gzdoom-gles/src/thingdef/thingdef_expression.cpp
2016-02-18 22:53:18 -06:00

3946 lines
99 KiB
C++

/*
** thingdef_expression.cpp
**
** Expression evaluation
**
**---------------------------------------------------------------------------
** Copyright 2008 Christoph Oelckers
** All rights reserved.
**
** Redistribution and use in source and binary forms, with or without
** modification, are permitted provided that the following conditions
** are met:
**
** 1. Redistributions of source code must retain the above copyright
** notice, this list of conditions and the following disclaimer.
** 2. Redistributions in binary form must reproduce the above copyright
** notice, this list of conditions and the following disclaimer in the
** documentation and/or other materials provided with the distribution.
** 3. The name of the author may not be used to endorse or promote products
** derived from this software without specific prior written permission.
** 4. When not used as part of ZDoom or a ZDoom derivative, this code will be
** covered by the terms of the GNU General Public License as published by
** the Free Software Foundation; either version 2 of the License, or (at
** your option) any later version.
**
** THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
** IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
** OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
** IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
** INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
** NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
** DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
** THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
** (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
** THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
**---------------------------------------------------------------------------
**
*/
#include <stdlib.h>
#include "actor.h"
#include "sc_man.h"
#include "tarray.h"
#include "templates.h"
#include "cmdlib.h"
#include "i_system.h"
#include "m_random.h"
#include "a_pickups.h"
#include "thingdef.h"
#include "p_lnspec.h"
#include "doomstat.h"
#include "thingdef_exp.h"
#include "m_fixed.h"
#include "vmbuilder.h"
#include "v_text.h"
ExpEmit::ExpEmit(VMFunctionBuilder *build, int type)
: RegNum(build->Registers[type].Get(1)), RegType(type), Konst(false), Fixed(false)
{
}
void ExpEmit::Free(VMFunctionBuilder *build)
{
if (!Fixed && !Konst && RegType <= REGT_TYPE)
{
build->Registers[RegType].Return(RegNum, 1);
}
}
void ExpEmit::Reuse(VMFunctionBuilder *build)
{
if (!Fixed && !Konst)
{
bool success = build->Registers[RegType].Reuse(RegNum);
assert(success && "Attempt to reuse a register that is already in use");
}
}
//==========================================================================
//
// FindDecorateBuiltinFunction
//
// Returns the symbol for a decorate utility function. If not found, create
// it and install it in Actor.
//
//==========================================================================
static PSymbol *FindDecorateBuiltinFunction(FName funcname, VMNativeFunction::NativeCallType func)
{
PSymbol *sym = RUNTIME_CLASS(AActor)->Symbols.FindSymbol(funcname, false);
if (sym == NULL)
{
PSymbolVMFunction *symfunc = new PSymbolVMFunction(funcname);
VMNativeFunction *calldec = new VMNativeFunction(func, funcname);
symfunc->Function = calldec;
sym = symfunc;
RUNTIME_CLASS(AActor)->Symbols.AddSymbol(sym);
}
return sym;
}
//==========================================================================
//
//
//
//==========================================================================
ExpEmit FxExpression::Emit (VMFunctionBuilder *build)
{
ScriptPosition.Message(MSG_ERROR, "Unemitted expression found");
return ExpEmit();
}
//==========================================================================
//
//
//
//==========================================================================
bool FxExpression::isConstant() const
{
return false;
}
//==========================================================================
//
//
//
//==========================================================================
VMFunction *FxExpression::GetDirectFunction()
{
return NULL;
}
//==========================================================================
//
//
//
//==========================================================================
FxExpression *FxExpression::Resolve(FCompileContext &ctx)
{
isresolved = true;
return this;
}
//==========================================================================
//
//
//
//==========================================================================
FxExpression *FxExpression::ResolveAsBoolean(FCompileContext &ctx)
{
///FIXME: Use an actual boolean type
FxExpression *x = Resolve(ctx);
if (x != NULL)
{
switch (x->ValueType.Type)
{
case VAL_Int:
case VAL_Sound:
case VAL_Color:
case VAL_Name:
x->ValueType = VAL_Int;
break;
case VAL_State:
x = new FxCastStateToBool(x);
x = x->Resolve(ctx);
break;
default:
ScriptPosition.Message(MSG_ERROR, "Not an integral type");
delete this;
return NULL;
break;
}
}
return x;
}
//==========================================================================
//
//
//
//==========================================================================
void FxExpression::RequestAddress()
{
ScriptPosition.Message(MSG_ERROR, "invalid dereference\n");
}
//==========================================================================
//
//
//
//==========================================================================
FxParameter::FxParameter(FxExpression *operand)
: FxExpression(operand->ScriptPosition)
{
Operand = operand;
ValueType = operand->ValueType;
}
//==========================================================================
//
//
//
//==========================================================================
FxParameter::~FxParameter()
{
SAFE_DELETE(Operand);
}
//==========================================================================
//
//
//
//==========================================================================
FxExpression *FxParameter::Resolve(FCompileContext& ctx)
{
CHECKRESOLVED();
SAFE_RESOLVE(Operand, ctx);
ValueType = Operand->ValueType;
return this;
}
ExpEmit FxParameter::Emit(VMFunctionBuilder *build)
{
if (Operand->isConstant())
{
ExpVal val = static_cast<FxConstant *>(Operand)->GetValue();
if (val.Type == VAL_Int || val.Type == VAL_Sound || val.Type == VAL_Name || val.Type == VAL_Color)
{
build->EmitParamInt(val.Int);
}
else if (val.Type == VAL_Float)
{
build->Emit(OP_PARAM, 0, REGT_FLOAT | REGT_KONST, build->GetConstantFloat(val.Float));
}
else if (val.Type == VAL_Class || val.Type == VAL_Object)
{
build->Emit(OP_PARAM, 0, REGT_POINTER | REGT_KONST, build->GetConstantAddress(val.pointer, ATAG_OBJECT));
}
else if (val.Type == VAL_State)
{
build->Emit(OP_PARAM, 0, REGT_POINTER | REGT_KONST, build->GetConstantAddress(val.pointer, ATAG_STATE));
}
else if (val.Type == VAL_String)
{
build->Emit(OP_PARAM, 0, REGT_STRING | REGT_KONST, build->GetConstantString(val.GetString()));
}
else
{
build->Emit(OP_PARAM, 0, REGT_NIL, 0);
ScriptPosition.Message(MSG_ERROR, "Cannot emit needed constant");
}
}
else
{
ExpEmit where = Operand->Emit(build);
if (where.RegType == REGT_NIL)
{
ScriptPosition.Message(MSG_ERROR, "Attempted to pass a non-value");
build->Emit(OP_PARAM, 0, where.RegType, where.RegNum);
}
else
{
build->Emit(OP_PARAM, 0, where.RegType, where.RegNum);
where.Free(build);
}
}
return ExpEmit();
}
//==========================================================================
//
//
//
//==========================================================================
FxExpression *FxConstant::MakeConstant(PSymbol *sym, const FScriptPosition &pos)
{
FxExpression *x;
PSymbolConstNumeric *csym = dyn_cast<PSymbolConstNumeric>(sym);
if (csym != NULL)
{
if (csym->ValueType->IsA(RUNTIME_CLASS(PInt)))
{
x = new FxConstant(csym->Value, pos);
}
else if (csym->ValueType->IsA(RUNTIME_CLASS(PFloat)))
{
x = new FxConstant(csym->Float, pos);
}
else
{
pos.Message(MSG_ERROR, "Invalid constant '%s'\n", csym->SymbolName.GetChars());
return NULL;
}
}
else
{
pos.Message(MSG_ERROR, "'%s' is not a constant\n", sym->SymbolName.GetChars());
x = NULL;
}
return x;
}
ExpEmit FxConstant::Emit(VMFunctionBuilder *build)
{
ExpEmit out;
out.Konst = true;
if (value.Type == VAL_Int || value.Type == VAL_Sound || value.Type == VAL_Name || value.Type == VAL_Color)
{
out.RegType = REGT_INT;
out.RegNum = build->GetConstantInt(value.Int);
}
else if (value.Type == VAL_Float)
{
out.RegType = REGT_FLOAT;
out.RegNum = build->GetConstantFloat(value.Float);
}
else if (value.Type == VAL_Class || value.Type == VAL_Object)
{
out.RegType = REGT_POINTER;
out.RegNum = build->GetConstantAddress(value.pointer, ATAG_OBJECT);
}
else if (value.Type == VAL_State)
{
out.RegType = REGT_POINTER;
out.RegNum = build->GetConstantAddress(value.pointer, ATAG_STATE);
}
else if (value.Type == VAL_String)
{
out.RegType = REGT_STRING;
out.RegNum = build->GetConstantString(value.GetString());
}
else
{
ScriptPosition.Message(MSG_ERROR, "Cannot emit needed constant");
out.RegType = REGT_NIL;
out.RegNum = 0;
}
return out;
}
//==========================================================================
//
//
//
//==========================================================================
FxIntCast::FxIntCast(FxExpression *x)
: FxExpression(x->ScriptPosition)
{
basex=x;
ValueType = VAL_Int;
}
//==========================================================================
//
//
//
//==========================================================================
FxIntCast::~FxIntCast()
{
SAFE_DELETE(basex);
}
//==========================================================================
//
//
//
//==========================================================================
FxExpression *FxIntCast::Resolve(FCompileContext &ctx)
{
CHECKRESOLVED();
SAFE_RESOLVE(basex, ctx);
if (basex->ValueType == VAL_Int)
{
FxExpression *x = basex;
basex = NULL;
delete this;
return x;
}
else if (basex->ValueType == VAL_Float)
{
if (basex->isConstant())
{
ExpVal constval = static_cast<FxConstant *>(basex)->GetValue();
FxExpression *x = new FxConstant(constval.GetInt(), ScriptPosition);
delete this;
return x;
}
return this;
}
else
{
ScriptPosition.Message(MSG_ERROR, "Numeric type expected");
delete this;
return NULL;
}
}
//==========================================================================
//
//
//
//==========================================================================
ExpEmit FxIntCast::Emit(VMFunctionBuilder *build)
{
ExpEmit from = basex->Emit(build);
assert(!from.Konst);
assert(basex->ValueType == VAL_Float);
from.Free(build);
ExpEmit to(build, REGT_INT);
build->Emit(OP_CAST, to.RegNum, from.RegNum, CAST_F2I);
return to;
}
//==========================================================================
//
//
//
//==========================================================================
FxFloatCast::FxFloatCast(FxExpression *x)
: FxExpression(x->ScriptPosition)
{
basex=x;
ValueType = VAL_Float;
}
//==========================================================================
//
//
//
//==========================================================================
FxFloatCast::~FxFloatCast()
{
SAFE_DELETE(basex);
}
//==========================================================================
//
//
//
//==========================================================================
FxExpression *FxFloatCast::Resolve(FCompileContext &ctx)
{
CHECKRESOLVED();
SAFE_RESOLVE(basex, ctx);
if (basex->ValueType == VAL_Float)
{
FxExpression *x = basex;
basex = NULL;
delete this;
return x;
}
else if (basex->ValueType == VAL_Int)
{
if (basex->isConstant())
{
ExpVal constval = static_cast<FxConstant *>(basex)->GetValue();
FxExpression *x = new FxConstant(constval.GetFloat(), ScriptPosition);
delete this;
return x;
}
return this;
}
else
{
ScriptPosition.Message(MSG_ERROR, "Numeric type expected");
delete this;
return NULL;
}
}
//==========================================================================
//
//
//
//==========================================================================
ExpEmit FxFloatCast::Emit(VMFunctionBuilder *build)
{
ExpEmit from = basex->Emit(build);
assert(!from.Konst);
assert(basex->ValueType == VAL_Int);
from.Free(build);
ExpEmit to(build, REGT_FLOAT);
build->Emit(OP_CAST, to.RegNum, from.RegNum, CAST_I2F);
return to;
}
//==========================================================================
//
//
//
//==========================================================================
FxCastStateToBool::FxCastStateToBool(FxExpression *x)
: FxExpression(x->ScriptPosition)
{
basex = x;
ValueType = VAL_Int;
}
//==========================================================================
//
//
//
//==========================================================================
FxCastStateToBool::~FxCastStateToBool()
{
SAFE_DELETE(basex);
}
//==========================================================================
//
//
//
//==========================================================================
FxExpression *FxCastStateToBool::Resolve(FCompileContext &ctx)
{
CHECKRESOLVED();
SAFE_RESOLVE(basex, ctx);
assert(basex->ValueType == VAL_State);
assert(!basex->isConstant() && "We shouldn't be able to generate a constant state ref");
return this;
}
//==========================================================================
//
//
//
//==========================================================================
ExpEmit FxCastStateToBool::Emit(VMFunctionBuilder *build)
{
ExpEmit from = basex->Emit(build);
assert(from.RegType == REGT_POINTER);
from.Free(build);
ExpEmit to(build, REGT_INT);
// If from is NULL, produce 0. Otherwise, produce 1.
