gzdoom/src/gl/textures/gl_hwtexture.cpp

470 lines
14 KiB
C++
Raw Normal View History

/*
** gltexture.cpp
** Low level OpenGL texture handling. These classes are also
** containers for the various translations a texture can have.
**
**---------------------------------------------------------------------------
** Copyright 2004-2005 Christoph Oelckers
** All rights reserved.
**
** Redistribution and use in source and binary forms, with or without
** modification, are permitted provided that the following conditions
** are met:
**
** 1. Redistributions of source code must retain the above copyright
** notice, this list of conditions and the following disclaimer.
** 2. Redistributions in binary form must reproduce the above copyright
** notice, this list of conditions and the following disclaimer in the
** documentation and/or other materials provided with the distribution.
** 3. The name of the author may not be used to endorse or promote products
** derived from this software without specific prior written permission.
** 4. When not used as part of GZDoom or a GZDoom derivative, this code will be
** covered by the terms of the GNU Lesser General Public License as published
** by the Free Software Foundation; either version 2.1 of the License, or (at
** your option) any later version.
** 5. Full disclosure of the entire project's source code, except for third
** party libraries is mandatory. (NOTE: This clause is non-negotiable!)
**
** THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
** IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
** OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
** IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
** INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
** NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
** DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
** THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
** (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
** THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
**---------------------------------------------------------------------------
**
*/
#include "gl/system/gl_system.h"
#include "templates.h"
#include "m_crc32.h"
#include "c_cvars.h"
#include "c_dispatch.h"
#include "v_palette.h"
#include "gl/system/gl_interface.h"
#include "gl/system/gl_cvars.h"
#include "gl/renderer/gl_renderer.h"
#include "gl/textures/gl_material.h"
extern TexFilter_s TexFilter[];
extern int TexFormat[];
//===========================================================================
//
// Static texture data
//
//===========================================================================
unsigned int FHardwareTexture::lastbound[FHardwareTexture::MAX_TEXTURES];
//===========================================================================
//
// STATIC - Gets the maximum size of hardware textures
//
//===========================================================================
int FHardwareTexture::GetTexDimension(int value)
{
if (value > gl.max_texturesize) return gl.max_texturesize;
return value;
}
//===========================================================================
//
// Quick'n dirty image rescaling.
//
// This will only be used when the source texture is larger than
// what the hardware can manage (extremely rare in Doom)
//
// Code taken from wxWidgets
//
//===========================================================================
struct BoxPrecalc
{
int boxStart;
int boxEnd;
};
static void ResampleBoxPrecalc(TArray<BoxPrecalc>& boxes, int oldDim)
{
int newDim = boxes.Size();
const double scale_factor_1 = double(oldDim) / newDim;
const int scale_factor_2 = (int)(scale_factor_1 / 2);
for (int dst = 0; dst < newDim; ++dst)
{
// Source pixel in the Y direction
const int src_p = int(dst * scale_factor_1);
BoxPrecalc& precalc = boxes[dst];
precalc.boxStart = clamp<int>(int(src_p - scale_factor_1 / 2.0 + 1), 0, oldDim - 1);
precalc.boxEnd = clamp<int>(MAX<int>(precalc.boxStart + 1, int(src_p + scale_factor_2)), 0, oldDim - 1);
}
}
void FHardwareTexture::Resize(int width, int height, unsigned char *src_data, unsigned char *dst_data)
{
// This function implements a simple pre-blur/box averaging method for
// downsampling that gives reasonably smooth results To scale the image
// down we will need to gather a grid of pixels of the size of the scale
// factor in each direction and then do an averaging of the pixels.
