mirror of
https://github.com/ZDoom/gzdoom-gles.git
synced 2025-02-24 20:31:39 +00:00
The Cephes Mathematical Library author Steve Moshier has released the Cephes Mathematical Library under the BSD license. This patch patch replaces the cephes license with the BSD license for all Cephes Mathematical Library code. See also: https://bugs.gentoo.org/687276 See also: https://lists.debian.org/debian-legal/2004/12/msg00295.html See also: https://github.com/deepmind/torch-cephes/blob/master/LICENSE.txt See also: https://github.com/nearform/node-cephes/blob/master/LICENSE # Conflicts: # src/math/readme.txt
210 lines
4.3 KiB
C
210 lines
4.3 KiB
C
/* powi.c
|
||
*
|
||
* Real raised to integer power
|
||
*
|
||
*
|
||
*
|
||
* SYNOPSIS:
|
||
*
|
||
* double x, y, powi();
|
||
* int n;
|
||
*
|
||
* y = powi( x, n );
|
||
*
|
||
*
|
||
*
|
||
* DESCRIPTION:
|
||
*
|
||
* Returns argument x raised to the nth power.
|
||
* The routine efficiently decomposes n as a sum of powers of
|
||
* two. The desired power is a product of two-to-the-kth
|
||
* powers of x. Thus to compute the 32767 power of x requires
|
||
* 28 multiplications instead of 32767 multiplications.
|
||
*
|
||
*
|
||
*
|
||
* ACCURACY:
|
||
*
|
||
*
|
||
* Relative error:
|
||
* arithmetic x domain n domain # trials peak rms
|
||
* DEC .04,26 -26,26 100000 2.7e-16 4.3e-17
|
||
* IEEE .04,26 -26,26 50000 2.0e-15 3.8e-16
|
||
* IEEE 1,2 -1022,1023 50000 8.6e-14 1.6e-14
|
||
*
|
||
* Returns MAXNUM on overflow, zero on underflow.
|
||
*
|
||
*/
|
||
|
||
/* powi.c */
|
||
|
||
/*
|
||
Cephes Math Library Release 2.8: June, 2000
|
||
Copyright 1984, 1995, 2000 by Stephen L. Moshier
|
||
|
||
Redistribution and use in source and binary forms, with or without
|
||
modification, are permitted provided that the following conditions are met:
|
||
|
||
1. Redistributions of source code must retain the above copyright notice,
|
||
this list of conditions and the following disclaimer.
|
||
2. Redistributions in binary form must reproduce the above copyright
|
||
notice, this list of conditions and the following disclaimer in the
|
||
documentation and/or other materials provided with the distribution.
|
||
3. Neither the name of the <ORGANIZATION> nor the names of its
|
||
contributors may be used to endorse or promote products derived from
|
||
this software without specific prior written permission.
|
||
|
||
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
||
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
||
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
||
ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
|
||
LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
|
||
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
|
||
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
||
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
|
||
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
||
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
||
POSSIBILITY OF SUCH DAMAGE.
|
||
*/
|
||
|
||
#include "mconf.h"
|
||
#ifdef ANSIPROT
|
||
extern double log ( double );
|
||
extern double frexp ( double, int * );
|
||
extern int signbit ( double );
|
||
#else
|
||
double log(), frexp();
|
||
int signbit();
|
||
#endif
|
||
extern double NEGZERO, INFINITY, MAXNUM, MAXLOG, MINLOG, LOGE2;
|
||
|
||
double c_powi( x, nn )
|
||
double x;
|
||
int nn;
|
||
{
|
||
int n, e, sign, asign, lx;
|
||
double w, y, s;
|
||
|
||
/* See pow.c for these tests. */
|
||
if( x == 0.0 )
|
||
{
|
||
if( nn == 0 )
|
||
return( 1.0 );
|
||
else if( nn < 0 )
|
||
return( INFINITY );
|
||
else
|
||
{
|
||
if( nn & 1 )
|
||
return( x );
|
||
else
|
||
return( 0.0 );
|
||
}
|
||
}
|
||
|
||
if( nn == 0 )
|
||
return( 1.0 );
|
||
|
||
if( nn == -1 )
|
||
return( 1.0/x );
|
||
|
||
if( x < 0.0 )
|
||
{
|
||
asign = -1;
|
||
x = -x;
|
||
}
|
||
else
|
||
asign = 0;
|
||
|
||
|
||
if( nn < 0 )
|
||
{
|
||
sign = -1;
|
||
n = -nn;
|
||
}
|
||
else
|
||
{
|
||
sign = 1;
|
||
n = nn;
|
||
}
|
||
|
||
/* Even power will be positive. */
|
||
if( (n & 1) == 0 )
|
||
asign = 0;
|
||
|
||
/* Overflow detection */
|
||
|
||
/* Calculate approximate logarithm of answer */
|
||
s = frexp( x, &lx );
|
||
e = (lx - 1)*n;
|
||
if( (e == 0) || (e > 64) || (e < -64) )
|
||
{
|
||
s = (s - 7.0710678118654752e-1) / (s + 7.0710678118654752e-1);
|
||
s = (2.9142135623730950 * s - 0.5 + lx) * nn * LOGE2;
|
||
}
|
||
else
|
||
{
|
||
s = LOGE2 * e;
|
||
}
|
||
|
||
if( s > MAXLOG )
|
||
{
|
||
mtherr( "powi", OVERFLOW );
|
||
y = INFINITY;
|
||
goto done;
|
||
}
|
||
|
||
#if DENORMAL
|
||
if( s < MINLOG )
|
||
{
|
||
y = 0.0;
|
||
goto done;
|
||
}
|
||
|
||
/* Handle tiny denormal answer, but with less accuracy
|
||
* since roundoff error in 1.0/x will be amplified.
|
||
* The precise demarcation should be the gradual underflow threshold.
|
||
*/
|
||
if( (s < (-MAXLOG+2.0)) && (sign < 0) )
|
||
{
|
||
x = 1.0/x;
|
||
sign = -sign;
|
||
}
|
||
#else
|
||
/* do not produce denormal answer */
|
||
if( s < -MAXLOG )
|
||
return(0.0);
|
||
#endif
|
||
|
||
|
||
/* First bit of the power */
|
||
if( n & 1 )
|
||
y = x;
|
||
|
||
else
|
||
y = 1.0;
|
||
|
||
w = x;
|
||
n >>= 1;
|
||
while( n )
|
||
{
|
||
w = w * w; /* arg to the 2-to-the-kth power */
|
||
if( n & 1 ) /* if that bit is set, then include in product */
|
||
y *= w;
|
||
n >>= 1;
|
||
}
|
||
|
||
if( sign < 0 )
|
||
y = 1.0/y;
|
||
|
||
done:
|
||
|
||
if( asign )
|
||
{
|
||
/* odd power of negative number */
|
||
if( y == 0.0 )
|
||
y = NEGZERO;
|
||
else
|
||
y = -y;
|
||
}
|
||
return(y);
|
||
}
|