build->Emit(OP_LI, to.RegNum, 0);
build->Emit(OP_EQA_K, 1, from.RegNum, build->GetConstantAddress(NULL, ATAG_GENERIC));
build->Emit(OP_JMP, 1);
build->Emit(OP_LI, to.RegNum, 1);
return to;
}
//==========================================================================
//
//
//
//==========================================================================
FxPlusSign::FxPlusSign(FxExpression *operand)
: FxExpression(operand->ScriptPosition)
{
Operand=operand;
}
//==========================================================================
//
//
//
//==========================================================================
FxPlusSign::~FxPlusSign()
{
SAFE_DELETE(Operand);
}
//==========================================================================
//
//
//
//==========================================================================
FxExpression *FxPlusSign::Resolve(FCompileContext& ctx)
{
CHECKRESOLVED();
SAFE_RESOLVE(Operand, ctx);
if (Operand->ValueType.isNumeric())
{
FxExpression *e = Operand;
Operand = NULL;
delete this;
return e;
}
else
{
ScriptPosition.Message(MSG_ERROR, "Numeric type expected");
delete this;
return NULL;
}
}
ExpEmit FxPlusSign::Emit(VMFunctionBuilder *build)
{
return Operand->Emit(build);
}
//==========================================================================
//
//
//
//==========================================================================
FxMinusSign::FxMinusSign(FxExpression *operand)
: FxExpression(operand->ScriptPosition)
{
Operand=operand;
}
//==========================================================================
//
//
//
//==========================================================================
FxMinusSign::~FxMinusSign()
{
SAFE_DELETE(Operand);
}
//==========================================================================
//
//
//
//==========================================================================
FxExpression *FxMinusSign::Resolve(FCompileContext& ctx)
{
CHECKRESOLVED();
SAFE_RESOLVE(Operand, ctx);
if (Operand->ValueType.isNumeric())
{
if (Operand->isConstant())
{
ExpVal val = static_cast<FxConstant *>(Operand)->GetValue();
FxExpression *e = val.Type == VAL_Int?
new FxConstant(-val.Int, ScriptPosition) :
new FxConstant(-val.Float, ScriptPosition);
delete this;
return e;
}
ValueType = Operand->ValueType;
return this;
}
else
{
ScriptPosition.Message(MSG_ERROR, "Numeric type expected");
delete this;
return NULL;
}
}
//==========================================================================
//
//
//
//==========================================================================
ExpEmit FxMinusSign::Emit(VMFunctionBuilder *build)
{
assert(ValueType.Type == Operand->ValueType.Type);
ExpEmit from = Operand->Emit(build);
assert(from.Konst == 0);
// Do it in-place.
if (ValueType == VAL_Int)
{
build->Emit(OP_NEG, from.RegNum, from.RegNum, 0);
}
else
{
assert(ValueType == VAL_Float);
build->Emit(OP_FLOP, from.RegNum, from.RegNum, FLOP_NEG);
}
return from;
}
//==========================================================================
//
//
//
//==========================================================================
FxUnaryNotBitwise::FxUnaryNotBitwise(FxExpression *operand)
: FxExpression(operand->ScriptPosition)
{
Operand=operand;
}
//==========================================================================
//
//
//
//==========================================================================
FxUnaryNotBitwise::~FxUnaryNotBitwise()
{
SAFE_DELETE(Operand);
}
//==========================================================================
//
//
//
//==========================================================================
FxExpression *FxUnaryNotBitwise::Resolve(FCompileContext& ctx)
{
CHECKRESOLVED();
SAFE_RESOLVE(Operand, ctx);
if (Operand->ValueType == VAL_Float /* lax */)
{
// DECORATE allows floats here so cast them to int.
Operand = new FxIntCast(Operand);
Operand = Operand->Resolve(ctx);
if (Operand == NULL)
{
delete this;
return NULL;
}
}
if (Operand->ValueType != VAL_Int)
{
ScriptPosition.Message(MSG_ERROR, "Integer type expected");
delete this;
return NULL;
}
if (Operand->isConstant())
{
int result = ~static_cast<FxConstant *>(Operand)->GetValue().GetInt();
FxExpression *e = new FxConstant(result, ScriptPosition);
delete this;
return e;
}
ValueType = VAL_Int;
return this;
}
//==========================================================================
//
//
//
//==========================================================================
ExpEmit FxUnaryNotBitwise::Emit(VMFunctionBuilder *build)
{
assert(ValueType.Type == Operand->ValueType.Type);
assert(ValueType == VAL_Int);
ExpEmit from = Operand->Emit(build);
assert(from.Konst == 0);
// Do it in-place.
build->Emit(OP_NOT, from.RegNum, from.RegNum, 0);
return from;
}
//==========================================================================
//
//
//
//==========================================================================
FxUnaryNotBoolean::FxUnaryNotBoolean(FxExpression *operand)
: FxExpression(operand->ScriptPosition)
{
Operand=operand;
}
//==========================================================================
//
//
//
//==========================================================================
FxUnaryNotBoolean::~FxUnaryNotBoolean()
{
SAFE_DELETE(Operand);
}
//==========================================================================
//
//
//
//==========================================================================
FxExpression *FxUnaryNotBoolean::Resolve(FCompileContext& ctx)
{
CHECKRESOLVED();
if (Operand)
{
Operand = Operand->ResolveAsBoolean(ctx);
}
if (!Operand)
{
delete this;
return NULL;
}
if (Operand->ValueType.isNumeric() || Operand->ValueType.isPointer())
{
if (Operand->isConstant())
{
bool result = !static_cast<FxConstant *>(Operand)->GetValue().GetBool();
FxExpression *e = new FxConstant(result, ScriptPosition);
delete this;
return e;
}
}
else
{
ScriptPosition.Message(MSG_ERROR, "Numeric type expected");
delete this;
return NULL;
}
ValueType = VAL_Int;
return this;
}
//==========================================================================
//
//
//
//==========================================================================
ExpEmit FxUnaryNotBoolean::Emit(VMFunctionBuilder *build)
{
ExpEmit from = Operand->Emit(build);
assert(!from.Konst);
ExpEmit to(build, REGT_INT);
from.Free(build);
// Preload result with 0.
build->Emit(OP_LI, to.RegNum, 0, 0);
// Check source against 0.
if (from.RegType == REGT_INT)
{
build->Emit(OP_EQ_R, 0, from.RegNum, to.RegNum);
}
else if (from.RegType == REGT_FLOAT)
{
build->Emit(OP_EQF_K, 0, from.RegNum, build->GetConstantFloat(0));
}
else if (from.RegNum == REGT_POINTER)
{
build->Emit(OP_EQA_K, 0, from.RegNum, build->GetConstantAddress(NULL, ATAG_GENERIC));
}
build->Emit(OP_JMP, 1);
// Reload result with 1 if the comparison fell through.
build->Emit(OP_LI, to.RegNum, 1);
return to;
}
//==========================================================================
//
//
//
//==========================================================================
FxBinary::FxBinary(int o, FxExpression *l, FxExpression *r)
: FxExpression(l->ScriptPosition)
{
Operator=o;
left=l;
right=r;
}
//==========================================================================
//
//
//
//==========================================================================
FxBinary::~FxBinary()
{
SAFE_DELETE(left);
SAFE_DELETE(right);
}
//==========================================================================
//
//
//
//==========================================================================
bool FxBinary::ResolveLR(FCompileContext& ctx, bool castnumeric)
{
RESOLVE(left, ctx);
RESOLVE(right, ctx);
if (!left || !right)
{
delete this;
return false;
}
if (left->ValueType == VAL_Int && right->ValueType == VAL_Int)
{
ValueType = VAL_Int;
}
else if (left->ValueType.isNumeric() && right->ValueType.isNumeric())
{
ValueType = VAL_Float;
}
else if (left->ValueType == VAL_Object && right->ValueType == VAL_Object)
{
ValueType = VAL_Object;
}
else if (left->ValueType == VAL_Class && right->ValueType == VAL_Class)
{
ValueType = VAL_Class;
}
else
{
ValueType = VAL_Unknown;
}
if (castnumeric)
{
// later!
}
return true;
}
void FxBinary::Promote(FCompileContext &ctx)
{
if (left->ValueType == VAL_Float && right->ValueType == VAL_Int)
{
right = (new FxFloatCast(right))->Resolve(ctx);
}
else if (left->ValueType == VAL_Int && right->ValueType == VAL_Float)
{
left = (new FxFloatCast(left))->Resolve(ctx);
}
}
//==========================================================================
//
//
//
//==========================================================================
FxAddSub::FxAddSub(int o, FxExpression *l, FxExpression *r)
: FxBinary(o, l, r)
{
}
//==========================================================================
//
//
//
//==========================================================================
FxExpression *FxAddSub::Resolve(FCompileContext& ctx)
{
CHECKRESOLVED();
if (!ResolveLR(ctx, true)) return NULL;
if (!ValueType.isNumeric())
{
ScriptPosition.Message(MSG_ERROR, "Numeric type expected");
delete this;
return NULL;
}
else if (left->isConstant() && right->isConstant())
{
if (ValueType == VAL_Float)
{
double v;
double v1 = static_cast<FxConstant *>(left)->GetValue().GetFloat();
double v2 = static_cast<FxConstant *>(right)->GetValue().GetFloat();
v = Operator == '+'? v1 + v2 :
Operator == '-'? v1 - v2 : 0;
FxExpression *e = new FxConstant(v, ScriptPosition);
delete this;
return e;
}
else
{
int v;
int v1 = static_cast<FxConstant *>(left)->GetValue().GetInt();
int v2 = static_cast<FxConstant *>(right)->GetValue().GetInt();
v = Operator == '+'? v1 + v2 :
Operator == '-'? v1 - v2 : 0;
FxExpression *e = new FxConstant(v, ScriptPosition);
delete this;
return e;
}
}
Promote(ctx);
return this;
}
//==========================================================================
//
//
//
//==========================================================================
ExpEmit FxAddSub::Emit(VMFunctionBuilder *build)
{
assert(Operator == '+' || Operator == '-');
ExpEmit op1 = left->Emit(build);
ExpEmit op2 = right->Emit(build);
if (Operator == '+')
{
// Since addition is commutative, only the second operand may be a constant.
if (op1.Konst)
{
swapvalues(op1, op2);
}
assert(!op1.Konst);
op1.Free(build);
op2.Free(build);
if (ValueType == VAL_Float)
{
assert(op1.RegType == REGT_FLOAT && op2.RegType == REGT_FLOAT);
ExpEmit to(build, REGT_FLOAT);
build->Emit(op2.Konst ? OP_ADDF_RK : OP_ADDF_RR, to.RegNum, op1.RegNum, op2.RegNum);
return to;
}
else
{
assert(ValueType == VAL_Int);
assert(op1.RegType == REGT_INT && op2.RegType == REGT_INT);
ExpEmit to(build, REGT_INT);
build->Emit(op2.Konst ? OP_ADD_RK : OP_ADD_RR, to.RegNum, op1.RegNum, op2.RegNum);
return to;
}
}
else
{
// Subtraction is not commutative, so either side may be constant (but not both).