TArray<BoxPrecalc> vPrecalcs(height);
TArray<BoxPrecalc> hPrecalcs(width);
ResampleBoxPrecalc(vPrecalcs, texheight);
ResampleBoxPrecalc(hPrecalcs, texwidth);
int averaged_pixels, averaged_alpha, src_pixel_index;
double sum_r, sum_g, sum_b, sum_a;
for (int y = 0; y < height; y++) // Destination image - Y direction
{
// Source pixel in the Y direction
const BoxPrecalc& vPrecalc = vPrecalcs[y];
for (int x = 0; x < width; x++) // Destination image - X direction
{
// Source pixel in the X direction
const BoxPrecalc& hPrecalc = hPrecalcs[x];
// Box of pixels to average
averaged_pixels = 0;
averaged_alpha = 0;
sum_r = sum_g = sum_b = sum_a = 0.0;
for (int j = vPrecalc.boxStart; j <= vPrecalc.boxEnd; ++j)
{
for (int i = hPrecalc.boxStart; i <= hPrecalc.boxEnd; ++i)
{
// Calculate the actual index in our source pixels
src_pixel_index = j * texwidth + i;
int a = src_data[src_pixel_index * 4 + 3];
if (a > 0) // do not use color from fully transparent pixels
{
sum_r += src_data[src_pixel_index * 4 + 0];
sum_g += src_data[src_pixel_index * 4 + 1];
sum_b += src_data[src_pixel_index * 4 + 2];
sum_a += a;
averaged_pixels++;
}
averaged_alpha++;
}
}
// Calculate the average from the sum and number of averaged pixels
dst_data[0] = (unsigned char)xs_CRoundToInt(sum_r / averaged_pixels);
dst_data[1] = (unsigned char)xs_CRoundToInt(sum_g / averaged_pixels);
dst_data[2] = (unsigned char)xs_CRoundToInt(sum_b / averaged_pixels);
dst_data[3] = (unsigned char)xs_CRoundToInt(sum_a / averaged_alpha);
dst_data += 4;
}
}
}
//===========================================================================
//
// Loads the texture image into the hardware
//
// NOTE: For some strange reason I was unable to find the source buffer
// should be one line higher than the actual texture. I got extremely
// strange crashes deep inside the GL driver when I didn't do it!
//
//===========================================================================
void FHardwareTexture::LoadImage(unsigned char * buffer,int w, int h, unsigned int & glTexID,int wrapparam, bool alphatexture, int texunit)
{
int rh,rw;
int texformat=TexFormat[gl_texture_format];
bool deletebuffer=false;
bool use_mipmapping = TexFilter[gl_texture_filter].mipmapping;
if (alphatexture)
{
2014-08-01 20:42:39 +00:00
texformat = GL_R8;
}
else if (forcenocompression)
{
texformat = GL_RGBA8;
}
if (glTexID==0) glGenTextures(1,&glTexID);
glBindTexture(GL_TEXTURE_2D, glTexID);
lastbound[texunit]=glTexID;
if (!buffer)
{
w=texwidth;
h=abs(texheight);
rw = GetTexDimension (w);
rh = GetTexDimension (h);
// The texture must at least be initialized if no data is present.
mipmap=false;
buffer=(unsigned char *)calloc(4,rw * (rh+1));
deletebuffer=true;
//texheight=-h;
}
else
{
rw = GetTexDimension (w);
rh = GetTexDimension (h);
if (rw < w || rh < h)
{
// The texture is larger than what the hardware can handle so scale it down.
unsigned char * scaledbuffer=(unsigned char *)calloc(4,rw * (rh+1));
if (scaledbuffer)
{
Resize(rw, rh, buffer, scaledbuffer);
deletebuffer=true;
buffer=scaledbuffer;
}
}
}
glTexImage2D(GL_TEXTURE_2D, 0, texformat, rw, rh, 0, GL_RGBA, GL_UNSIGNED_BYTE, buffer);
if (deletebuffer) free(buffer);
if (mipmap && use_mipmapping && !forcenofiltering) glGenerateMipmap(GL_TEXTURE_2D);
2014-08-01 20:42:39 +00:00
if (alphatexture)
{
static const GLint swizzleMask[] = {GL_ONE, GL_ONE, GL_ONE, GL_RED};
glTexParameteriv(GL_TEXTURE_2D, GL_TEXTURE_SWIZZLE_RGBA, swizzleMask);
}
// When using separate samplers the stuff below is not needed.
