gzdoom-gles/src/v_video.cpp
Christoph Oelckers cc2b0b0dcf - made max. view pitch a property of the renderer so that it's overridable without
changing game code.
- made SpawningMapThing an argument of AActor::StaticSpawn instead of a global
  variable.
- added a stub to the DECORATE parser for defining dynamic lights directly
  in DECORATE. This is needed so that ZDoom remains compatible with any DECORATE 
  which uses this GZDoom feature in the future.


SVN r1935 (trunk)
2009-10-25 15:26:19 +00:00

1670 lines
39 KiB
C++

// Emacs style mode select -*- C++ -*-
//-----------------------------------------------------------------------------
//
// $Id:$
//
// Copyright (C) 1993-1996 by id Software, Inc.
//
// This source is available for distribution and/or modification
// only under the terms of the DOOM Source Code License as
// published by id Software. All rights reserved.
//
// The source is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// FITNESS FOR A PARTICULAR PURPOSE. See the DOOM Source Code License
// for more details.
//
// $Log:$
//
// DESCRIPTION:
// Functions to draw patches (by post) directly to screen->
// Functions to blit a block to the screen->
//
//-----------------------------------------------------------------------------
#include <stdio.h>
#include "i_system.h"
#include "x86.h"
#include "i_video.h"
#include "r_local.h"
#include "r_draw.h"
#include "r_state.h"
#include "doomdef.h"
#include "doomdata.h"
#include "doomstat.h"
#include "c_console.h"
#include "hu_stuff.h"
#include "m_argv.h"
#include "m_bbox.h"
#include "m_swap.h"
#include "m_menu.h"
#include "i_video.h"
#include "v_video.h"
#include "v_text.h"
#include "w_wad.h"
#include "c_cvars.h"
#include "c_dispatch.h"
#include "cmdlib.h"
#include "gi.h"
#include "templates.h"
#include "sbar.h"
#include "hardware.h"
#include "r_translate.h"
#include "f_wipe.h"
#include "m_png.h"
#include "colormatcher.h"
#include "v_palette.h"
IMPLEMENT_ABSTRACT_CLASS (DCanvas)
IMPLEMENT_ABSTRACT_CLASS (DFrameBuffer)
#if defined(_DEBUG) && defined(_M_IX86)
#define DBGBREAK { __asm int 3 }
#else
#define DBGBREAK
#endif
class DDummyFrameBuffer : public DFrameBuffer
{
DECLARE_CLASS (DDummyFrameBuffer, DFrameBuffer);
public:
DDummyFrameBuffer (int width, int height)
: DFrameBuffer (0, 0)
{
Width = width;
Height = height;
}
bool Lock(bool buffered) { DBGBREAK; return false; }
void Update() { DBGBREAK; }
PalEntry *GetPalette() { DBGBREAK; return NULL; }
void GetFlashedPalette(PalEntry palette[256]) { DBGBREAK; }
void UpdatePalette() { DBGBREAK; }
bool SetGamma(float gamma) { Gamma = gamma; return true; }
bool SetFlash(PalEntry rgb, int amount) { DBGBREAK; return false; }
void GetFlash(PalEntry &rgb, int &amount) { DBGBREAK; }
int GetPageCount() { DBGBREAK; return 0; }
bool IsFullscreen() { DBGBREAK; return 0; }
#ifdef _WIN32
void PaletteChanged() {}
int QueryNewPalette() { return 0; }
#endif
float Gamma;
};
IMPLEMENT_ABSTRACT_CLASS (DDummyFrameBuffer)
// SimpleCanvas is not really abstract, but this macro does not
// try to generate a CreateNew() function.
IMPLEMENT_ABSTRACT_CLASS (DSimpleCanvas)
class FPaletteTester : public FTexture
{
public:
FPaletteTester ();
const BYTE *GetColumn(unsigned int column, const Span **spans_out);
const BYTE *GetPixels();
void Unload();
bool CheckModified();
void SetTranslation(int num);
protected:
BYTE Pixels[16*16];
int CurTranslation;
int WantTranslation;
static const Span DummySpan[2];
void MakeTexture();
};
const FTexture::Span FPaletteTester::DummySpan[2] = { { 0, 16 }, { 0, 0 } };
int DisplayWidth, DisplayHeight, DisplayBits;
FFont *SmallFont, *SmallFont2, *BigFont, *ConFont, *IntermissionFont;
extern "C" {
DWORD Col2RGB8[65][256];
DWORD *Col2RGB8_LessPrecision[65];
DWORD Col2RGB8_Inverse[65][256];
BYTE RGB32k[32][32][32];
}
static DWORD Col2RGB8_2[63][256];
// [RH] The framebuffer is no longer a mere byte array.
// There's also only one, not four.