assert(!op1.Konst || !op2.Konst);
op1.Free(build);
op2.Free(build);
if (ValueType == VAL_Float)
{
assert(op1.RegType == REGT_FLOAT && op2.RegType == REGT_FLOAT);
ExpEmit to(build, REGT_FLOAT);
build->Emit(op1.Konst ? OP_SUBF_KR : op2.Konst ? OP_SUBF_RK : OP_SUBF_RR,
to.RegNum, op1.RegNum, op2.RegNum);
return to;
}
else
{
assert(ValueType == VAL_Int);
assert(op1.RegType == REGT_INT && op2.RegType == REGT_INT);
ExpEmit to(build, REGT_INT);
build->Emit(op1.Konst ? OP_SUB_KR : op2.Konst ? OP_SUB_RK : OP_SUB_RR,
to.RegNum, op1.RegNum, op2.RegNum);
return to;
}
}
}
//==========================================================================
//
//
//
//==========================================================================
FxMulDiv::FxMulDiv(int o, FxExpression *l, FxExpression *r)
: FxBinary(o, l, r)
{
}
//==========================================================================
//
//
//
//==========================================================================
FxExpression *FxMulDiv::Resolve(FCompileContext& ctx)
{
CHECKRESOLVED();
if (!ResolveLR(ctx, true)) return NULL;
if (!ValueType.isNumeric())
{
ScriptPosition.Message(MSG_ERROR, "Numeric type expected");
delete this;
return NULL;
}
else if (left->isConstant() && right->isConstant())
{
if (ValueType == VAL_Float)
{
double v;
double v1 = static_cast<FxConstant *>(left)->GetValue().GetFloat();
double v2 = static_cast<FxConstant *>(right)->GetValue().GetFloat();
if (Operator != '*' && v2 == 0)
{
ScriptPosition.Message(MSG_ERROR, "Division by 0");
delete this;
return NULL;
}
v = Operator == '*'? v1 * v2 :
Operator == '/'? v1 / v2 :
Operator == '%'? fmod(v1, v2) : 0;
FxExpression *e = new FxConstant(v, ScriptPosition);
delete this;
return e;
}
else
{
int v;
int v1 = static_cast<FxConstant *>(left)->GetValue().GetInt();
int v2 = static_cast<FxConstant *>(right)->GetValue().GetInt();
if (Operator != '*' && v2 == 0)
{
ScriptPosition.Message(MSG_ERROR, "Division by 0");
delete this;
return NULL;
}
v = Operator == '*'? v1 * v2 :
Operator == '/'? v1 / v2 :
Operator == '%'? v1 % v2 : 0;
FxExpression *e = new FxConstant(v, ScriptPosition);
delete this;
return e;
}
}
Promote(ctx);
return this;
}
//==========================================================================
//
//
//
//==========================================================================
ExpEmit FxMulDiv::Emit(VMFunctionBuilder *build)
{
ExpEmit op1 = left->Emit(build);
ExpEmit op2 = right->Emit(build);
if (Operator == '*')
{
// Multiplication is commutative, so only the second operand may be constant.
if (op1.Konst)
{
swapvalues(op1, op2);
}
assert(!op1.Konst);
op1.Free(build);
op2.Free(build);
if (ValueType == VAL_Float)
{
assert(op1.RegType == REGT_FLOAT && op2.RegType == REGT_FLOAT);
ExpEmit to(build, REGT_FLOAT);
build->Emit(op2.Konst ? OP_MULF_RK : OP_MULF_RR, to.RegNum, op1.RegNum, op2.RegNum);
return to;
}
else
{
assert(ValueType == VAL_Int);
assert(op1.RegType == REGT_INT && op2.RegType == REGT_INT);
ExpEmit to(build, REGT_INT);
build->Emit(op2.Konst ? OP_MUL_RK : OP_MUL_RR, to.RegNum, op1.RegNum, op2.RegNum);
return to;
}
}
else
{
// Division is not commutative, so either side may be constant (but not both).
assert(!op1.Konst || !op2.Konst);
assert(Operator == '%' || Operator == '/');
op1.Free(build);
op2.Free(build);
if (ValueType == VAL_Float)
{
assert(op1.RegType == REGT_FLOAT && op2.RegType == REGT_FLOAT);
ExpEmit to(build, REGT_FLOAT);
build->Emit(Operator == '/' ? (op1.Konst ? OP_DIVF_KR : op2.Konst ? OP_DIVF_RK : OP_DIVF_RR)
: (op1.Konst ? OP_MODF_KR : op2.Konst ? OP_MODF_RK : OP_MODF_RR),
to.RegNum, op1.RegNum, op2.RegNum);
return to;
}
else
{
assert(ValueType == VAL_Int);
assert(op1.RegType == REGT_INT && op2.RegType == REGT_INT);
ExpEmit to(build, REGT_INT);
build->Emit(Operator == '/' ? (op1.Konst ? OP_DIV_KR : op2.Konst ? OP_DIV_RK : OP_DIV_RR)
: (op1.Konst ? OP_MOD_KR : op2.Konst ? OP_MOD_RK : OP_MOD_RR),
to.RegNum, op1.RegNum, op2.RegNum);
return to;
}
}
}
//==========================================================================
//
//
//
//==========================================================================
FxCompareRel::FxCompareRel(int o, FxExpression *l, FxExpression *r)
: FxBinary(o, l, r)
{
}
//==========================================================================
//
//
//
//==========================================================================
FxExpression *FxCompareRel::Resolve(FCompileContext& ctx)
{
CHECKRESOLVED();
if (!ResolveLR(ctx, true)) return NULL;
if (!ValueType.isNumeric())
{
ScriptPosition.Message(MSG_ERROR, "Numeric type expected");
delete this;
return NULL;
}
else if (left->isConstant() && right->isConstant())
{
int v;
if (ValueType == VAL_Float)
{
double v1 = static_cast<FxConstant *>(left)->GetValue().GetFloat();
double v2 = static_cast<FxConstant *>(right)->GetValue().GetFloat();
v = Operator == '<'? v1 < v2 :
Operator == '>'? v1 > v2 :
Operator == TK_Geq? v1 >= v2 :
Operator == TK_Leq? v1 <= v2 : 0;
}
else
{
int v1 = static_cast<FxConstant *>(left)->GetValue().GetInt();
int v2 = static_cast<FxConstant *>(right)->GetValue().GetInt();
v = Operator == '<'? v1 < v2 :
Operator == '>'? v1 > v2 :
Operator == TK_Geq? v1 >= v2 :
Operator == TK_Leq? v1 <= v2 : 0;
}
FxExpression *e = new FxConstant(v, ScriptPosition);
delete this;
return e;
}
Promote(ctx);
ValueType = VAL_Int;
return this;
}
//==========================================================================
//
//
//
//==========================================================================
ExpEmit FxCompareRel::Emit(VMFunctionBuilder *build)
{
ExpEmit op1 = left->Emit(build);
ExpEmit op2 = right->Emit(build);
assert(op1.RegType == op2.RegType);
assert(op1.RegType == REGT_INT || op1.RegType == REGT_FLOAT);
assert(!op1.Konst || !op2.Konst);
assert(Operator == '<' || Operator == '>' || Operator == TK_Geq || Operator == TK_Leq);
static const VM_UBYTE InstrMap[][4] =
{
{ OP_LT_RR, OP_LTF_RR, 0 }, // <
{ OP_LE_RR, OP_LEF_RR, 1 }, // >
{ OP_LT_RR, OP_LTF_RR, 1 }, // >=
{ OP_LE_RR, OP_LEF_RR, 0 } // <=
};
int instr, check, index;
ExpEmit to(build, REGT_INT);
index = Operator == '<' ? 0 :
Operator == '>' ? 1 :
Operator == TK_Geq ? 2 : 3;
instr = InstrMap[index][op1.RegType == REGT_INT ? 0 : 1];
check = InstrMap[index][2];
if (op2.Konst)
{
instr += 1;
}
else
{
op2.Free(build);
}
if (op1.Konst)
{
instr += 2;
}
else
{
op1.Free(build);
}
// See FxUnaryNotBoolean for comments, since it's the same thing.
build->Emit(OP_LI, to.RegNum, 0, 0);
build->Emit(instr, check, op1.RegNum, op2.RegNum);
build->Emit(OP_JMP, 1);
build->Emit(OP_LI, to.RegNum, 1);
return to;
}
//==========================================================================
//
//
//
//==========================================================================
FxCompareEq::FxCompareEq(int o, FxExpression *l, FxExpression *r)
: FxBinary(o, l, r)
{
}
//==========================================================================
//
//
//
//==========================================================================
FxExpression *FxCompareEq::Resolve(FCompileContext& ctx)
{
CHECKRESOLVED();
if (!ResolveLR(ctx, true)) return NULL;
if (!left || !right)
{
delete this;
return NULL;
}
if (!ValueType.isNumeric() && !ValueType.isPointer())
{
if (left->ValueType.Type == right->ValueType.Type)
{
// compare other types?
if (left->ValueType == VAL_Sound || left->ValueType == VAL_Color || left->ValueType == VAL_Name)
{
left->ValueType = right->ValueType = VAL_Int;
goto cont;
}
}
ScriptPosition.Message(MSG_ERROR, "Numeric type expected");
delete this;
return NULL;
}
cont:
if (left->isConstant() && right->isConstant())
{
int v;
if (ValueType == VAL_Float)
{
double v1 = static_cast<FxConstant *>(left)->GetValue().GetFloat();
double v2 = static_cast<FxConstant *>(right)->GetValue().GetFloat();
v = Operator == TK_Eq? v1 == v2 : v1 != v2;
}
else
{
int v1 = static_cast<FxConstant *>(left)->GetValue().GetInt();
int v2 = static_cast<FxConstant *>(right)->GetValue().GetInt();
v = Operator == TK_Eq? v1 == v2 : v1 != v2;
}
FxExpression *e = new FxConstant(v, ScriptPosition);
delete this;
return e;
}
Promote(ctx);
ValueType = VAL_Int;
return this;
}
//==========================================================================
//
//
//
//==========================================================================
ExpEmit FxCompareEq::Emit(VMFunctionBuilder *build)
{
ExpEmit op1 = left->Emit(build);
ExpEmit op2 = right->Emit(build);
assert(op1.RegType == op2.RegType);
assert(op1.RegType == REGT_INT || op1.RegType == REGT_FLOAT || op1.RegType == REGT_POINTER);
int instr;
// Only the second operand may be constant.
if (op1.Konst)
{
swapvalues(op1, op2);
}
assert(!op1.Konst);
ExpEmit to(build, REGT_INT);
instr = op1.RegType == REGT_INT ? OP_EQ_R :
op1.RegType == REGT_FLOAT ? OP_EQF_R :
OP_EQA_R;
op1.Free(build);
if (!op2.Konst)
{
op2.Free(build);
}
else
{
instr += 1;
}
// See FxUnaryNotBoolean for comments, since it's the same thing.
build->Emit(OP_LI, to.RegNum, 0, 0);
build->Emit(instr, Operator != TK_Eq, op1.RegNum, op2.RegNum);
build->Emit(OP_JMP, 1);
build->Emit(OP_LI, to.RegNum, 1);
return to;
}
//==========================================================================
//
//
//
//==========================================================================
FxBinaryInt::FxBinaryInt(int o, FxExpression *l, FxExpression *r)
: FxBinary(o, l, r)
{
ValueType = VAL_Int;
}
//==========================================================================
//
//
//
//==========================================================================
FxExpression *FxBinaryInt::Resolve(FCompileContext& ctx)
{
CHECKRESOLVED();
if (!ResolveLR(ctx, false)) return NULL;
if (ValueType == VAL_Float /* lax */)
{
// For DECORATE which allows floats here.
if (left->ValueType != VAL_Int)
{
left = new FxIntCast(left);
left = left->Resolve(ctx);
}
if (right->ValueType != VAL_Int)
{
right = new FxIntCast(right);
right = right->Resolve(ctx);
}
if (left == NULL || right == NULL)
{
delete this;
return NULL;
}
ValueType = VAL_Int;
}
if (ValueType != VAL_Int)
{
ScriptPosition.Message(MSG_ERROR, "Integer type expected");
delete this;
return NULL;
}
else if (left->isConstant() && right->isConstant())
{
int v1 = static_cast<FxConstant *>(left)->GetValue().GetInt();
int v2 = static_cast<FxConstant *>(right)->GetValue().GetInt();
FxExpression *e = new FxConstant(
Operator == TK_LShift? v1 << v2 :
Operator == TK_RShift? v1 >> v2 :
Operator == TK_URShift? int((unsigned int)(v1) >> v2) :
Operator == '&'? v1 & v2 :
Operator == '|'? v1 | v2 :
Operator == '^'? v1 ^ v2 : 0, ScriptPosition);
delete this;
return e;
}
return this;
}
//==========================================================================
//
//
//
//==========================================================================
ExpEmit FxBinaryInt::Emit(VMFunctionBuilder *build)
{
assert(left->ValueType == VAL_Int);
assert(right->ValueType == VAL_Int);
static const VM_UBYTE InstrMap[][4] =
{
{ OP_SLL_RR, OP_SLL_KR, OP_SLL_RI }, // TK_LShift
{ OP_SRA_RR, OP_SRA_KR, OP_SRA_RI }, // TK_RShift
{ OP_SRL_RR, OP_SRL_KR, OP_SRL_RI }, // TK_URShift
{ OP_AND_RR, 0, OP_AND_RK }, // '&'
{ OP_OR_RR, 0, OP_OR_RK }, // '|'
{ OP_XOR_RR, 0, OP_XOR_RK }, // '^'
};
int index, instr, rop;
ExpEmit op1, op2;
index = Operator == TK_LShift ? 0 :
Operator == TK_RShift ? 1 :
Operator == TK_URShift ? 2 :
Operator == '&' ? 3 :
Operator == '|' ? 4 :
Operator == '^' ? 5 : -1;
assert(index >= 0);
op1 = left->Emit(build);
if (index < 3)
{ // Shift instructions use right-hand immediates instead of constant registers.
