE.
|
||
|
* The maximum error is +- MAXJSAMPLE; this sets the required size
|
||
|
* of the range_limit array.
|
||
|
*/
|
||
|
cur += GETJSAMPLE(*input_ptr);
|
||
|
cur = GETJSAMPLE(range_limit[cur]);
|
||
|
/* Select output value, accumulate into output code for this pixel */
|
||
|
pixcode = GETJSAMPLE(colorindex_ci[cur]);
|
||
|
*output_ptr += (JSAMPLE) pixcode;
|
||
|
/* Compute actual representation error at this pixel */
|
||
|
/* Note: we can do this even though we don't have the final */
|
||
|
/* pixel code, because the colormap is orthogonal. */
|
||
|
cur -= GETJSAMPLE(colormap_ci[pixcode]);
|
||
|
/* Compute error fractions to be propagated to adjacent pixels.
|
||
|
* Add these into the running sums, and simultaneously shift the
|
||
|
* next-line error sums left by 1 column.
|
||
|
*/
|
||
|
bnexterr = cur;
|
||
|
delta = cur * 2;
|
||
|
cur += delta; /* form error * 3 */
|
||
|
errorptr[0] = (FSERROR) (bpreverr + cur);
|
||
|
cur += delta; /* form error * 5 */
|
||
|
bpreverr = belowerr + cur;
|
||
|
belowerr = bnexterr;
|
||
|
cur += delta; /* form error * 7 */
|
||
|
/* At this point cur contains the 7/16 error value to be propagated
|
||
|
* to the next pixel on the current line, and all the errors for the
|
||
|
* next line have been shifted over. We are therefore ready to move on.
|
||
|
*/
|
||
|
input_ptr += dirnc; /* advance input ptr to next column */
|
||
|
output_ptr += dir; /* advance output ptr to next column */
|
||
|
errorptr += dir; /* advance errorptr to current column */
|
||
|
}
|
||
|
/* Post-loop cleanup: we must unload the final error value into the
|
||
|
* final fserrors[] entry. Note we need not unload belowerr because
|
||
|
* it is for the dummy column before or after the actual array.
|
||
|
*/
|
||
|
errorptr[0] = (FSERROR) bpreverr; /* unload prev err into array */
|
||
|
}
|
||
|
cquantize->on_odd_row = (cquantize->on_odd_row ? FALSE : TRUE);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
|
||
|
/*
|
||
|
* Allocate workspace for Floyd-Steinberg errors.
|
||
|
*/
|
||
|
|
||
|
LOCAL(void)
|
||
|
alloc_fs_workspace (j_decompress_ptr cinfo)
|
||
|
{
|
||
|
my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
|
||
|
size_t arraysize;
|
||
|
int i;
|
||
|
|
||
|
arraysize = (size_t) ((cinfo->output_width + 2) * SIZEOF(FSERROR));
|
||
|
for (i = 0; i < cinfo->out_color_components; i++) {
|
||
|
cquantize->fserrors[i] = (FSERRPTR)
|
||
|
(*cinfo->mem->alloc_large)((j_common_ptr) cinfo, JPOOL_IMAGE, arraysize);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
|
||
|
/*
|
||
|
* Initialize for one-pass color quantization.
|
||
|
*/
|
||
|
|
||
|
METHODDEF(void)
|
||
|
start_pass_1_quant (j_decompress_ptr cinfo, boolean is_pre_scan)
|
||
|
{
|
||
|
my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
|
||
|
size_t arraysize;
|
||
|
int i;
|
||
|
|
||
|
/* Install my colormap. */
|
||
|
cinfo->colormap = cquantize->sv_colormap;
|
||
|
cinfo->actual_number_of_colors = cquantize->sv_actual;
|
||
|
|
||
|
/* Initialize for desired dithering mode. */
|
||
|
switch (cinfo->dither_mode) {
|
||
|
case JDITHER_NONE:
|
||
|
if (cinfo->out_color_components == 3)
|
||
|
cquantize->pub.color_quantize = color_quantize3;
|
||
|
else
|
||
|
cquantize->pub.color_quantize = color_quantize;
|
||
|
break;
|
||
|
case JDITHER_ORDERED:
|
||
|
if (cinfo->out_color_components == 3)
|
||
|
cquantize->pub.color_quantize = quantize3_ord_dither;
|
||
|
else
|
||
|
cquantize->pub.color_quantize = quantize_ord_dither;
|
||
|
cquantize->row_index = 0; /* initialize state for ordered dither */
|
||
|
/* If user changed to ordered dither from another mode,
|
||
|
* we must recreate the color index table with padding.