// if (gl.flags & RFL_SAMPLER_OBJECTS) return;
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, wrapparam);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, wrapparam);
clampmode = wrapparam==GL_CLAMP_TO_EDGE? GLT_CLAMPX|GLT_CLAMPY : 0;
if (forcenofiltering)
{
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST);
glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_MAX_ANISOTROPY_EXT, 1.f);
}
else
{
if (mipmap && use_mipmapping)
{
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, TexFilter[gl_texture_filter].minfilter);
if (gl_texture_filter_anisotropic)
{
glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_MAX_ANISOTROPY_EXT, gl_texture_filter_anisotropic);
}
}
else
{
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, TexFilter[gl_texture_filter].magfilter);
}
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, TexFilter[gl_texture_filter].magfilter);
}
}
//===========================================================================
//
// Creates a texture
//
//===========================================================================
FHardwareTexture::FHardwareTexture(int _width, int _height, bool _mipmap, bool wrap, bool nofilter, bool nocompression)
{
forcenocompression = nocompression;
mipmap=_mipmap;
texwidth=_width;
texheight=_height;
glDefTexID = 0;
clampmode=0;
glDepthID = 0;
forcenofiltering = nofilter;
}
//===========================================================================
//
// Deletes a texture id and unbinds it from the texture units
//
//===========================================================================
void FHardwareTexture::DeleteTexture(unsigned int texid)
{
if (texid != 0)
{
for(int i = 0; i < MAX_TEXTURES; i++)
{
if (lastbound[i] == texid)
{
lastbound[i] = 0;
}
}
glDeleteTextures(1, &texid);
}
}
//===========================================================================
//
// Frees all associated resources
//
//===========================================================================
void FHardwareTexture::Clean(bool all)
{
int cm_arraysize = CM_FIRSTSPECIALCOLORMAP + SpecialColormaps.Size();
if (all)
{
DeleteTexture(glDefTexID);
glDefTexID = 0;
}
for(unsigned int i=0;i<glTexID_Translated.Size();i++)
{
DeleteTexture(glTexID_Translated[i].glTexID);
}
glTexID_Translated.Clear();
if (glDepthID != 0) glDeleteRenderbuffers(1, &glDepthID);
}
//===========================================================================
//
// Destroys the texture
//
//===========================================================================
FHardwareTexture::~FHardwareTexture()
{
Clean(true);
}
//===========================================================================
//
// Gets a texture ID address and validates all required data
//
//===========================================================================
unsigned * FHardwareTexture::GetTexID(int translation)
{
if (translation==0)
{
return &glDefTexID;
}
// normally there aren't more than very few different
// translations here so this isn't performance critical.
for(unsigned int i=0;i<glTexID_Translated.Size();i++)
{
if (glTexID_Translated[i].translation == translation)
{
return &glTexID_Translated[i].glTexID;
}
}
int add = glTexID_Translated.Reserve(1);
glTexID_Translated[add].translation=translation;
glTexID_Translated[add].glTexID=0;
return &glTexID_Translated[add].glTexID;
}
//===========================================================================
//
// Binds this patch
//
//===========================================================================
unsigned int FHardwareTexture::Bind(int texunit, int translation, bool alphatexture)
{
if (alphatexture) translation = TRANS_Alpha;
unsigned int * pTexID=GetTexID(translation);
if (*pTexID!=0)
{
if (lastbound[texunit]==*pTexID) return *pTexID;
lastbound[texunit]=*pTexID;
if (texunit != 0) glActiveTexture(GL_TEXTURE0+texunit);
glBindTexture(GL_TEXTURE_2D, *pTexID);
if (texunit != 0) glActiveTexture(GL_TEXTURE0);
return *pTexID;
}
return 0;
}
void FHardwareTexture::Unbind(int texunit)
{
if (lastbound[texunit] != 0)
{
if (texunit != 0) glActiveTexture(GL_TEXTURE0+texunit);
glBindTexture(GL_TEXTURE_2D, 0);
if (texunit != 0) glActiveTexture(GL_TEXTURE0);
lastbound[texunit] = 0;
}
}
void FHardwareTexture::UnbindAll()
{
for(int texunit = 0; texunit < 16; texunit++)
{
Unbind(texunit);
}
}
//===========================================================================
//
// Creates a depth buffer for this texture
//
//===========================================================================
int FHardwareTexture::GetDepthBuffer()
{
if (glDepthID == 0)
{
glGenRenderbuffers(1, &glDepthID);
glBindRenderbuffer(GL_RENDERBUFFER, glDepthID);
glRenderbufferStorage(GL_RENDERBUFFER, GL_DEPTH24_STENCIL8,
GetTexDimension(texwidth), GetTexDimension(texheight));
glBindRenderbuffer(GL_RENDERBUFFER, 0);
}
return glDepthID;
}
//===========================================================================
//
// Binds this texture's surfaces to the current framrbuffer
//
//===========================================================================
void FHardwareTexture::BindToFrameBuffer()
{
glFramebufferTexture2D(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, GL_TEXTURE_2D, glDefTexID, 0);
glFramebufferRenderbuffer(GL_FRAMEBUFFER, GL_DEPTH_STENCIL_ATTACHMENT, GL_RENDERBUFFER, GetDepthBuffer());
}
//===========================================================================
//
// (re-)creates the texture
//
//===========================================================================
unsigned int FHardwareTexture::CreateTexture(unsigned char * buffer, int w, int h, bool wrap, int texunit, int translation, bool alphatexture)
{
if (alphatexture) translation = TRANS_Alpha;
unsigned int * pTexID=GetTexID(translation);
if (texunit != 0) glActiveTexture(GL_TEXTURE0+texunit);
LoadImage(buffer, w, h, *pTexID, wrap? GL_REPEAT:GL_CLAMP_TO_EDGE, alphatexture, texunit);
if (texunit != 0) glActiveTexture(GL_TEXTURE0);
return *pTexID;
}