DFrameBuffer *screen;
CVAR (Int, vid_defwidth, 640, CVAR_ARCHIVE|CVAR_GLOBALCONFIG)
CVAR (Int, vid_defheight, 480, CVAR_ARCHIVE|CVAR_GLOBALCONFIG)
CVAR (Int, vid_defbits, 8, CVAR_ARCHIVE|CVAR_GLOBALCONFIG)
CVAR (Bool, vid_fps, false, 0)
CVAR (Bool, ticker, false, 0)
CVAR (Int, vid_showpalette, 0, 0)
CUSTOM_CVAR (Bool, vid_vsync, false, CVAR_ARCHIVE|CVAR_GLOBALCONFIG)
{
if (screen != NULL)
{
screen->SetVSync (*self);
}
}
CUSTOM_CVAR (Int, vid_refreshrate, 0, CVAR_ARCHIVE|CVAR_GLOBALCONFIG)
{
if (screen != NULL)
{
screen->NewRefreshRate();
}
}
CUSTOM_CVAR (Float, dimamount, -1.f, CVAR_ARCHIVE)
{
if (self < 0.f && self != -1.f)
{
self = -1.f;
}
else if (self > 1.f)
{
self = 1.f;
}
}
CVAR (Color, dimcolor, 0xffd700, CVAR_ARCHIVE)
// [RH] Set true when vid_setmode command has been executed
bool setmodeneeded = false;
// [RH] Resolution to change to when setmodeneeded is true
int NewWidth, NewHeight, NewBits;
//
// V_MarkRect
//
void V_MarkRect (int x, int y, int width, int height)
{
}
DCanvas *DCanvas::CanvasChain = NULL;
//==========================================================================
//
// DCanvas Constructor
//
//==========================================================================
DCanvas::DCanvas (int _width, int _height)
{
// Init member vars
Buffer = NULL;
LockCount = 0;
Width = _width;
Height = _height;
// Add to list of active canvases
Next = CanvasChain;
CanvasChain = this;
}
//==========================================================================
//
// DCanvas Destructor
//
//==========================================================================
DCanvas::~DCanvas ()
{
// Remove from list of active canvases
DCanvas *probe = CanvasChain, **prev;
prev = &CanvasChain;
probe = CanvasChain;
while (probe != NULL)
{
if (probe == this)
{
*prev = probe->Next;
break;
}
prev = &probe->Next;
probe = probe->Next;
}
}
//==========================================================================
//
// DCanvas :: IsValid
//
//==========================================================================
bool DCanvas::IsValid ()
{
// A nun-subclassed DCanvas is never valid
return false;
}
//==========================================================================
//
// DCanvas :: FlatFill
//
// Fill an area with a texture. If local_origin is false, then the origin
// used for the wrapping is (0,0). Otherwise, (left,right) is used.
//
//==========================================================================
void DCanvas::FlatFill (int left, int top, int right, int bottom, FTexture *src, bool local_origin)
{
int w = src->GetWidth();
int h = src->GetHeight();
// Repeatedly draw the texture, left-to-right, top-to-bottom.
for (int y = local_origin ? top : (top / h * h); y < bottom; y += h)
{
for (int x = local_origin ? left : (left / w * w); x < right; x += w)
{
DrawTexture (src, x, y,
DTA_ClipLeft, left,
DTA_ClipRight, right,
DTA_ClipTop, top,
DTA_ClipBottom, bottom,
DTA_TopOffset, 0,
DTA_LeftOffset, 0,
TAG_DONE);
}
}
}
//==========================================================================
//
// DCanvas :: Dim
//
// Applies a colored overlay to the entire screen, with the opacity
// determined by the dimamount cvar.
//
//==========================================================================
void DCanvas::Dim (PalEntry color)
{
PalEntry dimmer;
float amount;
if (dimamount >= 0)
{
dimmer = PalEntry(dimcolor);
amount = dimamount;
}
else
{
dimmer = gameinfo.dimcolor;
amount = gameinfo.dimamount;
}
if (gameinfo.gametype == GAME_Hexen && gamestate == GS_DEMOSCREEN)
{ // On the Hexen title screen, the default dimming is not
// enough to make the menus readable.
amount = MIN<float> (1.f, amount*2.f);
}
// Add the cvar's dimming on top of the color passed to the function
if (color.a != 0)
{
float dim[4] = { color.r/255.f, color.g/255.f, color.b/255.f, color.a/255.f };
DBaseStatusBar::AddBlend (dimmer.r/255.f, dimmer.g/255.f, dimmer.b/255.f, amount, dim);
dimmer = PalEntry (BYTE(dim[0]*255), BYTE(dim[1]*255), BYTE(dim[2]*255));
amount = dim[3];
}
Dim (dimmer, amount, 0, 0, Width, Height);
}
//==========================================================================
//
// DCanvas :: Dim
//
// Applies a colored overlay to an area of the screen.