|
||
|
* This will cost extra space, but probably isn't very likely.
|
||
|
*/
|
||
|
if (! cquantize->is_padded)
|
||
|
create_colorindex(cinfo);
|
||
|
/* Create ordered-dither tables if we didn't already. */
|
||
|
if (cquantize->odither[0] == NULL)
|
||
|
create_odither_tables(cinfo);
|
||
|
break;
|
||
|
case JDITHER_FS:
|
||
|
cquantize->pub.color_quantize = quantize_fs_dither;
|
||
|
cquantize->on_odd_row = FALSE; /* initialize state for F-S dither */
|
||
|
/* Allocate Floyd-Steinberg workspace if didn't already. */
|
||
|
if (cquantize->fserrors[0] == NULL)
|
||
|
alloc_fs_workspace(cinfo);
|
||
|
/* Initialize the propagated errors to zero. */
|
||
|
arraysize = (size_t) ((cinfo->output_width + 2) * SIZEOF(FSERROR));
|
||
|
for (i = 0; i < cinfo->out_color_components; i++)
|
||
|
FMEMZERO((void FAR *) cquantize->fserrors[i], arraysize);
|
||
|
break;
|
||
|
default:
|
||
|
ERREXIT(cinfo, JERR_NOT_COMPILED);
|
||
|
break;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
|
||
|
/*
|
||
|
* Finish up at the end of the pass.
|
||
|
*/
|
||
|
|
||
|
METHODDEF(void)
|
||
|
finish_pass_1_quant (j_decompress_ptr cinfo)
|
||
|
{
|
||
|
/* no work in 1-pass case */
|
||
|
}
|
||
|
|
||
|
|
||
|
/*
|
||
|
* Switch to a new external colormap between output passes.
|
||
|
* Shouldn't get to this module!
|
||
|
*/
|
||
|
|
||
|
METHODDEF(void)
|
||
|
new_color_map_1_quant (j_decompress_ptr cinfo)
|
||
|
{
|
||
|
ERREXIT(cinfo, JERR_MODE_CHANGE);
|
||
|
}
|
||
|
|
||
|
|
||
|
/*
|
||
|
* Module initialization routine for 1-pass color quantization.
|
||
|
*/
|
||
|
|
||
|
GLOBAL(void)
|
||
|
jinit_1pass_quantizer (j_decompress_ptr cinfo)
|
||
|
{
|
||
|
my_cquantize_ptr cquantize;
|
||
|
|
||
|
cquantize = (my_cquantize_ptr)
|
||
|
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
|
||
|
SIZEOF(my_cquantizer));
|
||
|
cinfo->cquantize = (struct jpeg_color_quantizer *) cquantize;
|
||
|
cquantize->pub.start_pass = start_pass_1_quant;
|
||
|
cquantize->pub.finish_pass = finish_pass_1_quant;
|
||
|
cquantize->pub.new_color_map = new_color_map_1_quant;
|
||
|
cquantize->fserrors[0] = NULL; /* Flag FS workspace not allocated */
|
||
|
cquantize->odither[0] = NULL; /* Also flag odither arrays not allocated */
|
||
|
|
||
|
/* Make sure my internal arrays won't overflow */
|
||
|
if (cinfo->out_color_components > MAX_Q_COMPS)
|
||
|
ERREXIT1(cinfo, JERR_QUANT_COMPONENTS, MAX_Q_COMPS);
|
||
|
/* Make sure colormap indexes can be represented by JSAMPLEs */
|
||
|
if (cinfo->desired_number_of_colors > (MAXJSAMPLE+1))
|
||
|
ERREXIT1(cinfo, JERR_QUANT_MANY_COLORS, MAXJSAMPLE+1);
|
||
|
|
||
|
/* Create the colormap and color index table. */
|
||
|
create_colormap(cinfo);
|
||
|
create_colorindex(cinfo);
|
||
|
|
||
|
/* Allocate Floyd-Steinberg workspace now if requested.
|
||
|
* We do this now since it is FAR storage and may affect the memory
|
||
|
* manager's space calculations. If the user changes to FS dither
|
||
|
* mode in a later pass, we will allocate the space then, and will
|
||
|
* possibly overrun the max_memory_to_use setting.
|
||
|
*/
|
||
|
if (cinfo->dither_mode == JDITHER_FS)
|
||
|
alloc_fs_workspace(cinfo);
|
||
|
}
|
||
|
|
||
|
#endif /* QUANT_1PASS_SUPPORTED */
|