if (right->isConstant())
{
rop = static_cast<FxConstant *>(right)->GetValue().GetInt();
op2.Konst = true;
}
else
{
op2 = right->Emit(build);
assert(!op2.Konst);
op2.Free(build);
rop = op2.RegNum;
}
}
else
{ // The other operators only take a constant on the right-hand side.
op2 = right->Emit(build);
if (op1.Konst)
{
swapvalues(op1, op2);
}
assert(!op1.Konst);
rop = op2.RegNum;
op2.Free(build);
}
if (!op1.Konst)
{
op1.Free(build);
if (!op2.Konst)
{
instr = InstrMap[index][0];
}
else
{
instr = InstrMap[index][2];
}
}
else
{
assert(!op2.Konst);
instr = InstrMap[index][1];
}
assert(instr != 0);
ExpEmit to(build, REGT_INT);
build->Emit(instr, to.RegNum, op1.RegNum, rop);
return to;
}
//==========================================================================
//
//
//
//==========================================================================
FxBinaryLogical::FxBinaryLogical(int o, FxExpression *l, FxExpression *r)
: FxExpression(l->ScriptPosition)
{
Operator=o;
left=l;
right=r;
ValueType = VAL_Int;
}
//==========================================================================
//
//
//
//==========================================================================
FxBinaryLogical::~FxBinaryLogical()
{
SAFE_DELETE(left);
SAFE_DELETE(right);
}
//==========================================================================
//
//
//
//==========================================================================
FxExpression *FxBinaryLogical::Resolve(FCompileContext& ctx)
{
CHECKRESOLVED();
if (left) left = left->ResolveAsBoolean(ctx);
if (right) right = right->ResolveAsBoolean(ctx);
if (!left || !right)
{
delete this;
return NULL;
}
int b_left=-1, b_right=-1;
if (left->isConstant()) b_left = static_cast<FxConstant *>(left)->GetValue().GetBool();
if (right->isConstant()) b_right = static_cast<FxConstant *>(right)->GetValue().GetBool();
// Do some optimizations. This will throw out all sub-expressions that are not
// needed to retrieve the final result.
if (Operator == TK_AndAnd)
{
if (b_left==0 || b_right==0)
{
FxExpression *x = new FxConstant(0, ScriptPosition);
delete this;
return x;
}
else if (b_left==1 && b_right==1)
{
FxExpression *x = new FxConstant(1, ScriptPosition);
delete this;
return x;
}
else if (b_left==1)
{
FxExpression *x = right;
right=NULL;
delete this;
return x;
}
else if (b_right==1)
{
FxExpression *x = left;
left=NULL;
delete this;
return x;
}
}
else if (Operator == TK_OrOr)
{
if (b_left==1 || b_right==1)
{
FxExpression *x = new FxConstant(1, ScriptPosition);
delete this;
return x;
}
if (b_left==0 && b_right==0)
{
FxExpression *x = new FxConstant(0, ScriptPosition);
delete this;
return x;
}
else if (b_left==0)
{
FxExpression *x = right;
right=NULL;
delete this;
return x;
}
else if (b_right==0)
{
FxExpression *x = left;
left=NULL;
delete this;
return x;
}
}
if (left->ValueType != VAL_Int && left->ValueType != VAL_Sound)
{
left = new FxIntCast(left);
}
if (right->ValueType != VAL_Int && right->ValueType != VAL_Sound)
{
right = new FxIntCast(right);
}
return this;
}
//==========================================================================
//
//
//
//==========================================================================
ExpEmit FxBinaryLogical::Emit(VMFunctionBuilder *build)
{
// This is not the "right" way to do these, but it works for now.
// (Problem: No information sharing is done between nodes to reduce the
// code size if you have something like a1 && a2 && a3 && ... && an.)
assert(left->ValueType == VAL_Int && right->ValueType == VAL_Int);
ExpEmit op1 = left->Emit(build);
assert(!op1.Konst);
int zero = build->GetConstantInt(0);
op1.Free(build);
if (Operator == TK_AndAnd)
{
build->Emit(OP_EQ_K, 1, op1.RegNum, zero);
// If op1 is 0, skip evaluation of op2.
size_t patchspot = build->Emit(OP_JMP, 0, 0, 0);
// Evaluate op2.
ExpEmit op2 = right->Emit(build);
assert(!op2.Konst);
op2.Free(build);
ExpEmit to(build, REGT_INT);
build->Emit(OP_EQ_K, 1, op2.RegNum, zero);
build->Emit(OP_JMP, 2);
build->Emit(OP_LI, to.RegNum, 1);
build->Emit(OP_JMP, 1);
size_t target = build->Emit(OP_LI, to.RegNum, 0);
build->Backpatch(patchspot, target);
return to;
}
else
{
assert(Operator == TK_OrOr);
build->Emit(OP_EQ_K, 0, op1.RegNum, zero);
// If op1 is not 0, skip evaluation of op2.
size_t patchspot = build->Emit(OP_JMP, 0, 0, 0);
// Evaluate op2.
ExpEmit op2 = right->Emit(build);
assert(!op2.Konst);
op2.Free(build);
ExpEmit to(build, REGT_INT);
build->Emit(OP_EQ_K, 0, op2.RegNum, zero);
build->Emit(OP_JMP, 2);
build->Emit(OP_LI, to.RegNum, 0);
build->Emit(OP_JMP, 1);
size_t target = build->Emit(OP_LI, to.RegNum, 1);
build->Backpatch(patchspot, target);
return to;
}
}
//==========================================================================
//
//
//
//==========================================================================
FxConditional::FxConditional(FxExpression *c, FxExpression *t, FxExpression *f)
: FxExpression(c->ScriptPosition)
{
condition = c;
truex=t;
falsex=f;
}
//==========================================================================
//
//
//
//==========================================================================
FxConditional::~FxConditional()
{
SAFE_DELETE(condition);
SAFE_DELETE(truex);
SAFE_DELETE(falsex);
}
//==========================================================================
//
//
//
//==========================================================================
FxExpression *FxConditional::Resolve(FCompileContext& ctx)
{
CHECKRESOLVED();
if (condition) condition = condition->ResolveAsBoolean(ctx);
RESOLVE(truex, ctx);
RESOLVE(falsex, ctx);
ABORT(condition && truex && falsex);
if (truex->ValueType == VAL_Int && falsex->ValueType == VAL_Int)
ValueType = VAL_Int;
else if (truex->ValueType.isNumeric() && falsex->ValueType.isNumeric())
ValueType = VAL_Float;
//else if (truex->ValueType != falsex->ValueType)
if (condition->isConstant())
{
ExpVal condval = static_cast<FxConstant *>(condition)->GetValue();
bool result = condval.GetBool();
FxExpression *e = result? truex:falsex;
delete (result? falsex:truex);
falsex = truex = NULL;
delete this;
return e;
}
if (ValueType == VAL_Float)
{
if (truex->ValueType != VAL_Float)
{
truex = new FxFloatCast(truex);
RESOLVE(truex, ctx);
}
if (falsex->ValueType != VAL_Float)
{
falsex = new FxFloatCast(falsex);
RESOLVE(falsex, ctx);
}
}
return this;
}
//==========================================================================
//
//
//
//==========================================================================
ExpEmit FxConditional::Emit(VMFunctionBuilder *build)
{
ExpEmit out;
// The true and false expressions ought to be assigned to the
// same temporary instead of being copied to it. Oh well; good enough
// for now.
ExpEmit cond = condition->Emit(build);
assert(cond.RegType == REGT_INT && !cond.Konst);
// Test condition.
build->Emit(OP_EQ_K, 1, cond.RegNum, build->GetConstantInt(0));
size_t patchspot = build->Emit(OP_JMP, 0);
// Evaluate true expression.
if (truex->isConstant() && truex->ValueType == VAL_Int)
{
out = ExpEmit(build, REGT_INT);
build->EmitLoadInt(out.RegNum, static_cast<FxConstant *>(truex)->GetValue().GetInt());
}
else
{
ExpEmit trueop = truex->Emit(build);
if (trueop.Konst)
{
assert(trueop.RegType == REGT_FLOAT);
out = ExpEmit(build, REGT_FLOAT);
build->Emit(OP_LKF, out.RegNum, trueop.RegNum);
}
else
{
// Use the register returned by the true condition as the
// target for the false condition.
out = trueop;
}
}
// Evaluate false expression.
build->BackpatchToHere(patchspot);
if (falsex->isConstant() && falsex->ValueType == VAL_Int)
{
build->EmitLoadInt(out.RegNum, static_cast<FxConstant *>(falsex)->GetValue().GetInt());
}
else
{
ExpEmit falseop = falsex->Emit(build);
if (falseop.Konst)
{
assert(falseop.RegType == REGT_FLOAT);
build->Emit(OP_LKF, out.RegNum, falseop.RegNum);
}
else
{
// Move result from the register returned by "false" to the one
// returned by "true" so that only one register is returned by
// this tree.
falseop.Free(build);
if (falseop.RegType == REGT_INT)
{
build->Emit(OP_MOVE, out.RegNum, falseop.RegNum, 0);
}
else
{
assert(falseop.RegType == REGT_FLOAT);
build->Emit(OP_MOVEF, out.RegNum, falseop.RegNum, 0);
}
}
}
return out;
}
//==========================================================================
//
//
//
//==========================================================================
FxAbs::FxAbs(FxExpression *v)
: FxExpression(v->ScriptPosition)
{
val = v;
ValueType = v->ValueType;
}
//==========================================================================
//
//
//
//==========================================================================
FxAbs::~FxAbs()
{
SAFE_DELETE(val);
}
//==========================================================================
//
//
//
//==========================================================================
FxExpression *FxAbs::Resolve(FCompileContext &ctx)
{
CHECKRESOLVED();
SAFE_RESOLVE(val, ctx);
if (!val->ValueType.isNumeric())
{
ScriptPosition.Message(MSG_ERROR, "Numeric type expected");
delete this;
return NULL;
}
else if (val->isConstant())
{
ExpVal value = static_cast<FxConstant *>(val)->GetValue();
switch (value.Type)
{
case VAL_Int:
value.Int = abs(value.Int);
break;
case VAL_Float:
value.Float = fabs(value.Float);
break;
default:
// shouldn't happen
delete this;
return NULL;
}
FxExpression *x = new FxConstant(value, ScriptPosition);
delete this;
return x;
}
ValueType = val->ValueType;
return this;
}
//==========================================================================
//
//
//
//==========================================================================
ExpEmit FxAbs::Emit(VMFunctionBuilder *build)
{
ExpEmit absofsteal = val->Emit(build);
assert(!absofsteal.Konst);
ExpEmit out(build, absofsteal.RegType);
if (absofsteal.RegType == REGT_INT)
{
build->Emit(OP_ABS, out.RegNum, absofsteal.RegNum, 0);
}
else
{
assert(absofsteal.RegType == REGT_FLOAT);
build->Emit(OP_FLOP, out.RegNum, absofsteal.RegNum, FLOP_ABS);
}
return out;
}
//==========================================================================
//
//
//
//==========================================================================
FxRandom::FxRandom(FRandom * r, FxExpression *mi, FxExpression *ma, const FScriptPosition &pos)
: FxExpression(pos)
{
if (mi != NULL && ma != NULL)
{
min = new FxParameter(new FxIntCast(mi));
max = new FxParameter(new FxIntCast(ma));
}
else min = max = NULL;
rng = r;
ValueType = VAL_Int;
}
//==========================================================================
//
//
//
//==========================================================================
FxRandom::~FxRandom()
{
SAFE_DELETE(min);
SAFE_DELETE(max);
}
//==========================================================================
//
//
//
//==========================================================================
FxExpression *FxRandom::Resolve(FCompileContext &ctx)
{
CHECKRESOLVED();
if (min && max)
{
RESOLVE(min, ctx);
RESOLVE(max, ctx);
ABORT(min && max);
assert(min->ValueType == ValueType.Type);
assert(max->ValueType == ValueType.Type);
}
return this;
};
//==========================================================================
//
//
//
//==========================================================================
int DecoRandom(VMFrameStack *stack, VMValue *param, int numparam, VMReturn *ret, int numret)
{
assert(numparam >= 1 && numparam <= 3);
FRandom *rng = reinterpret_cast<FRandom *>(param[0].a);
if (numparam == 1)
{
ret->SetInt((*rng)());
}
else if (numparam == 2)
{
int maskval = param[1].i;
ret->SetInt(rng->Random2(maskval));
}
else if (numparam == 3)
{
int min = param[1].i, max = param[2].i;
if (max < min)
{
swapvalues(max, min);
}
ret->SetInt((*rng)(max - min + 1) + min);
}
return 1;
}
ExpEmit FxRandom::Emit(VMFunctionBuilder *build)
{
// Call DecoRandom to generate a random number.