//
//==========================================================================
void DCanvas::Dim (PalEntry color, float damount, int x1, int y1, int w, int h)
{
if (damount == 0.f)
return;
DWORD *bg2rgb;
DWORD fg;
int gap;
BYTE *spot;
int x, y;
{
int amount;
amount = (int)(damount * 64);
bg2rgb = Col2RGB8[64-amount];
fg = (((color.r * amount) >> 4) << 20) |
((color.g * amount) >> 4) |
(((color.b * amount) >> 4) << 10);
}
spot = Buffer + x1 + y1*Pitch;
gap = Pitch - w;
for (y = h; y != 0; y--)
{
for (x = w; x != 0; x--)
{
DWORD bg;
bg = bg2rgb[(*spot)&0xff];
bg = (fg+bg) | 0x1f07c1f;
*spot = RGB32k[0][0][bg&(bg>>15)];
spot++;
}
spot += gap;
}
}
//==========================================================================
//
// DCanvas :: UsesColormap
//
//==========================================================================
bool DCanvas::UsesColormap() const
{
return true;
}
//==========================================================================
//
// DCanvas :: GetScreenshotBuffer
//
// Returns a buffer containing the most recently displayed frame. The
// width and height of this buffer are the same as the canvas.
//
//==========================================================================
void DCanvas::GetScreenshotBuffer(const BYTE *&buffer, int &pitch, ESSType &color_type)
{
Lock(true);
buffer = GetBuffer();
pitch = GetPitch();
color_type = SS_PAL;
}
//==========================================================================
//
// DCanvas :: ReleaseScreenshotBuffer
//
// Releases the buffer obtained through GetScreenshotBuffer. These calls
// must not be nested.
//
//==========================================================================
void DCanvas::ReleaseScreenshotBuffer()
{
Unlock();
}
//==========================================================================
//
// V_GetColorFromString
//
// Passed a string of the form "#RGB", "#RRGGBB", "R G B", or "RR GG BB",
// returns a number representing that color. If palette is non-NULL, the
// index of the best match in the palette is returned, otherwise the
// RRGGBB value is returned directly.
//
//==========================================================================
int V_GetColorFromString (const DWORD *palette, const char *cstr)
{
int c[3], i, p;
char val[3];
val[2] = '\0';
// Check for HTML-style #RRGGBB or #RGB color string
if (cstr[0] == '#')
{
size_t len = strlen (cstr);
if (len == 7)
{
// Extract each eight-bit component into c[].
for (i = 0; i < 3; ++i)
{
val[0] = cstr[1 + i*2];
val[1] = cstr[2 + i*2];
c[i] = ParseHex (val);
}
}
else if (len == 4)
{
// Extract each four-bit component into c[], expanding to eight bits.
for (i = 0; i < 3; ++i)
{
val[1] = val[0] = cstr[1 + i];
c[i] = ParseHex (val);
}
}
else
{
// Bad HTML-style; pretend it's black.
c[2] = c[1] = c[0] = 0;
}
}
else
{
if (strlen(cstr) == 6)
{
char *p;
int color = strtol(cstr, &p, 16);
if (*p == 0)
{
// RRGGBB string
c[0] = (color & 0xff0000) >> 16;
c[1] = (color & 0xff00) >> 8;
c[2] = (color & 0xff);
}
else goto normal;
}
else
{
normal:
// Treat it as a space-delemited hexadecimal string
for (i = 0; i < 3; ++i)
{
// Skip leading whitespace
while (*cstr <= ' ' && *cstr != '\0')
{
cstr++;
}
// Extract a component and convert it to eight-bit
for (p = 0; *cstr > ' '; ++p, ++cstr)
{
if (p < 2)
{
val[p] = *cstr;
}
}
if (p == 0)
{
c[i] = 0;
}
else
{
if (p == 1)
{
val[1] = val[0];
}
c[i] = ParseHex (val);
}
}
}
}
if (palette)
return ColorMatcher.Pick (c[0], c[1], c[2]);
else
return MAKERGB(c[0], c[1], c[2]);
}
//==========================================================================
//
// V_GetColorStringByName
//
// Searches for the given color name in x11r6rgb.txt and returns an
// HTML-ish "#RRGGBB" string for it if found or the empty string if not.
//
//==========================================================================
FString V_GetColorStringByName (const char *name)
{
FMemLump rgbNames;
char *rgbEnd;
char *rgb, *endp;
int rgblump;
int c[3], step;
size_t namelen;
if (Wads.GetNumLumps()==0) return FString();
rgblump = Wads.CheckNumForName ("X11R6RGB");
if (rgblump == -1)
{
Printf ("X11R6RGB lump not found\n");
return FString();
}
rgbNames = Wads.ReadLump (rgblump);
rgb = (char *)rgbNames.GetMem();
rgbEnd = rgb + Wads.LumpLength (rgblump);
step = 0;
namelen = strlen (name);
while (rgb < rgbEnd)
{
// Skip white space
if (*rgb <= ' ')
{
do
{
rgb++;
} while (rgb < rgbEnd && *rgb <= ' ');
}
else if (step == 0 && *rgb == '!')
{ // skip comment lines
do
{
rgb++;
} while (rgb < rgbEnd && *rgb != '\n');
}
else if (step < 3)
{ // collect RGB values
c[step++] = strtoul (rgb, &endp, 10);
if (endp == rgb)
{
break;
}
rgb = endp;
}
else
{ // Check color name
endp = rgb;
// Find the end of the line
while (endp < rgbEnd && *endp != '\n')
endp++;
// Back up over any whitespace
while (endp > rgb && *endp <= ' ')
endp--;
if (endp == rgb)
{
break;
}
size_t checklen = ++endp - rgb;
if (checklen == namelen && strnicmp (rgb, name, checklen) == 0)
{
FString descr;
descr.Format ("#%02x%02x%02x", c[0], c[1], c[2]);
return descr;
}
rgb = endp;
step = 0;
}
}
if (rgb < rgbEnd)
{
Printf ("X11R6RGB lump is corrupt\n");
}
return FString();
}
//==========================================================================
//
// V_GetColor
//
// Works like V_GetColorFromString(), but also understands X11 color names.
//
//==========================================================================
int V_GetColor (const DWORD *palette, const char *str)
{
FString string = V_GetColorStringByName (str);
int res;
if (!string.IsEmpty())
{
res = V_GetColorFromString (palette, string);
}
else
{
res = V_GetColorFromString (palette, str);
}
return res;
}
//==========================================================================
//
// BuildTransTable
//
// Build the tables necessary for blending
//
//==========================================================================
static void BuildTransTable (const PalEntry *palette)
{
int r, g, b;
// create the RGB555 lookup table
for (r = 0; r < 32; r++)
for (g = 0; g < 32; g++)
for (b = 0; b < 32; b++)
RGB32k[r][g][b] = ColorMatcher.Pick ((r<<3)|(r>>2), (g<<3)|(g>>2), (b<<3)|(b>>2));
int x, y;
// create the swizzled palette
for (x = 0; x < 65; x++)
for (y = 0; y < 256; y++)
Col2RGB8[x][y] = (((palette[y].r*x)>>4)<<20) |
((palette[y].g*x)>>4) |
(((palette[y].b*x)>>4)<<10);
// create the swizzled palette with the lsb of red and blue forced to 0
// (for green, a 1 is okay since it never gets added into)
for (x = 1; x < 64; x++)
{
Col2RGB8_LessPrecision[x] = Col2RGB8_2[x-1];
for (y = 0; y < 256; y++)
{
Col2RGB8_2[x-1][y] = Col2RGB8[x][y] & 0x3feffbff;
}
}
Col2RGB8_LessPrecision[0] = Col2RGB8[0];
Col2RGB8_LessPrecision[64] = Col2RGB8[64];
// create the inverse swizzled palette
for (x = 0; x < 65; x++)
for (y = 0; y < 256; y++)
{
Col2RGB8_Inverse[x][y] = (((((255-palette[y].r)*x)>>4)<<20) |
(((255-palette[y].g)*x)>>4) |
((((255-palette[y].b)*x)>>4)<<10)) & 0x3feffbff;
}
}
//==========================================================================
//
// DCanvas :: CalcGamma
//
//==========================================================================
void DCanvas::CalcGamma (float gamma, BYTE gammalookup[256])
{
// I found this formula on the web at
// <http://panda.mostang.com/sane/sane-gamma.html>,
// but that page no longer exits.
double invgamma = 1.f / gamma;
int i;
for (i = 0; i < 256; i++)
{
gammalookup[i] = (BYTE)(255.0 * pow (i / 255.0, invgamma));
}
}
//==========================================================================
//
// DSimpleCanvas Constructor
//
// A simple canvas just holds a buffer in main memory.
//
//==========================================================================
DSimpleCanvas::DSimpleCanvas (int width, int height)
: DCanvas (width, height)
{
// Making the pitch a power of 2 is very bad for performance
// Try to maximize the number of cache lines that can be filled
// for each column drawing operation by making the pitch slightly
// longer than the width. The values used here are all based on
// empirical evidence.
if (width <= 640)
{
// For low resolutions, just keep the pitch the same as the width.
// Some speedup can be seen using the technique below, but the speedup
// is so marginal that I don't consider it worthwhile.
Pitch = width;
}
else
{
// If we couldn't figure out the CPU's L1 cache line size, assume
// it's 32 bytes wide.
if (CPU.DataL1LineSize == 0)
{
CPU.DataL1LineSize = 32;
}
// The Athlon and P3 have very different caches, apparently.
// I am going to generalize the Athlon's performance to all AMD
// processors and the P3's to all non-AMD processors. I don't know
// how smart that is, but I don't have a vast plethora of
// processors to test with.
if (CPU.bIsAMD)
{
Pitch = width + CPU.DataL1LineSize;
}
else
{
Pitch = width + MAX(0, CPU.DataL1LineSize - 8);
}
}
MemBuffer = new BYTE[Pitch * height];
memset (MemBuffer, 0, Pitch * height);
}
//==========================================================================
//
// DSimpleCanvas Destructor
//
//==========================================================================
DSimpleCanvas::~DSimpleCanvas ()
{
if (MemBuffer != NULL)
{
delete[] MemBuffer;
MemBuffer = NULL;
}
}
//==========================================================================
//
// DSimpleCanvas :: IsValid
//
//==========================================================================
bool DSimpleCanvas::IsValid ()
{
return (MemBuffer != NULL);
}
//==========================================================================
//
// DSimpleCanvas :: Lock
//
//==========================================================================
bool DSimpleCanvas::Lock ()
{
if (LockCount == 0)
{
Buffer = MemBuffer;
}
LockCount++;
return false; // System surfaces are never lost
}
//==========================================================================
//
// DSimpleCanvas :: Unlock
//
//==========================================================================
void DSimpleCanvas::Unlock ()
{
if (--LockCount <= 0)
{
LockCount = 0;
Buffer = NULL; // Enforce buffer access only between Lock/Unlock
}
}
//==========================================================================
//
// DFrameBuffer Constructor
//
// A frame buffer canvas is the most common and represents the image that
// gets drawn to the screen.