VMFunction *callfunc;
PSymbol *sym = FindDecorateBuiltinFunction(NAME_DecoRandom, DecoRandom);
assert(sym->IsKindOf(RUNTIME_CLASS(PSymbolVMFunction)));
assert(((PSymbolVMFunction *)sym)->Function != NULL);
callfunc = ((PSymbolVMFunction *)sym)->Function;
build->Emit(OP_PARAM, 0, REGT_POINTER | REGT_KONST, build->GetConstantAddress(rng, ATAG_RNG));
if (min != NULL && max != NULL)
{
min->Emit(build);
max->Emit(build);
build->Emit(OP_CALL_K, build->GetConstantAddress(callfunc, ATAG_OBJECT), 3, 1);
}
else
{
build->Emit(OP_CALL_K, build->GetConstantAddress(callfunc, ATAG_OBJECT), 1, 1);
}
ExpEmit out(build, REGT_INT);
build->Emit(OP_RESULT, 0, REGT_INT, out.RegNum);
return out;
}
//==========================================================================
//
//
//
//==========================================================================
FxRandomPick::FxRandomPick(FRandom *r, TArray<FxExpression*> &expr, bool floaty, const FScriptPosition &pos)
: FxExpression(pos)
{
assert(expr.Size() > 0);
choices.Resize(expr.Size());
for (unsigned int index = 0; index < expr.Size(); index++)
{
if (floaty)
{
choices[index] = new FxFloatCast(expr[index]);
}
else
{
choices[index] = new FxIntCast(expr[index]);
}
}
rng = r;
ValueType = floaty ? VAL_Float : VAL_Int;
}
//==========================================================================
//
//
//
//==========================================================================
FxRandomPick::~FxRandomPick()
{
}
//==========================================================================
//
//
//
//==========================================================================
FxExpression *FxRandomPick::Resolve(FCompileContext &ctx)
{
CHECKRESOLVED();
for (unsigned int index = 0; index < choices.Size(); index++)
{
RESOLVE(choices[index], ctx);
ABORT(choices[index]);
assert(choices[index]->ValueType == ValueType.Type);
}
return this;
};
//==========================================================================
//
// FxPick :: Emit
//
// The expression:
// a = pick[rng](i_0, i_1, i_2, ..., i_n)
// [where i_x is a complete expression and not just a value]
// is syntactic sugar for:
//
// switch(random[rng](0, n)) {
// case 0: a = i_0;
// case 1: a = i_1;
// case 2: a = i_2;
// ...
// case n: a = i_n;
// }
//
//==========================================================================
ExpEmit FxRandomPick::Emit(VMFunctionBuilder *build)
{
unsigned i;
assert(choices.Size() > 0);
// Call DecoRandom to generate a random number.
VMFunction *callfunc;
PSymbol *sym = FindDecorateBuiltinFunction(NAME_DecoRandom, DecoRandom);
assert(sym->IsKindOf(RUNTIME_CLASS(PSymbolVMFunction)));
assert(((PSymbolVMFunction *)sym)->Function != NULL);
callfunc = ((PSymbolVMFunction *)sym)->Function;
build->Emit(OP_PARAM, 0, REGT_POINTER | REGT_KONST, build->GetConstantAddress(rng, ATAG_RNG));
build->EmitParamInt(0);
build->EmitParamInt(choices.Size() - 1);
build->Emit(OP_CALL_K, build->GetConstantAddress(callfunc, ATAG_OBJECT), 3, 1);
ExpEmit resultreg(build, REGT_INT);
build->Emit(OP_RESULT, 0, REGT_INT, resultreg.RegNum);
build->Emit(OP_IJMP, resultreg.RegNum, 0);
// Free the result register now. The simple code generation algorithm should
// automatically pick it as the destination register for each case.
resultreg.Free(build);
// For floating point results, we need to get a new register, since we can't
// reuse the integer one used to store the random result.
if (ValueType == VAL_Float)
{
resultreg = ExpEmit(build, REGT_FLOAT);
resultreg.Free(build);
}
// Allocate space for the jump table.
size_t jumptable = build->Emit(OP_JMP, 0);
for (i = 1; i < choices.Size(); ++i)
{
build->Emit(OP_JMP, 0);
}
// Emit each case
TArray<size_t> finishes(choices.Size() - 1);
for (unsigned i = 0; i < choices.Size(); ++i)
{
build->BackpatchToHere(jumptable + i);
if (choices[i]->isConstant())
{
if (ValueType == VAL_Int)
{
int val = static_cast<FxConstant *>(choices[i])->GetValue().GetInt();
build->EmitLoadInt(resultreg.RegNum, val);
}
else
{
double val = static_cast<FxConstant *>(choices[i])->GetValue().GetFloat();
build->Emit(OP_LKF, resultreg.RegNum, build->GetConstantFloat(val));
}
}
else
{
ExpEmit casereg = choices[i]->Emit(build);
if (casereg.RegNum != resultreg.RegNum)
{ // The result of the case is in a different register from what
// was expected. Copy it to the one we wanted.
resultreg.Reuse(build); // This is really just for the assert in Reuse()
build->Emit(ValueType == VAL_Int ? OP_MOVE : OP_MOVEF, resultreg.RegNum, casereg.RegNum, 0);
resultreg.Free(build);
}
// Free this register so the remaining cases can use it.
casereg.Free(build);
}
// All but the final case needs a jump to the end of the expression's code.
if (i + 1 < choices.Size())
{
size_t loc = build->Emit(OP_JMP, 0);
finishes.Push(loc);
}
}
// Backpatch each case (except the last, since it ends here) to jump to here.
for (i = 0; i < choices.Size() - 1; ++i)
{
build->BackpatchToHere(finishes[i]);
}
// The result register needs to be in-use when we return.
// It should have been freed earlier, so restore its in-use flag.
resultreg.Reuse(build);
return resultreg;
}
//==========================================================================
//
//
//
//==========================================================================
FxFRandom::FxFRandom(FRandom *r, FxExpression *mi, FxExpression *ma, const FScriptPosition &pos)
: FxRandom(r, NULL, NULL, pos)
{
if (mi != NULL && ma != NULL)
{
min = new FxParameter(new FxFloatCast(mi));
max = new FxParameter(new FxFloatCast(ma));
}
ValueType = VAL_Float;
}
//==========================================================================
//
//
//
//==========================================================================
int DecoFRandom(VMFrameStack *stack, VMValue *param, int numparam, VMReturn *ret, int numret)
{
assert(numparam == 1 || numparam == 3);
FRandom *rng = reinterpret_cast<FRandom *>(param[0].a);
int random = (*rng)(0x40000000);
double frandom = random / double(0x40000000);
if (numparam == 3)
{
double min = param[1].f, max = param[2].f;
if (max < min)
{
swapvalues(max, min);
}
ret->SetFloat(frandom * (max - min) + min);
}
else
{
ret->SetFloat(frandom);
}
return 1;
}
ExpEmit FxFRandom::Emit(VMFunctionBuilder *build)
{
// Call the DecoFRandom function to generate a floating point random number..
VMFunction *callfunc;
PSymbol *sym = FindDecorateBuiltinFunction(NAME_DecoFRandom, DecoFRandom);
assert(sym->IsKindOf(RUNTIME_CLASS(PSymbolVMFunction)));
assert(((PSymbolVMFunction *)sym)->Function != NULL);
callfunc = ((PSymbolVMFunction *)sym)->Function;
build->Emit(OP_PARAM, 0, REGT_POINTER | REGT_KONST, build->GetConstantAddress(rng, ATAG_RNG));
if (min != NULL && max != NULL)
{
min->Emit(build);
max->Emit(build);
build->Emit(OP_CALL_K, build->GetConstantAddress(callfunc, ATAG_OBJECT), 3, 1);
}
else
{
build->Emit(OP_CALL_K, build->GetConstantAddress(callfunc, ATAG_OBJECT), 1, 1);
}
ExpEmit out(build, REGT_FLOAT);
build->Emit(OP_RESULT, 0, REGT_FLOAT, out.RegNum);
return out;
}
//==========================================================================
//
//
//
//==========================================================================
FxRandom2::FxRandom2(FRandom *r, FxExpression *m, const FScriptPosition &pos)
: FxExpression(pos)
{
rng = r;
if (m) mask = new FxIntCast(m);
else mask = new FxConstant(-1, pos);
mask = new FxParameter(mask);
ValueType = VAL_Int;
}
//==========================================================================
//
//
//
//==========================================================================
FxRandom2::~FxRandom2()
{
SAFE_DELETE(mask);
}
//==========================================================================
//
//
//
//==========================================================================
FxExpression *FxRandom2::Resolve(FCompileContext &ctx)
{
CHECKRESOLVED();
SAFE_RESOLVE(mask, ctx);
return this;
}
//==========================================================================
//
//
//
//==========================================================================
ExpEmit FxRandom2::Emit(VMFunctionBuilder *build)
{
// Call the DecoRandom function to generate the random number.
VMFunction *callfunc;
PSymbol *sym = FindDecorateBuiltinFunction(NAME_DecoRandom, DecoRandom);
assert(sym->IsKindOf(RUNTIME_CLASS(PSymbolVMFunction)));
assert(((PSymbolVMFunction *)sym)->Function != NULL);
callfunc = ((PSymbolVMFunction *)sym)->Function;
build->Emit(OP_PARAM, 0, REGT_POINTER | REGT_KONST, build->GetConstantAddress(rng, ATAG_RNG));
mask->Emit(build);
build->Emit(OP_CALL_K, build->GetConstantAddress(callfunc, ATAG_OBJECT), 2, 1);
ExpEmit out(build, REGT_INT);
build->Emit(OP_RESULT, 0, REGT_INT, out.RegNum);
return out;
}
//==========================================================================
//
//
//
//==========================================================================
FxIdentifier::FxIdentifier(FName name, const FScriptPosition &pos)
: FxExpression(pos)
{
Identifier = name;
}
//==========================================================================
//
//
//
//==========================================================================
FxExpression *FxIdentifier::Resolve(FCompileContext& ctx)
{
PSymbol * sym;
FxExpression *newex = NULL;
//FBaseCVar * cv = NULL;
//FString s;
int num;
//const PClass *Class;
CHECKRESOLVED();
// see if the current class (if valid) defines something with this name.
if ((sym = ctx.FindInClass(Identifier)) != NULL)
{
if (sym->IsKindOf(RUNTIME_CLASS(PSymbolConst)))
{
ScriptPosition.Message(MSG_DEBUGLOG, "Resolving name '%s' as class constant\n", Identifier.GetChars());
newex = FxConstant::MakeConstant(sym, ScriptPosition);
}
else if (sym->IsKindOf(RUNTIME_CLASS(PField)))
{
PField *vsym = static_cast<PField*>(sym);
ScriptPosition.Message(MSG_DEBUGLOG, "Resolving name '%s' as member variable, index %d\n", Identifier.GetChars(), vsym->Offset);
newex = new FxClassMember((new FxSelf(ScriptPosition))->Resolve(ctx), vsym, ScriptPosition);
}
else
{
ScriptPosition.Message(MSG_ERROR, "Invalid member identifier '%s'\n", Identifier.GetChars());
}
}
// the damage property needs special handling
else if (Identifier == NAME_Damage)
{
newex = new FxDamage(ScriptPosition);
}
// now check the global identifiers.
else if ((sym = ctx.FindGlobal(Identifier)) != NULL)
{
if (sym->IsKindOf(RUNTIME_CLASS(PSymbolConst)))
{
ScriptPosition.Message(MSG_DEBUGLOG, "Resolving name '%s' as global constant\n", Identifier.GetChars());
newex = FxConstant::MakeConstant(sym, ScriptPosition);
}
else
{
ScriptPosition.Message(MSG_ERROR, "Invalid global identifier '%s'\n", Identifier.GetChars());
}
}
/*
else if ((Class = PClass::FindClass(Identifier)))
{
pos.Message(MSG_DEBUGLOG, "Resolving name '%s' as class name\n", Identifier.GetChars());
newex = new FxClassType(Class, ScriptPosition);
}
}
*/
// also check for CVars
/*
else if ((cv = FindCVar(Identifier, NULL)) != NULL)
{
CLOG(CL_RESOLVE, LPrintf("Resolving name '%s' as cvar\n", Identifier.GetChars()));
newex = new FxCVar(cv, ScriptPosition);
}
*/
// and line specials
else if ((num = P_FindLineSpecial(Identifier, NULL, NULL)))
{
ScriptPosition.Message(MSG_DEBUGLOG, "Resolving name '%s' as line special %d\n", Identifier.GetChars(), num);
newex = new FxConstant(num, ScriptPosition);
}
else
{
ScriptPosition.Message(MSG_ERROR, "Unknown identifier '%s'", Identifier.GetChars());
newex = new FxConstant(0, ScriptPosition);
}
delete this;
return newex? newex->Resolve(ctx) : NULL;
}
//==========================================================================
//
//
//
//==========================================================================
FxSelf::FxSelf(const FScriptPosition &pos)
: FxExpression(pos)
{
}
//==========================================================================
//
//
//
//==========================================================================
FxExpression *FxSelf::Resolve(FCompileContext& ctx)
{
CHECKRESOLVED();
if (!ctx.cls)
{
// can't really happen with DECORATE's expression evaluator.