//
//==========================================================================
DFrameBuffer::DFrameBuffer (int width, int height)
: DSimpleCanvas (width, height)
{
LastMS = LastSec = FrameCount = LastCount = LastTic = 0;
Accel2D = false;
}
//==========================================================================
//
// DFrameBuffer :: DrawRateStuff
//
// Draws the fps counter, dot ticker, and palette debug.
//
//==========================================================================
void DFrameBuffer::DrawRateStuff ()
{
// Draws frame time and cumulative fps
if (vid_fps)
{
DWORD ms = I_MSTime ();
DWORD howlong = ms - LastMS;
if (howlong >= 0)
{
char fpsbuff[40];
int chars;
int rate_x;
chars = mysnprintf (fpsbuff, countof(fpsbuff), "%2u ms (%3u fps)", howlong, LastCount);
rate_x = Width - chars * 8;
Clear (rate_x, 0, Width, 8, 0, 0);
DrawText (ConFont, CR_WHITE, rate_x, 0, (char *)&fpsbuff[0], TAG_DONE);
DWORD thisSec = ms/1000;
if (LastSec < thisSec)
{
LastCount = FrameCount / (thisSec - LastSec);
LastSec = thisSec;
FrameCount = 0;
}
FrameCount++;
}
LastMS = ms;
}
// draws little dots on the bottom of the screen
if (ticker)
{
int i = I_GetTime(false);
int tics = i - LastTic;
BYTE *buffer = GetBuffer();
LastTic = i;
if (tics > 20) tics = 20;
// Buffer can be NULL if we're doing hardware accelerated 2D
if (buffer != NULL)
{
buffer += (GetHeight()-1)*GetPitch();
for (i = 0; i < tics*2; i += 2) buffer[i] = 0xff;
for ( ; i < 20*2; i += 2) buffer[i] = 0x00;
}
else
{
for (i = 0; i < tics*2; i += 2) Clear(i, Height-1, i+1, Height, 255, 0);
for ( ; i < 20*2; i += 2) Clear(i, Height-1, i+1, Height, 0, 0);
}
}
// draws the palette for debugging
if (vid_showpalette)
{
// This used to just write the palette to the display buffer.
// With hardware-accelerated 2D, that doesn't work anymore.
// Drawing it as a texture does and continues to show how
// well the PalTex shader is working.
static FPaletteTester palette;
palette.SetTranslation(vid_showpalette);
DrawTexture(&palette, 0, 0,
DTA_DestWidth, 16*7,
DTA_DestHeight, 16*7,
DTA_Masked, false,
TAG_DONE);
}
}
//==========================================================================
//
// FPaleteTester Constructor
//
// This is just a 16x16 image with every possible color value.
//
//==========================================================================
FPaletteTester::FPaletteTester()
{
Width = 16;
Height = 16;
WidthBits = 4;
HeightBits = 4;
WidthMask = 15;
CurTranslation = 0;
WantTranslation = 1;
MakeTexture();
}
//==========================================================================
//
// FPaletteTester :: CheckModified
//
//==========================================================================
bool FPaletteTester::CheckModified()
{
return CurTranslation != WantTranslation;
}
//==========================================================================
//
// FPaletteTester :: SetTranslation
//
//==========================================================================
void FPaletteTester::SetTranslation(int num)
{
if (num >= 1 && num <= 9)
{
WantTranslation = num;
}
}
//==========================================================================
//
// FPaletteTester :: Unload
//
//==========================================================================
void FPaletteTester::Unload()
{
}
//==========================================================================
//
// FPaletteTester :: GetColumn
//
//==========================================================================
const BYTE *FPaletteTester::GetColumn (unsigned int column, const Span **spans_out)
{
if (CurTranslation != WantTranslation)
{
MakeTexture();
}
column &= 15;
if (spans_out != NULL)
{
*spans_out = DummySpan;
}
return Pixels + column*16;
}
//==========================================================================
//
// FPaletteTester :: GetPixels
//
//==========================================================================
const BYTE *FPaletteTester::GetPixels ()
{
if (CurTranslation != WantTranslation)
{
MakeTexture();
}
return Pixels;
}
//==========================================================================
//
// FPaletteTester :: MakeTexture
//
//==========================================================================
void FPaletteTester::MakeTexture()
{
int i, j, k, t;
BYTE *p;
t = WantTranslation;
p = Pixels;
k = 0;
for (i = 0; i < 16; ++i)
{
for (j = 0; j < 16; ++j)
{
*p++ = (t > 1) ? translationtables[TRANSLATION_Standard][t - 2]->Remap[k] : k;
k += 16;
}
k -= 255;
}
CurTranslation = t;
}
//==========================================================================
//
// DFrameBuffer :: CopyFromBuff
//
// Copies pixels from main memory to video memory. This is only used by
// DDrawFB.
//
//==========================================================================
void DFrameBuffer::CopyFromBuff (BYTE *src, int srcPitch, int width, int height, BYTE *dest)
{
if (Pitch == width && Pitch == Width && srcPitch == width)
{
memcpy (dest, src, Width * Height);
}
else
{
for (int y = 0; y < height; y++)
{
memcpy (dest, src, width);
dest += Pitch;
src += srcPitch;
}
}
}
//==========================================================================
//
// DFrameBuffer :: SetVSync
//
// Turns vertical sync on and off, if supported.
//
//==========================================================================
void DFrameBuffer::SetVSync (bool vsync)
{
}
//==========================================================================
//
// DFrameBuffer :: NewRefreshRate
//
// Sets the fullscreen display to the new refresh rate in vid_refreshrate,
// if possible.
//
//==========================================================================
void DFrameBuffer::NewRefreshRate ()
{
}
//==========================================================================
//
// DFrameBuffer :: SetBlendingRect
//
// Defines the area of the screen containing the 3D view.
//
//==========================================================================
void DFrameBuffer::SetBlendingRect (int x1, int y1, int x2, int y2)
{
}
//==========================================================================
//
// DFrameBuffer :: Begin2D
//
// Signal that 3D rendering is complete, and the rest of the operations on
// the canvas until Unlock() will be 2D ones.
//
//==========================================================================
bool DFrameBuffer::Begin2D (bool copy3d)
{
return false;
}
//==========================================================================
//
// DFrameBuffer :: DrawBlendingRect
//
// In hardware 2D modes, the blending rect needs to be drawn separately
// from transferring the 3D scene to video memory, because the weapon
// sprite is drawn on top of that.
//
//==========================================================================
void DFrameBuffer::DrawBlendingRect()
{
}
//==========================================================================
//
// DFrameBuffer :: CreateTexture
//
// Creates a native texture for a game texture, if supported.
//
//==========================================================================
FNativeTexture *DFrameBuffer::CreateTexture(FTexture *gametex, bool wrapping)
{
return NULL;
}
//==========================================================================
//
// DFrameBuffer :: CreatePalette
//
// Creates a native palette from a remap table, if supported.
//
//==========================================================================
FNativePalette *DFrameBuffer::CreatePalette(FRemapTable *remap)
{
return NULL;
}
//==========================================================================
//
// DFrameBuffer :: WipeStartScreen
//
// Grabs a copy of the screen currently displayed to serve as the initial
// frame of a screen wipe. Also determines which screenwipe will be
// performed.
//
//==========================================================================
bool DFrameBuffer::WipeStartScreen(int type)
{
return wipe_StartScreen(type);
}
//==========================================================================
//
// DFrameBuffer :: WipeEndScreen
//
// Grabs a copy of the most-recently drawn, but not yet displayed, screen
// to serve as the final frame of a screen wipe.
//
//==========================================================================
void DFrameBuffer::WipeEndScreen()
{
wipe_EndScreen();
Unlock();
}
//==========================================================================
//
// DFrameBuffer :: WipeDo
//
// Draws one frame of a screenwipe. Should be called no more than 35
// times per second. If called less than that, ticks indicates how many
// ticks have passed since the last call.
//
//==========================================================================
bool DFrameBuffer::WipeDo(int ticks)
{
Lock(true);
return wipe_ScreenWipe(ticks);
}
//==========================================================================
//
// DFrameBuffer :: WipeCleanup
//
//==========================================================================
void DFrameBuffer::WipeCleanup()
{
wipe_Cleanup();
}
//===========================================================================
//
// Texture precaching
//
//===========================================================================
void DFrameBuffer::PrecacheTexture(FTexture *tex, int cache)
{
if (tex != NULL)
{
if (cache & 1)
{
const FTexture::Span *spanp;
tex->GetColumn(0, &spanp);
}
else if (cache != 0)
{
tex->GetPixels ();
}
else
{
tex->Unload ();
}
}
}
//===========================================================================
//
// Render the view
//
//===========================================================================
void DFrameBuffer::RenderView(player_t *player)
{
R_RenderActorView (player->mo);
// [RH] Let cameras draw onto textures that were visible this frame.