ScriptPosition.Message(MSG_ERROR, "self used outside of a member function");
delete this;
return NULL;
}
ValueType = ctx.cls;
ValueType.Type = VAL_Object;
return this;
}
//==========================================================================
//
//
//
//==========================================================================
ExpEmit FxSelf::Emit(VMFunctionBuilder *build)
{
// self is always the first pointer passed to the function
ExpEmit me(0, REGT_POINTER);
me.Fixed = true;
return me;
}
//==========================================================================
//
//
//
//==========================================================================
FxDamage::FxDamage(const FScriptPosition &pos)
: FxExpression(pos)
{
}
//==========================================================================
//
// FxDamage :: Resolve
//
//==========================================================================
FxExpression *FxDamage::Resolve(FCompileContext& ctx)
{
CHECKRESOLVED();
ValueType = VAL_Int;
return this;
}
//==========================================================================
//
// FxDamage :: Emit
//
// Call this actor's damage function, if it has one
//
//==========================================================================
ExpEmit FxDamage::Emit(VMFunctionBuilder *build)
{
ExpEmit dmgval(build, REGT_INT);
// Get damage function
ExpEmit dmgfunc(build, REGT_POINTER);
build->Emit(OP_LO, dmgfunc.RegNum, 0/*self*/, build->GetConstantInt(myoffsetof(AActor, Damage)));
// If it's non-null...
build->Emit(OP_EQA_K, 1, dmgfunc.RegNum, build->GetConstantAddress(0, ATAG_GENERIC));
size_t nulljump = build->Emit(OP_JMP, 0);
// ...call it
build->Emit(OP_PARAM, 0, REGT_POINTER, 0/*self*/);
build->Emit(OP_CALL, dmgfunc.RegNum, 1, 1);
build->Emit(OP_RESULT, 0, REGT_INT, dmgval.RegNum);
size_t notnulljump = build->Emit(OP_JMP, 0);
// Otherwise, use 0
build->BackpatchToHere(nulljump);
build->EmitLoadInt(dmgval.RegNum, 0);
build->BackpatchToHere(notnulljump);
return dmgval;
}
//==========================================================================
//
//
//
//==========================================================================
FxClassMember::FxClassMember(FxExpression *x, PField* mem, const FScriptPosition &pos)
: FxExpression(pos)
{
classx = x;
membervar = mem;
AddressRequested = false;
//if (classx->IsDefaultObject()) Readonly=true;
}
//==========================================================================
//
//
//
//==========================================================================
FxClassMember::~FxClassMember()
{
SAFE_DELETE(classx);
}
//==========================================================================
//
//
//
//==========================================================================
void FxClassMember::RequestAddress()
{
AddressRequested = true;
}
//==========================================================================
//
//
//
//==========================================================================
FxExpression *FxClassMember::Resolve(FCompileContext &ctx)
{
CHECKRESOLVED();
SAFE_RESOLVE(classx, ctx);
if (classx->ValueType != VAL_Object && classx->ValueType != VAL_Class)
{
ScriptPosition.Message(MSG_ERROR, "Member variable requires a class or object");
delete this;
return NULL;
}
PType *type = membervar->Type;
PArray *arraytype = dyn_cast<PArray>(type);
if (arraytype != NULL)
{
type = arraytype->ElementType;
}
if (type->IsKindOf(RUNTIME_CLASS(PPointer)))
{
ValueType = VAL_Object;
}
else if (type->IsKindOf(RUNTIME_CLASS(PInt)))
{
ValueType = VAL_Int;
}
else if (type->IsKindOf(RUNTIME_CLASS(PFloat)))
{
ValueType = VAL_Float;
}
else
{
ScriptPosition.Message(MSG_ERROR, "Invalid type for member variable %s", membervar->SymbolName.GetChars());
delete this;
return NULL;
}
if (arraytype != NULL)
{
ValueType.MakeArray(arraytype->ElementCount);
}
return this;
}
ExpEmit FxClassMember::Emit(VMFunctionBuilder *build)
{
ExpEmit obj = classx->Emit(build);
assert(obj.RegType == REGT_POINTER);
if (AddressRequested)
{
if (membervar->Offset == 0)
{
return obj;
}
obj.Free(build);
ExpEmit out(build, REGT_POINTER);
build->Emit(OP_ADDA_RK, out.RegNum, obj.RegNum, build->GetConstantInt((int)membervar->Offset));
return out;
}
int offsetreg = build->GetConstantInt((int)membervar->Offset);
ExpEmit loc, tmp;
if (obj.Konst)
{
// If the situation where we are dereferencing a constant
// pointer is common, then it would probably be worthwhile
// to add new opcodes for those. But as of right now, I
// don't expect it to be a particularly common case.
ExpEmit newobj(build, REGT_POINTER);
build->Emit(OP_LKP, newobj.RegNum, obj.RegNum);
obj = newobj;
}
loc = ExpEmit(build, membervar->Type->GetRegType());
build->Emit(membervar->Type->GetLoadOp(), loc.RegNum, obj.RegNum, offsetreg);
obj.Free(build);
return loc;
}
//==========================================================================
//
//
//
//==========================================================================
FxArrayElement::FxArrayElement(FxExpression *base, FxExpression *_index)
:FxExpression(base->ScriptPosition)
{
Array=base;
index = _index;
//AddressRequested = false;
}
//==========================================================================
//
//
//
//==========================================================================
FxArrayElement::~FxArrayElement()
{
SAFE_DELETE(Array);
SAFE_DELETE(index);
}
//==========================================================================
//
//
//
//==========================================================================
/*
void FxArrayElement::RequestAddress()
{
AddressRequested = true;
}
*/
//==========================================================================
//
//
//
//==========================================================================
FxExpression *FxArrayElement::Resolve(FCompileContext &ctx)
{
CHECKRESOLVED();
SAFE_RESOLVE(Array,ctx);
SAFE_RESOLVE(index,ctx);
if (index->ValueType == VAL_Float /* lax */)
{
// DECORATE allows floats here so cast them to int.
index = new FxIntCast(index);
index = index->Resolve(ctx);
if (index == NULL)
{
delete this;
return NULL;
}
}
if (index->ValueType != VAL_Int)
{
ScriptPosition.Message(MSG_ERROR, "Array index must be integer");
delete this;
return NULL;
}
if (Array->ValueType != VAL_Array)
{
ScriptPosition.Message(MSG_ERROR, "'[]' can only be used with arrays.");
delete this;
return NULL;
}
ValueType = Array->ValueType.GetBaseType();
if (ValueType != VAL_Int)
{
// int arrays only for now
ScriptPosition.Message(MSG_ERROR, "Only integer arrays are supported.");
delete this;
return NULL;
}
Array->RequestAddress();
return this;
}
//==========================================================================
//
// in its current state this won't be able to do more than handle the args array.
//
//==========================================================================
ExpEmit FxArrayElement::Emit(VMFunctionBuilder *build)
{
ExpEmit start = Array->Emit(build);
ExpEmit dest(build, REGT_INT);
if (start.Konst)
{
ExpEmit tmpstart(build, REGT_POINTER);
build->Emit(OP_LKP, tmpstart.RegNum, start.RegNum);
start = tmpstart;
}
if (index->isConstant())
{
int indexval = static_cast<FxConstant *>(index)->GetValue().GetInt();
if (indexval < 0 || indexval >= Array->ValueType.size)
{
I_Error("Array index out of bounds");
}
indexval <<= 2;
build->Emit(OP_LW, dest.RegNum, start.RegNum, build->GetConstantInt(indexval));
}
else
{
ExpEmit indexv(index->Emit(build));
build->Emit(OP_SLL_RI, indexv.RegNum, indexv.RegNum, 2);
build->Emit(OP_BOUND, indexv.RegNum, Array->ValueType.size);
build->Emit(OP_LW_R, dest.RegNum, start.RegNum, indexv.RegNum);
indexv.Free(build);
}
start.Free(build);
return dest;
}
//==========================================================================
//
//
//
//==========================================================================
FxFunctionCall::FxFunctionCall(FxExpression *self, FName methodname, FArgumentList *args, const FScriptPosition &pos)
: FxExpression(pos)
{
Self = self;
MethodName = methodname;
ArgList = args;
}
//==========================================================================
//
//
//
//==========================================================================
FxFunctionCall::~FxFunctionCall()
{
SAFE_DELETE(Self);
SAFE_DELETE(ArgList);
}
//==========================================================================
//
//
//
//==========================================================================
FxExpression *FxFunctionCall::Resolve(FCompileContext& ctx)
{
// There's currently only 3 global functions.
// If this changes later, it won't be here!
if (MethodName == NAME_Sin || MethodName == NAME_Cos || MethodName == NAME_Sqrt)
{
if (Self != NULL)
{
ScriptPosition.Message(MSG_ERROR, "Global functions cannot have a self pointer");
delete this;
return NULL;
}
FxExpression *x = new FxGlobalFunctionCall(MethodName, ArgList, ScriptPosition);
ArgList = NULL;
delete this;
return x->Resolve(ctx);
}
int min, max, special;
if (MethodName == NAME_ACS_NamedExecuteWithResult || MethodName == NAME_CallACS)
{
special = -ACS_ExecuteWithResult;
min = 1;
max = 5;
}
else
{
special = P_FindLineSpecial(MethodName.GetChars(), &min, &max);
}
if (special != 0 && min >= 0)
{
int paramcount = ArgList? ArgList->Size() : 0;
if (paramcount < min)
{
ScriptPosition.Message(MSG_ERROR, "Not enough parameters for '%s' (expected %d, got %d)",
MethodName.GetChars(), min, paramcount);
delete this;
return NULL;
}
else if (paramcount > max)
{
ScriptPosition.Message(MSG_ERROR, "too many parameters for '%s' (expected %d, got %d)",
MethodName.GetChars(), max, paramcount);
delete this;
return NULL;
}
FxExpression *x = new FxActionSpecialCall(Self, special, ArgList, ScriptPosition);
ArgList = NULL;
delete this;
return x->Resolve(ctx);
}
ScriptPosition.Message(MSG_ERROR, "Call to unknown function '%s'", MethodName.GetChars());
delete this;
return NULL;
}
//==========================================================================
//
// FxActionSpecialCall
//
// If special is negative, then the first argument will be treated as a
// name for ACS_NamedExecuteWithResult.