FCanvasTextureInfo::UpdateAll ();
}
//===========================================================================
//
// Render the view to a savegame picture
//
//===========================================================================
void DFrameBuffer::WriteSavePic (player_t *player, FILE *file, int width, int height)
{
DCanvas *pic = new DSimpleCanvas (width, height);
PalEntry palette[256];
// Take a snapshot of the player's view
pic->ObjectFlags |= OF_Fixed;
pic->Lock ();
R_RenderViewToCanvas (player->mo, pic, 0, 0, width, height);
GetFlashedPalette (palette);
M_CreatePNG (file, pic->GetBuffer(), palette, SS_PAL, width, height, pic->GetPitch());
pic->Unlock ();
pic->Destroy();
pic->ObjectFlags |= OF_YesReallyDelete;
delete pic;
}
//===========================================================================
//
//
//
//===========================================================================
void DFrameBuffer::DrawRemainingPlayerSprites()
{
R_DrawRemainingPlayerSprites();
}
//===========================================================================
//
// notify the renderer that an actor has changed state
//
//===========================================================================
void DFrameBuffer::StateChanged(AActor *actor)
{
}
//===========================================================================
//
// notify the renderer that serialization of the curent level is about to start/end
//
//===========================================================================
void DFrameBuffer::StartSerialize(FArchive &arc)
{
}
void DFrameBuffer::EndSerialize(FArchive &arc)
{
}
//===========================================================================
//
// Get max. view angle (renderer specific information so it goes here now)
//
//===========================================================================
#define MAX_DN_ANGLE 56 // Max looking down angle
#define MAX_UP_ANGLE 32 // Max looking up angle
int DFrameBuffer::GetMaxViewPitch(bool down)
{
return down? MAX_DN_ANGLE*ANGLE_1 : -MAX_UP_ANGLE*ANGLE_1;
}
//===========================================================================
//
//
//
//===========================================================================
FNativePalette::~FNativePalette()
{
}
FNativeTexture::~FNativeTexture()
{
}
bool FNativeTexture::CheckWrapping(bool wrapping)
{
return true;
}
CCMD(clean)
{
Printf ("CleanXfac: %d\nCleanYfac: %d\n", CleanXfac, CleanYfac);
}
//
// V_SetResolution
//
bool V_DoModeSetup (int width, int height, int bits)
{
DFrameBuffer *buff = I_SetMode (width, height, screen);
if (buff == NULL)
{
return false;
}
screen = buff;
GC::WriteBarrier(screen);
screen->SetGamma (Gamma);
// Load fonts now so they can be packed into textures straight away,
// if D3DFB is being used for the display.
FFont::StaticPreloadFonts();
{
int ratio;
int cwidth;
int cheight;
int cx1, cy1, cx2, cy2;
ratio = CheckRatio (width, height);
if (ratio & 4)
{
cwidth = width;
cheight = height * BaseRatioSizes[ratio][3] / 48;
}
else
{
cwidth = width * BaseRatioSizes[ratio][3] / 48;
cheight = height;
}
// Use whichever pair of cwidth/cheight or width/height that produces less difference
// between CleanXfac and CleanYfac.
cx1 = MAX(cwidth / 320, 1);
cy1 = MAX(cheight / 200, 1);
cx2 = MAX(width / 320, 1);
cy2 = MAX(height / 200, 1);
if (abs(cx1 - cy1) <= abs(cx2 - cy2))
{ // e.g. 640x360 looks better with this.
CleanXfac = cx1;
CleanYfac = cy1;
}
else
{ // e.g. 720x480 looks better with this.
CleanXfac = cx2;
CleanYfac = cy2;
}
}
if (CleanXfac > 1 && CleanYfac > 1 && CleanXfac != CleanYfac)
{
if (CleanXfac < CleanYfac)
CleanYfac = CleanXfac;
else
CleanXfac = CleanYfac;
}
CleanWidth = width / CleanXfac;
CleanHeight = height / CleanYfac;
assert(CleanWidth >= 320);
assert(CleanHeight >= 200);
DisplayWidth = width;
DisplayHeight = height;
DisplayBits = bits;
R_MultiresInit ();
RenderTarget = screen;
screen->Lock (true);
R_SetupBuffer ();
screen->Unlock ();
M_RefreshModesList ();
return true;
}
bool IVideo::SetResolution (int width, int height, int bits)
{
int oldwidth, oldheight;
int oldbits;
if (screen)
{
oldwidth = SCREENWIDTH;
oldheight = SCREENHEIGHT;
oldbits = DisplayBits;
}
else
{ // Harmless if screen wasn't allocated
oldwidth = width;
oldheight = height;
oldbits = bits;
}
I_ClosestResolution (&width, &height, bits);
if (!I_CheckResolution (width, height, bits))
{ // Try specified resolution
if (!I_CheckResolution (oldwidth, oldheight, oldbits))
{ // Try previous resolution (if any)
return false;
}
else
{
width = oldwidth;
height = oldheight;
bits = oldbits;
}
}
return V_DoModeSetup (width, height, bits);
}
CCMD (vid_setmode)
{
bool goodmode = false;
int width = 0, height = SCREENHEIGHT;
int bits = DisplayBits;
if (argv.argc() > 1)
{
width = atoi (argv[1]);
if (argv.argc() > 2)
{
height = atoi (argv[2]);
if (argv.argc() > 3)
{
bits = atoi (argv[3]);
}
}
}
if (width && I_CheckResolution (width, height, bits))
{
goodmode = true;
}
if (goodmode)
{
// The actual change of resolution will take place
// near the beginning of D_Display().