//
//==========================================================================
FxActionSpecialCall::FxActionSpecialCall(FxExpression *self, int special, FArgumentList *args, const FScriptPosition &pos)
: FxExpression(pos)
{
Self = self;
Special = special;
ArgList = args;
}
//==========================================================================
//
//
//
//==========================================================================
FxActionSpecialCall::~FxActionSpecialCall()
{
SAFE_DELETE(Self);
SAFE_DELETE(ArgList);
}
//==========================================================================
//
//
//
//==========================================================================
FxExpression *FxActionSpecialCall::Resolve(FCompileContext& ctx)
{
CHECKRESOLVED();
bool failed = false;
if (ArgList != NULL)
{
for(unsigned i = 0; i < ArgList->Size(); i++)
{
(*ArgList)[i] = (*ArgList)[i]->Resolve(ctx);
if ((*ArgList)[i] == NULL) failed = true;
if (Special < 0 && i == 0)
{
if ((*ArgList)[i]->ValueType != VAL_Name)
{
ScriptPosition.Message(MSG_ERROR, "Name expected for parameter %d", i);
failed = true;
}
}
else if ((*ArgList)[i]->ValueType != VAL_Int)
{
if ((*ArgList)[i]->ValueType == VAL_Float /* lax */)
{
(*ArgList)[i] = new FxIntCast((*ArgList)[i]);
}
else
{
ScriptPosition.Message(MSG_ERROR, "Integer expected for parameter %d", i);
failed = true;
}
}
}
if (failed)
{
delete this;
return NULL;
}
}
ValueType = VAL_Int;
return this;
}
//==========================================================================
//
//
//
//==========================================================================
int DecoCallLineSpecial(VMFrameStack *stack, VMValue *param, int numparam, VMReturn *ret, int numret)
{
assert(numparam > 2 && numparam < 7);
assert(numret == 1);
assert(param[0].Type == REGT_INT);
assert(param[1].Type == REGT_POINTER);
int v[5] = { 0 };
for (int i = 2; i < numparam; ++i)
{
v[i - 2] = param[i].i;
}
ret->SetInt(P_ExecuteSpecial(param[0].i, NULL, reinterpret_cast<AActor*>(param[1].a), false, v[0], v[1], v[2], v[3], v[4]));
return 1;
}
ExpEmit FxActionSpecialCall::Emit(VMFunctionBuilder *build)
{
assert(Self == NULL);
unsigned i = 0;
build->Emit(OP_PARAMI, abs(Special)); // pass special number
build->Emit(OP_PARAM, 0, REGT_POINTER, 0); // pass self
if (ArgList != NULL)
{
for (; i < ArgList->Size(); ++i)
{
FxExpression *argex = (*ArgList)[i];
if (Special < 0 && i == 0)
{
assert(argex->ValueType == VAL_Name);
assert(argex->isConstant());
build->EmitParamInt(-static_cast<FxConstant *>(argex)->GetValue().GetName());
}
else
{
assert(argex->ValueType == VAL_Int);
if (argex->isConstant())
{
build->EmitParamInt(static_cast<FxConstant *>(argex)->GetValue().GetInt());
}
else
{
ExpEmit arg(argex->Emit(build));
build->Emit(OP_PARAM, 0, arg.RegType, arg.RegNum);
arg.Free(build);
}
}
}
}
// Call the DecoCallLineSpecial function to perform the desired special.
VMFunction *callfunc;
PSymbol *sym = FindDecorateBuiltinFunction(NAME_DecoCallLineSpecial, DecoCallLineSpecial);
assert(sym->IsKindOf(RUNTIME_CLASS(PSymbolVMFunction)));
assert(((PSymbolVMFunction *)sym)->Function != NULL);
callfunc = ((PSymbolVMFunction *)sym)->Function;
ExpEmit dest(build, REGT_INT);
build->Emit(OP_CALL_K, build->GetConstantAddress(callfunc, ATAG_OBJECT), 2 + i, 1);
build->Emit(OP_RESULT, 0, REGT_INT, dest.RegNum);
return dest;
}
//==========================================================================
//
// FxVMFunctionCall
//
//==========================================================================
FxVMFunctionCall::FxVMFunctionCall(PFunction *func, FArgumentList *args, const FScriptPosition &pos)
: FxExpression(pos)
{
Function = func;
ArgList = args;
}
//==========================================================================
//
//
//
//==========================================================================
FxVMFunctionCall::~FxVMFunctionCall()
{
SAFE_DELETE(ArgList);
}
//==========================================================================
//
// FxVMFunctionCall :: Resolve
//
//==========================================================================
FxExpression *FxVMFunctionCall::Resolve(FCompileContext& ctx)
{
CHECKRESOLVED();
bool failed = false;
if (ArgList != NULL)
{
for (unsigned i = 0; i < ArgList->Size(); i++)
{
(*ArgList)[i] = (*ArgList)[i]->Resolve(ctx);
if ((*ArgList)[i] == NULL) failed = true;
}
}
if (failed)
{
delete this;
return NULL;
}
TArray<PType *> &rets = Function->Variants[0].Implementation->Proto->ReturnTypes;
if (rets.Size() > 0)
{
// If more types are added to ParseNativeFunction(), add them here too.
if (rets[0] == TypeSInt32) ValueType = VAL_Int;
else if (rets[0] == TypeFloat64) ValueType = VAL_Float;
else if (rets[0] == TypeAngle) ValueType = VAL_Angle;
else if (rets[0] == TypeFixed) ValueType = VAL_Fixed;
else if (rets[0] == TypeState) ValueType = VAL_State;
else
{
ValueType = VAL_Int;
assert(0 && "Unhandled return type in FxVMFunctionCall::Resolve");
}
}
return this;
}
//==========================================================================
//
// Assumption: This call is being made to generate code inside an action
// method, so the first three address registers are all set up for such a
// function. (self, stateowner, callingstate)
//
//==========================================================================
ExpEmit FxVMFunctionCall::Emit(VMFunctionBuilder *build)
{
return Emit(build, false);
}
ExpEmit FxVMFunctionCall::Emit(VMFunctionBuilder *build, bool tailcall)
{
assert(build->Registers[REGT_POINTER].GetMostUsed() >= 3);
int count = GetArgCount();
// Emit code to pass implied parameters
if (Function->Flags & VARF_Method)
{
build->Emit(OP_PARAM, 0, REGT_POINTER, 0);
count += 1;
}
if (Function->Flags & VARF_Action)
{
build->Emit(OP_PARAM, 0, REGT_POINTER, 1);
build->Emit(OP_PARAM, 0, REGT_POINTER, 2);
count += 2;
}
// Emit code to pass explicit parameters
if (ArgList != NULL)
{
for (unsigned i = 0; i < ArgList->Size(); ++i)
{
(*ArgList)[i]->Emit(build);
}
}
// Get a constant register for this function
VMFunction *vmfunc = Function->Variants[0].Implementation;
int funcaddr = build->GetConstantAddress(vmfunc, ATAG_OBJECT);
// Emit the call
if (tailcall)
{ // Tail call
build->Emit(OP_TAIL_K, funcaddr, count, 0);
return ExpEmit();
}
else if (vmfunc->Proto->ReturnTypes.Size() > 0)
{ // Call, expecting one result
ExpEmit reg(build, vmfunc->Proto->ReturnTypes[0]->GetRegType());
build->Emit(OP_CALL_K, funcaddr, count, 1);
build->Emit(OP_RESULT, 0, reg.RegType, reg.RegNum);
return reg;
}
else
{ // Call, expecting no results
build->Emit(OP_CALL_K, funcaddr, count, 0);
return ExpEmit();
}
}
//==========================================================================
//
//
//
//==========================================================================
FxGlobalFunctionCall::FxGlobalFunctionCall(FName fname, FArgumentList *args, const FScriptPosition &pos)
: FxExpression(pos)
{
Name = fname;
ArgList = args;
}
//==========================================================================
//
//
//
//==========================================================================
FxGlobalFunctionCall::~FxGlobalFunctionCall()
{
SAFE_DELETE(ArgList);
}
FxExpression *FxGlobalFunctionCall::Resolve(FCompileContext& ctx)
{
CHECKRESOLVED();
if (ArgList == NULL || ArgList->Size() != 1)
{
ScriptPosition.Message(MSG_ERROR, "%s only has one parameter", Name.GetChars());
delete this;
return NULL;
}
(*ArgList)[0] = (*ArgList)[0]->Resolve(ctx);
if ((*ArgList)[0] == NULL)
{
delete this;
return NULL;
}
if (!(*ArgList)[0]->ValueType.isNumeric())
{
ScriptPosition.Message(MSG_ERROR, "numeric value expected for parameter");
delete this;
return NULL;
}
if ((*ArgList)[0]->isConstant())
{
double v = static_cast<FxConstant *>((*ArgList)[0])->GetValue().GetFloat();
if (Name == NAME_Sqrt)
{
v = sqrt(v);
}
else
{
v *= M_PI / 180.0; // convert from degrees to radians
v = (Name == NAME_Sin) ? sin(v) : cos(v);
}
FxExpression *x = new FxConstant(v, ScriptPosition);
delete this;
return x;
}
if ((*ArgList)[0]->ValueType == VAL_Int)
{
(*ArgList)[0] = new FxFloatCast((*ArgList)[0]);
}
ValueType = VAL_Float;
return this;
}
//==========================================================================
//
//
//==========================================================================
ExpEmit FxGlobalFunctionCall::Emit(VMFunctionBuilder *build)
{
ExpEmit v = (*ArgList)[0]->Emit(build);
assert(!v.Konst && v.RegType == REGT_FLOAT);
build->Emit(OP_FLOP, v.RegNum, v.RegNum,
(Name == NAME_Sqrt) ? FLOP_SQRT :
(Name == NAME_Sin) ? FLOP_SIN_DEG :
FLOP_COS_DEG);
return v;
}
//==========================================================================
//
// FxSequence :: Resolve
//
//==========================================================================
FxExpression *FxSequence::Resolve(FCompileContext &ctx)
{
CHECKRESOLVED();
for (unsigned i = 0; i < Expressions.Size(); ++i)
{
if (NULL == (Expressions[i] = Expressions[i]->Resolve(ctx)))
{
delete this;
return NULL;
}
}
return this;
}
//==========================================================================
//
// FxSequence :: Emit
//
//==========================================================================
ExpEmit FxSequence::Emit(VMFunctionBuilder *build)
{
for (unsigned i = 0; i < Expressions.Size(); ++i)
{
ExpEmit v = Expressions[i]->Emit(build);
// Throw away any result. We don't care about it.
v.Free(build);
}
return ExpEmit();
}
//==========================================================================
//
// FxSequence :: GetDirectFunction
//
//==========================================================================
VMFunction *FxSequence::GetDirectFunction()
{
if (Expressions.Size() == 1)
{
return Expressions[0]->GetDirectFunction();
}
return NULL;
}
//==========================================================================
//
// FxIfStatement
//
//==========================================================================
FxIfStatement::FxIfStatement(FxExpression *cond, FxExpression *true_part,
FxExpression *false_part, const FScriptPosition &pos)
: FxExpression(pos)
{
Condition = cond;
WhenTrue = true_part;
WhenFalse = false_part;
assert(cond != NULL);
}
FxIfStatement::~FxIfStatement()
{
SAFE_DELETE(Condition);
SAFE_DELETE(WhenTrue);
SAFE_DELETE(WhenFalse);
}
FxExpression *FxIfStatement::Resolve(FCompileContext &ctx)
{
CHECKRESOLVED();
if (WhenTrue == NULL && WhenFalse == NULL)
{ // We don't do anything either way, so disappear
delete this;
return NULL;
}
Condition = Condition->ResolveAsBoolean(ctx);
ABORT(Condition);
if (WhenTrue != NULL)
{
WhenTrue = WhenTrue->Resolve(ctx);
ABORT(WhenTrue);
}
if (WhenFalse != NULL)
{
WhenFalse = WhenFalse->Resolve(ctx);
ABORT(WhenFalse);
}
ValueType = VAL_Unknown;
if (Condition->isConstant())
{
ExpVal condval = static_cast<FxConstant *>(Condition)->GetValue();
bool result = condval.GetBool();
FxExpression *e = result ? WhenTrue : WhenFalse;
delete (result ? WhenFalse : WhenTrue);
WhenTrue = WhenFalse = NULL;
delete this;
return e;
}
return this;
}
ExpEmit FxIfStatement::Emit(VMFunctionBuilder *build)
{
ExpEmit v;
size_t jumpspot;
FxExpression *path1, *path2;
int condcheck;
// This is pretty much copied from FxConditional, except we don't
// keep any results.