if (gamestate != GS_STARTUP)
{
setmodeneeded = true;
NewWidth = width;
NewHeight = height;
NewBits = bits;
}
}
else if (width)
{
Printf ("Unknown resolution %d x %d x %d\n", width, height, bits);
}
else
{
Printf ("Usage: vid_setmode <width> <height> <mode>\n");
}
}
//
// V_Init
//
void V_Init (void)
{
char *i;
int width, height, bits;
atterm (V_Shutdown);
// [RH] Initialize palette management
InitPalette ();
width = height = bits = 0;
if ( (i = Args->CheckValue ("-width")) )
width = atoi (i);
if ( (i = Args->CheckValue ("-height")) )
height = atoi (i);
if ( (i = Args->CheckValue ("-bits")) )
bits = atoi (i);
if (width == 0)
{
if (height == 0)
{
width = vid_defwidth;
height = vid_defheight;
}
else
{
width = (height * 8) / 6;
}
}
else if (height == 0)
{
height = (width * 6) / 8;
}
if (bits == 0)
{
bits = vid_defbits;
}
screen = new DDummyFrameBuffer (width, height);
BuildTransTable (GPalette.BaseColors);
}
void V_Init2()
{
assert (screen->IsKindOf(RUNTIME_CLASS(DDummyFrameBuffer)));
int width = screen->GetWidth();
int height = screen->GetHeight();
float gamma = static_cast<DDummyFrameBuffer *>(screen)->Gamma;
{
DFrameBuffer *s = screen;
screen = NULL;
s->ObjectFlags |= OF_YesReallyDelete;
delete s;
}
I_InitGraphics();
I_ClosestResolution (&width, &height, 8);
if (!Video->SetResolution (width, height, 8))
I_FatalError ("Could not set resolution to %d x %d x %d", width, height, 8);
else
Printf ("Resolution: %d x %d\n", SCREENWIDTH, SCREENHEIGHT);
screen->SetGamma (gamma);
FBaseCVar::ResetColors ();
C_NewModeAdjust();
M_InitVideoModesMenu();
BorderNeedRefresh = screen->GetPageCount ();
setsizeneeded = true;
}
void V_Shutdown()
{
if (screen)
{
DFrameBuffer *s = screen;
screen = NULL;
s->ObjectFlags |= OF_YesReallyDelete;
delete s;
}
while (FFont::FirstFont != NULL)
{
delete FFont::FirstFont;
}
}
EXTERN_CVAR (Bool, vid_tft)
CUSTOM_CVAR (Bool, vid_nowidescreen, false, CVAR_GLOBALCONFIG|CVAR_ARCHIVE)
{
setsizeneeded = true;
if (StatusBar != NULL)
{
StatusBar->ScreenSizeChanged();
}
}
CUSTOM_CVAR (Int, vid_aspect, 0, CVAR_GLOBALCONFIG|CVAR_ARCHIVE)
{
setsizeneeded = true;
if (StatusBar != NULL)
{
StatusBar->ScreenSizeChanged();
}
}
// Tries to guess the physical dimensions of the screen based on the
// screen's pixel dimensions. Can return:
// 0: 4:3
// 1: 16:9
// 2: 16:10
// 4: 5:4
int CheckRatio (int width, int height)
{
if ((vid_aspect >=1) && (vid_aspect <=4))
{
// [SP] User wants to force aspect ratio; let them.
return vid_aspect == 3? 0: int(vid_aspect);
}
if (vid_nowidescreen)
{
if (!vid_tft)
{
return 0;
}
return (height * 5/4 == width) ? 4 : 0;
}
// If the size is approximately 16:9, consider it so.
if (abs (height * 16/9 - width) < 10)
{
return 1;
}
// 16:10 has more variance in the pixel dimensions. Grr.
if (abs (height * 16/10 - width) < 60)
{
// 320x200 and 640x400 are always 4:3, not 16:10
if ((width == 320 && height == 200) || (width == 640 && height == 400))
{
return 0;
}
return 2;
}
// Unless vid_tft is set, 1280x1024 is 4:3, not 5:4.
if (height * 5/4 == width && vid_tft)
{
return 4;
}
// Assume anything else is 4:3.
return 0;
}
// First column: Base width (unused)
// Second column: Base height (used for wall visibility multiplier)
// Third column: Psprite offset (needed for "tallscreen" modes)
// Fourth column: Width or height multiplier
const int BaseRatioSizes[5][4] =
{
{ 960, 600, 0, 48 }, // 4:3 320, 200, multiplied by three
{ 1280, 450, 0, 48*3/4 }, // 16:9 426.6667, 150, multiplied by three
{ 1152, 500, 0, 48*5/6 }, // 16:10 386, 166.6667, multiplied by three
{ 960, 600, 0, 48 },
{ 960, 640, (int)(6.5*FRACUNIT), 48*15/16 } // 5:4 320, 213.3333, multiplied by three
};