ExpEmit cond = Condition->Emit(build);
assert(cond.RegType == REGT_INT && !cond.Konst);
if (WhenTrue != NULL)
{
path1 = WhenTrue;
path2 = WhenFalse;
condcheck = 1;
}
else
{
// When there is only a false path, reverse the condition so we can
// treat it as a true path.
assert(WhenFalse != NULL);
path1 = WhenFalse;
path2 = NULL;
condcheck = 0;
}
// Test condition.
build->Emit(OP_EQ_K, condcheck, cond.RegNum, build->GetConstantInt(0));
jumpspot = build->Emit(OP_JMP, 0);
cond.Free(build);
// Evaluate first path
v = path1->Emit(build);
v.Free(build);
if (path2 != NULL)
{
size_t path1jump = build->Emit(OP_JMP, 0);
// Evaluate second path
build->BackpatchToHere(jumpspot);
v = path2->Emit(build);
v.Free(build);
jumpspot = path1jump;
}
build->BackpatchToHere(jumpspot);
return ExpEmit();
}
//==========================================================================
//
//==========================================================================
FxReturnStatement::FxReturnStatement(FxVMFunctionCall *call, const FScriptPosition &pos)
: FxExpression(pos), Call(call)
{
}
FxExpression *FxReturnStatement::Resolve(FCompileContext &ctx)
{
CHECKRESOLVED();
if (Call != NULL)
{
Call = static_cast<FxVMFunctionCall *>(Call->Resolve(ctx));
ABORT(Call);
}
return this;
}
ExpEmit FxReturnStatement::Emit(VMFunctionBuilder *build)
{
// If we return nothing, use a regular RET opcode. If we return
// something, use TAIL to call the function. Our return type
// should be compatible with the called function's return type.
if (Call == NULL)
{
build->Emit(OP_RET, RET_FINAL, REGT_NIL, 0);
}
else
{
Call->Emit(build, true);
}
return ExpEmit();
}
VMFunction *FxReturnStatement::GetDirectFunction()
{
// If this return statement calls a function with no arguments,
// then it can be a "direct" function. That is, the DECORATE
// definition can call that function directly without wrapping
// it inside VM code.
if (Call != NULL && Call->GetArgCount() == 0)
{
return Call->GetVMFunction();
}
return NULL;
}
//==========================================================================
//
//==========================================================================
FxClassTypeCast::FxClassTypeCast(PClass *dtype, FxExpression *x)
: FxExpression(x->ScriptPosition)
{
desttype = dtype;
basex=x;
}
//==========================================================================
//
//
//
//==========================================================================
FxClassTypeCast::~FxClassTypeCast()
{
SAFE_DELETE(basex);
}
//==========================================================================
//
//
//
//==========================================================================
FxExpression *FxClassTypeCast::Resolve(FCompileContext &ctx)
{
CHECKRESOLVED();
SAFE_RESOLVE(basex, ctx);
if (basex->ValueType != VAL_Name)
{
ScriptPosition.Message(MSG_ERROR, "Cannot convert to class type");
delete this;
return NULL;
}
if (basex->isConstant())
{
FName clsname = static_cast<FxConstant *>(basex)->GetValue().GetName();
PClass *cls = NULL;
if (clsname != NAME_None)
{
cls = PClass::FindClass(clsname);
if (cls == NULL)
{
/* lax */
// Since this happens in released WADs it must pass without a terminal error... :(
ScriptPosition.Message(MSG_WARNING,
"Unknown class name '%s'",
clsname.GetChars(), desttype->TypeName.GetChars());
}
else
{
if (!cls->IsDescendantOf(desttype))
{
ScriptPosition.Message(MSG_ERROR, "class '%s' is not compatible with '%s'", clsname.GetChars(), desttype->TypeName.GetChars());
delete this;
return NULL;
}
ScriptPosition.Message(MSG_DEBUG, "resolving '%s' as class name", clsname.GetChars());
}
}
FxExpression *x = new FxConstant(cls, ScriptPosition);
delete this;
return x;
}
return this;
}
//==========================================================================
//
//
//
//==========================================================================
int DecoNameToClass(VMFrameStack *stack, VMValue *param, int numparam, VMReturn *ret, int numret)
{
assert(numparam == 2);
assert(numret == 1);
assert(param[0].Type == REGT_INT);
assert(param[1].Type == REGT_POINTER);
assert(ret->RegType == REGT_POINTER);
FName clsname = ENamedName(param[0].i);
const PClass *cls = PClass::FindClass(clsname);
const PClass *desttype = reinterpret_cast<PClass *>(param[0].a);
if (!cls->IsDescendantOf(desttype))
{
Printf("class '%s' is not compatible with '%s'", clsname.GetChars(), desttype->TypeName.GetChars());
cls = NULL;
}
ret->SetPointer(const_cast<PClass *>(cls), ATAG_OBJECT);
return 1;
}
ExpEmit FxClassTypeCast::Emit(VMFunctionBuilder *build)
{
if (basex->ValueType != VAL_Name)
{
return ExpEmit(build->GetConstantAddress(NULL, ATAG_OBJECT), REGT_POINTER, true);
}
ExpEmit clsname = basex->Emit(build);
assert(!clsname.Konst);
ExpEmit dest(build, REGT_POINTER);
build->Emit(OP_PARAM, 0, clsname.RegType, clsname.RegNum);
build->Emit(OP_PARAM, 0, REGT_POINTER | REGT_KONST, build->GetConstantAddress(const_cast<PClass *>(desttype), ATAG_OBJECT));
// Call the DecoNameToClass function to convert from 'name' to class.
VMFunction *callfunc;
PSymbol *sym = FindDecorateBuiltinFunction(NAME_DecoNameToClass, DecoNameToClass);
assert(sym->IsKindOf(RUNTIME_CLASS(PSymbolVMFunction)));
assert(((PSymbolVMFunction *)sym)->Function != NULL);
callfunc = ((PSymbolVMFunction *)sym)->Function;
build->Emit(OP_CALL_K, build->GetConstantAddress(callfunc, ATAG_OBJECT), 2, 1);
build->Emit(OP_RESULT, 0, REGT_POINTER, dest.RegNum);
clsname.Free(build);
return dest;
}
//==========================================================================
//
//
//
//==========================================================================
FxExpression *FxStateByIndex::Resolve(FCompileContext &ctx)
{
CHECKRESOLVED();
if (ctx.cls->NumOwnedStates == 0)
{
// This can't really happen
assert(false);
}
if (ctx.cls->NumOwnedStates <= index)
{
ScriptPosition.Message(MSG_ERROR, "%s: Attempt to jump to non existing state index %d",
ctx.cls->TypeName.GetChars(), index);
delete this;
return NULL;
}
FxExpression *x = new FxConstant(ctx.cls->OwnedStates + index, ScriptPosition);
delete this;
return x;
}
//==========================================================================
//
//
//
//==========================================================================
FxMultiNameState::FxMultiNameState(const char *_statestring, const FScriptPosition &pos)
:FxExpression(pos)
{
FName scopename;
FString statestring = _statestring;
int scopeindex = statestring.IndexOf("::");
if (scopeindex >= 0)
{
scopename = FName(statestring, scopeindex, false);
statestring = statestring.Right(statestring.Len() - scopeindex - 2);
}
else
{
scopename = NULL;
}
names = MakeStateNameList(statestring);
names.Insert(0, scopename);
scope = NULL;
}
//==========================================================================
//
//
//
//==========================================================================
FxExpression *FxMultiNameState::Resolve(FCompileContext &ctx)
{
CHECKRESOLVED();
if (names[0] == NAME_None)
{
scope = NULL;
}
else if (names[0] == NAME_Super)
{
scope = dyn_cast<PClassActor>(ctx.cls->ParentClass);
}
else
{
scope = PClass::FindActor(names[0]);
if (scope == NULL)
{
ScriptPosition.Message(MSG_ERROR, "Unknown class '%s' in state label", names[0].GetChars());
delete this;
return NULL;
}
else if (!scope->IsDescendantOf(ctx.cls))
{
ScriptPosition.Message(MSG_ERROR, "'%s' is not an ancestor of '%s'", names[0].GetChars(),ctx.cls->TypeName.GetChars());
delete this;
return NULL;
}
}
if (scope != NULL)
{
FState *destination = NULL;
// If the label is class specific we can resolve it right here
if (names[1] != NAME_None)
{
destination = scope->FindState(names.Size()-1, &names[1], false);
if (destination == NULL)
{
ScriptPosition.Message(MSG_WARNING, "Unknown state jump destination");
/* lax */
return this;
}
}
FxExpression *x = new FxConstant(destination, ScriptPosition);
delete this;
return x;
}
names.Delete(0);
names.ShrinkToFit();
ValueType = VAL_State;
return this;
}
//==========================================================================
//
//
//
//==========================================================================
static int DoFindState(VMFrameStack *stack, VMValue *param, int numparam, VMReturn *ret, FName *names, int numnames)
{
PARAM_OBJECT_AT(0, self, AActor);
FState *state = self->GetClass()->FindState(numparam - 1, names);
if (state == NULL)
{
const char *dot = "";
Printf("Jump target '");
for (int i = 0; i < numparam - 1; i++)
{
Printf("%s%s", dot, names[i].GetChars());
dot = ".";
}
Printf("' not found in %s\n", self->GetClass()->TypeName.GetChars());
}
ret->SetPointer(state, ATAG_STATE);
return 1;
}
// Find a state with any number of dots in its name.
int DecoFindMultiNameState(VMFrameStack *stack, VMValue *param, int numparam, VMReturn *ret, int numret)
{
assert(numparam > 1);
assert(numret == 1);
assert(ret->RegType == REGT_POINTER);
FName *names = (FName *)alloca((numparam - 1) * sizeof(FName));
for (int i = 1; i < numparam; ++i)
{
PARAM_NAME_AT(i, zaname);
names[i - 1] = zaname;
}
return DoFindState(stack, param, numparam, ret, names, numparam - 1);
}
// Find a state without any dots in its name.
int DecoFindSingleNameState(VMFrameStack *stack, VMValue *param, int numparam, VMReturn *ret, int numret)
{
assert(numparam == 2);
assert(numret == 1);
assert(ret->RegType == REGT_POINTER);
PARAM_NAME_AT(1, zaname);
return DoFindState(stack, param, numparam, ret, &zaname, 1);
}
ExpEmit FxMultiNameState::Emit(VMFunctionBuilder *build)
{
ExpEmit dest(build, REGT_POINTER);
build->Emit(OP_PARAM, 0, REGT_POINTER, 1); // pass stateowner
for (unsigned i = 0; i < names.Size(); ++i)
{
build->EmitParamInt(names[i]);
}
// For one name, use the DecoFindSingleNameState function. For more than
// one name, use the DecoFindMultiNameState function.
VMFunction *callfunc;
PSymbol *sym;
if (names.Size() == 1)
{
sym = FindDecorateBuiltinFunction(NAME_DecoFindSingleNameState, DecoFindSingleNameState);
}
else
{
sym = FindDecorateBuiltinFunction(NAME_DecoFindMultiNameState, DecoFindMultiNameState);
}
assert(sym->IsKindOf(RUNTIME_CLASS(PSymbolVMFunction)));
assert(((PSymbolVMFunction *)sym)->Function != NULL);
callfunc = ((PSymbolVMFunction *)sym)->Function;
build->Emit(OP_CALL_K, build->GetConstantAddress(callfunc, ATAG_OBJECT), names.Size() + 1, 1);
build->Emit(OP_RESULT, 0, REGT_POINTER, dest.RegNum);
return dest;
}
//==========================================================================
//
//
//
//==========================================================================
FxDamageValue::FxDamageValue(FxExpression *v, bool calc)
: FxExpression(v->ScriptPosition)
{
val = v;
ValueType = VAL_Unknown;
Calculated = calc;
MyFunction = NULL;
if (!calc)
{
assert(v->isConstant() && "Non-calculated damage must be constant");
}
}
FxDamageValue::~FxDamageValue()
{
SAFE_DELETE(val);
}
FxExpression *FxDamageValue::Resolve(FCompileContext &ctx)
{
CHECKRESOLVED();
SAFE_RESOLVE(val, ctx)
if (!val->ValueType.isNumeric())
{
ScriptPosition.Message(MSG_ERROR, "Numeric type expected");
delete this;
return NULL;
}
return this;
}
// This is a highly-specialized "expression" type that emits a complete function.
ExpEmit FxDamageValue::Emit(VMFunctionBuilder *build)
{
if (val->isConstant())
{
build->EmitRetInt(0, false, static_cast<FxConstant *>(val)->GetValue().Int);
}
else
{
ExpEmit emitval = val->Emit(build);
assert(emitval.RegType == REGT_INT);
build->Emit(OP_RET, 0, REGT_INT | (emitval.Konst ? REGT_KONST : 0), emitval.RegNum);
}
build->Emit(OP_RETI, 1 | RET_FINAL, Calculated);
return ExpEmit();
}